Advertisement

A Guide to Monte Carlo for Statistical Mechanics: 2. Byways

  • J. P. Valleau
  • G. M. Torrie
Part of the Modern Theoretical Chemistry book series (MTC, volume 5)

Abstract

When Monte Carlo work is mentioned, one thinks primarily of the “conventional” techniques described in Chapter 4, which are concerned with classical and macroscopic systems, and are restricted to thermodynamic and structural information of a mechanical nature. There are under development, however, Monte Carlo procedures seeking to remove some of these limitations, and this chapter samples some of this newer work as it relates to the theory of fluids.

Keywords

Free Energy Hard Sphere Monte Carlo Technique Free Energy Difference Monte Carlo Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. W. Salsburg, J. D. J.cobson,W. Fickett, and W. W. Wood, Application of the Monte Carlo Method to the lattice-gas Model. I. Two dimensional triangular lattice. J. Chem. Phys. 30, 65–72 (1959).Google Scholar
  2. 2.
    D. A. Chesnut and Z. W. Salsburg, Monte Carlo procedure for statistical mechanical calculations in a grand canonical ensemble of lattice systems. J. Chem. Phys. 38, 2861–2875 (1963).CrossRefGoogle Scholar
  3. 3.
    D. A. Chesnut, Monte Carlo calculations for the two-dimensional triangular lattice gas: Supercritical region. J. Chem. Phys. 39, 2081–2084 (1963).CrossRefGoogle Scholar
  4. 4.
    W. W. Wood, in: Physics of Simple Liquids (H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, ed.,), North-Holland, Amsterdam (1968).Google Scholar
  5. 5.
    J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Chap. 10, Methuen, London (1964).Google Scholar
  6. 6.
    M. N. Rosenbluth and A. W. Rosenbluth, Monte Carlo calculations of average extension of molecular chains, J. Chem. Phys. 23, 356–359 (1955).CrossRefGoogle Scholar
  7. 7.
    F. L. McCrackin, Weighting methods for Monte Carlo calculations of polymer configurations, J. Res. Nat. Bur. Stand. 76B 193–200 (1972).Google Scholar
  8. 8.
    R. L. Coldwell, Monte Carlo evaluation of the partition function for a hard disk system, Phys. Rev. A 7 270–281 (1973).CrossRefGoogle Scholar
  9. 9.
    R. L. Coldwell, J. P. Henry, and C.-W. Woo, Free energy of a system of hard spherocylinders serving as a simple method for liquid crystals, Phys. Rev. A 10 897–902 (1974).CrossRefGoogle Scholar
  10. 10.
    W. G. Hoover and F. H. Ree, Melting transition and communal entropy for hard spheres, J. Chem. Phys. 49, 3609–3617 (1968).CrossRefGoogle Scholar
  11. 11.
    W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A. Barker, and B. C. Brown, Soft sphere equation of state, J. Chem. Phys. 52, 4931–4941 (1970).CrossRefGoogle Scholar
  12. 12.
    W. G. Hoover, S. G. Gray, and K. W. Johnson, Thermodynamic properties of the fluid and solid phases for inverse power potentials, J. Chem. Phys. 55, 1128–1136 (1971).CrossRefGoogle Scholar
  13. 13.
    D. Levesque and L. Verlet, Perturbation theory and equation of state for fluids, Phys. Rev. 182, 307–316 (1969).CrossRefGoogle Scholar
  14. 14.
    J.-P. Hansen, Phase transition of the Lennard-Jones system II. High-temperature limit, Phys. Rev. A 2, 221–230 (1970).CrossRefGoogle Scholar
  15. 15.
    J.-P. Hansen, Statistical mechanics of dense ionized matter. I. Equilibrium properties of the one-component plasma, Phys. Rev. A 8, 3096–3109 (1973).CrossRefGoogle Scholar
  16. 16.
    I. R. McDonald and K. Singer, An equation of state for simple liquids, Mol. Phys. 23, 29–40 (1972).CrossRefGoogle Scholar
  17. 17.
    I. R. McDonald and K. Singer, An equation of state for simple liquids, erratum, Mol. Phys. 24, 464 (1972).CrossRefGoogle Scholar
  18. 18.
    G. N. Patey and J. P. Valleau, The free energy of spheres with dipoles: Monte Carlo with multistage sampling, Chem. Phys. Lett. 21, 297–300 (1973).CrossRefGoogle Scholar
  19. 19.
    G. N. Patey and J. P. Valleau, Fluids of spheres containing quadrupoles and dipoles: A study using perturbation theory and Monte Carlo computations, J. Chem. Phys. 64, 170–184 (1976).CrossRefGoogle Scholar
  20. 20.
    W. G. Hoover and F. H. Ree, Use of computer experiments to locate the melting transition and calculate the entropy in the solid phase, J. Chem. Phys. 47, 4873–4878 (1967).CrossRefGoogle Scholar
  21. 21.
    F. H. Ree in: Physical Chemistry—An Advanced Treatise (H. Eyring, D. Henderson, and W. Jost, eds.), Vol. VIII A. Chap. 5, Academic Press, New York (1971).Google Scholar
  22. 22.
    J.-P. Hansen and L. Verlet, Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151–161 (1969).CrossRefGoogle Scholar
  23. 23.
    G. M. Torrie, J. P. Valleau, and A. Bain, Monte Carlo estimation of communal entropy, J. Chem. Phys. 58, 5479–5483 (1973).CrossRefGoogle Scholar
  24. 24.
    B. Widom, Some topics in the theory of fluids, J. Chem. Phys. 39, 2808–2812 (1963).CrossRefGoogle Scholar
  25. 25.
    D. J. Adams, (a) Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol. Phys. 28, 1241–1252 (1974). (b) Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Mol. Phys. 29, 307–311 (1975).CrossRefGoogle Scholar
  26. 26.
    L. A. Rowley, D. Nicholson, and N. G. Parsonage, Grand ensemble studies of physical adsorption, Mol. Phys. 31, 365, 389 (1976).CrossRefGoogle Scholar
  27. 27.
    I. R. McDonald and K. Singer, Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method, Discuss. Faraday Soc. 43, 40–49 (1967).CrossRefGoogle Scholar
  28. 28.
    I. R. McDonald and K. Singer, Machine calculation of thermodynamic properties of a simple fluid at supercritical temperatures, J. Chem. Phys. 47, 4766–4772 (1967).CrossRefGoogle Scholar
  29. 29.
    I. R. McDonald and K. Singer, Examination of the adequacy of the 12–6 potential for liquid argon by means of Monte Carlo calculations, J. Chem. Phys. 50, 2308–2315 (1969).CrossRefGoogle Scholar
  30. 30.
    J. P. Valleau and D. N. Card, Monte Carlo estimation of the free energy by multistage sampling, J. Chem. Phys. 57, 5457–5463 (1972).CrossRefGoogle Scholar
  31. 31.
    a) G. Torrie and J. P. Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling, Chem. Phys. Lett. 28 578–581 (1974). (b) Non-physical sampling distributions in Monte Carlo free energy estimation: umbrella sampling, J. Comp. Phys.,in press.Google Scholar
  32. 32.
    E. L. Pollock, Direct Monte Carlo calculation of anharmonic free energies, J. Phys. C. 9, 1129–1134 (1976).CrossRefGoogle Scholar
  33. 33.
    J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods,Methuen, London (1964). [See pp. 12411.]Google Scholar
  34. 34.
    S. G. Whittington and M. Bersohn, A Monte Carlo method for quantum chemistry, Mol. Phys. 17, 627–631 (1969).CrossRefGoogle Scholar
  35. 35.
    W. L. McMillan, Ground state of liquid 4He, Phys. Rev. A 138, 442–451 (1965).Google Scholar
  36. 36.
    D. Schiff and L. Verlet, Ground state of liquid helium-4 and helium -3, Phys. Rev. 160, 208–218 (1967).CrossRefGoogle Scholar
  37. 37.
    J.-P. Hansen and D. Levesque, Ground state of solid helium -4 and -3, Phys. Rev. 165, 293–299 (1968).CrossRefGoogle Scholar
  38. 38.
    J.-P. Hansen, Ground state of solid neon, Phys. Rev. 172, 919–923 (1968).CrossRefGoogle Scholar
  39. 39.
    J.-P. Hansen, HCP-BCC phase transition in the ground state of solid 3He, Phys. Lett. A, 30, 214–215 (1969).CrossRefGoogle Scholar
  40. 40.
    J.-P. Hansen and D. Schiff, Variational calculation of the properties of liquid 3He-4He mixtures at 0°K, Phys. Rev. Lett. 23, 1488 (1969).CrossRefGoogle Scholar
  41. 41.
    J.-P. Hansen, Influence of two-body potential on the ground state properties of solid helium, Phys. Lett. A 34, 25–26 (1971).CrossRefGoogle Scholar
  42. 42.
    J.-P. Hansen, D. Levesque, and D. Schiff, The fluid-solid phase transition of a hard sphere Bose system at zero temperature, Phys. Rev. A 3, 775–780 (1971).CrossRefGoogle Scholar
  43. 43.
    F. Y. Wu and E. Feenberg, Ground state of liquid helium (mass 4), Phys. Rev. 122, 739–742 (1961).CrossRefGoogle Scholar
  44. 44.
    N. Metropolis and S. M. Ulam, The Monte Carlo method, J. Am. Statist. Assoc. 44, 335–341 (1949).Google Scholar
  45. 45.
    M. D. Donsker and M. Kac, A sampling method for determining the lowest eigenvalue and the principal eigenfunction of Schrödinger’s equation, J. Res. Nat. Bur. Stand. 44, 551–557 (1950).Google Scholar
  46. 46.
    R. Fortet, On the estimation of an eigenvalue of an additive functional of a stochastic process, with special reference to the Kac-Donsker method, J. Res. Nat. Bur. Stand. 48, 68–75 (1952).Google Scholar
  47. 47.
    S. V. Lawande, C. A. Jensen, and H. L. Sahlin, Monte Carlo integration of the Feynman propagator in imaginary time, J. Comp. Phys. 3, 416–443 (1969).CrossRefGoogle Scholar
  48. 48.
    S. V. Lawande, C. A. Jensen, and H. L. Sahlin, Monte Carlo evaluation of Feynman path integrals in imaginary time and spherical polar coordinates, J. Comp. Phys. 4, 451–464 (1969).CrossRefGoogle Scholar
  49. 49.
    M. H. Kalos, Monte Carlo calculations of the ground state of three-and four-body nuclei, Phys. Rev. 128, 1791–1795 (1962).CrossRefGoogle Scholar
  50. 50.
    M. H. Kalos, Stochastic wave function for atomic helium, J. Comp. Phys. 1, 257–276 (1967).CrossRefGoogle Scholar
  51. 51.
    M. H. Kalos, Energy of a boson fluid with Lennard-Jones potentials, Phys. Rev. A 2, 250–255 (1970).CrossRefGoogle Scholar
  52. 52.
    M. H. Kalos, D. Levesque, and L. Verlet, Helium at zero temperature with hard sphere and other forces, Phys. Rev. A 9, 2178–2195 (1974).CrossRefGoogle Scholar
  53. 53.
    R. C. Grimm and R. G. Storer, A new method for the numerical solution of the Schrödinger equation, J. Comp. Phys. 4, 230–249 (1969).CrossRefGoogle Scholar
  54. 54.
    R. C. Grimm and R. G. Storer, Monte Carlo solution of Schrödinger’s equatio.n, J. Comp. Phys. 7, 134–156 (1971).CrossRefGoogle Scholar
  55. 55.
    M. Kalos and D. Levesque, private communications.Google Scholar
  56. 56.
    K. S. Liu, M. H. Kalos, and G. V. Chester, Quantum hard spheres in a channel, Phys. Rev. A 10, 303–308 (1974).CrossRefGoogle Scholar
  57. 57.
    K. S. Liu, M. H. Kalos, and G. V. Chester, J. Low Temp. Res. 13, 227 (1973).CrossRefGoogle Scholar
  58. 58.
    W. G. Hoover, W. T. Ashurst, and R. Glover, Exact dynamical basis for a fluctuating cell model, J. Chem. Phys. 57, 1259–1262 (1972).CrossRefGoogle Scholar
  59. 59.
    J. K. Lee, J. A. Barker, and G. M. Pound, Surface structure and surface tension: Perturbation theory and Monte Carlo calculation, J. Chem. Phys. 60, 1976–1980 (1974).CrossRefGoogle Scholar
  60. 60.
    K. S. Liu, Phase separation of Lennard-Jones systems: A film in equilibrium with vapor, J. Chem. Phys. 60, 4226–4230 (1974).CrossRefGoogle Scholar
  61. 61.
    G. A. Chapela, G. Saville, and J. S. Rowlinson, Computer simulation of the gas/liquid interface, Discuss. Faraday Soc. 59, 22 (1975).CrossRefGoogle Scholar
  62. 62.
    F. F. Abraham, D. E. Schreiber, and J. A. Barker, On the structure of a free surface of a Lennard-Jones liquid: A Monte Carlo calculation, J. Chem. Phys. 62, 1958–1960 (1975).CrossRefGoogle Scholar
  63. 63.
    G. M. Nazarian, Statistical mechanical calculation of the density variation through a liquid-vapor interface, J. Chem. Phys. 56, 1408–1409 (1972).CrossRefGoogle Scholar
  64. 64.
    C. A. Croxton and R. P. Ferrier, Statistical mechanical calculations of the surface properties of simple liquids III. Surface tension, J. Phys. C 4, 2433–2446 (1971).CrossRefGoogle Scholar
  65. 65.
    S. Toxvaerd, Statistical mechanical and quasithermodynamic calculation of surface densities and surface tension, Mol. Phys. 26, 91–99 (1973).CrossRefGoogle Scholar
  66. 66.
    C. A. Croxton and R. P. Ferrier, Statistical mechanical calculation of surface properties of simple liquids: IV Molecular dynamics, J. Phys. C 4, 2447–2456 (1974).CrossRefGoogle Scholar
  67. 67.
    A. C. L. Opitz, Molecular dynamics investigation of a free surface of liquid argon, Phys. Lett. 47A, 439–440 (1974).CrossRefGoogle Scholar
  68. 68.
    G. A. Chapela, G. Saville, and J. S. Rowlinson, reported in the discussion remarks of Discuss. Faraday Soc. 59, 49 (1975).Google Scholar
  69. 69.
    D. N. Card and J. P. Valleau, Monte Carlo study of the thermodynamics of electrolyte solutions, J. Chem. Phys. 52, 6232–6240 (1970).CrossRefGoogle Scholar
  70. 70.
    J. C. Rasaiah, D. N. Card, and J. P. Valleau, Calculations on the “restricted primitive model” for 1–1 electrolyte solutions, J. Chem. Phys. 56, 248–255 (1972).CrossRefGoogle Scholar
  71. 71.
    D. N. Card, thesis, University of Toronto (1972).Google Scholar
  72. 72.
    J. C. Rasaiah and H. L. Friedman, Integral equation methods in the computation of equilibrium properties of ionic solutions, J. Chem. Phys. 48, 2742–2752 (1968).CrossRefGoogle Scholar
  73. 73.
    J. C. Rasaiah and H. L. Friedman, Integral equation computations for aqueous 1–1 electrolytes: Accuracy of the method, J. Chem. Phys. 50, 3965–3976 (1969).CrossRefGoogle Scholar
  74. 74.
    J. C. Rasaiah, Computations for higher valence electrolytes in the restricted primitive model, J. Chem. Phys. 56, 3071–3085 (1972).CrossRefGoogle Scholar
  75. 75.
    H. C. Andersen, D. Chandler, and J. D. Weeks, Optimized cluster expansions for classical fluids, III: Application to ionic solutions and simple liquids, J. Chem. Phys. 57 2626–2631 (1972), and references cited therein.Google Scholar
  76. 76.
    D. M. Burley, V. C. L. Hutson, and C. W. Outhwaite, A treatment of the volume and fluctuation terms in Poisson’s equation in the Debye—Hückel theory of strong electrolyte solutions, Mol. Phys. 27 225–236 (1974), and references cited therein.Google Scholar
  77. 77.
    E. Waisman and J. L. Lebowitz, Mean spherical model integral equation for charged hard spheres. II. Results, J. Chem. Phys. 56 3093–3099 (1971), and references cited therein.Google Scholar
  78. 78.
    G. N. Patey and J. P. Valleau, A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution, J. Chem. Phys. 63, 2334–2339 (1975).CrossRefGoogle Scholar
  79. 79.
    I. R. McDonald and J. C. Rasaiah, Monte Carlo simulation of the average force between two ions in a Stockmayer solvent, Chem. Phys. Len. 34, 382–386 (1975).CrossRefGoogle Scholar
  80. 80.
    H. L. Friedman, Image approximation to the reaction field, Mol. Phys. 29, 1533–1543 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. P. Valleau
    • 1
  • G. M. Torrie
    • 1
  1. 1.Lash Miller Chemical LaboratoriesUniversity of TorontoTorontoCanada

Personalised recommendations