Advertisement

Cluster Methods in Equilibrium Statistical Mechanics of Fluids

  • Hans C. Andersen
Part of the Modern Theoretical Chemistry book series (MTC, volume 5)

Abstract

Cluster expansion methods have proven to be exceedingly useful and general for discussing the equilibrium structure and thermodynamic properties of fluids. They have been used to rederive older results, such as the virial expansions for gases(1) and the Debye—Hückel theory for ionic solutions,(2) and then extend them in a systematic way. They have been used to derive approximate results that had not been obtained in other ways, such as the г and γ expansions(3) and the EXP approximation(4) for classical fluids. Moreover, they provide a unifying language for discussing and comparing the variety of theories of liquids that have been proposed; for example, many integral equations such as the Percus—Yevick equation(5) and the mean spherical model equation(6−8) for the pair correlation function of a fluid can be regarded as devices for summing certain diagrams in a cluster series.

Keywords

Pair Correlation Function Label Graph Field Point Cluster Expansion Articulation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Mayer and M. Mayer, Statistical Mechanics, Wiley, New York (1940).Google Scholar
  2. 2.
    J. E. Mayer, J. Chem. Phys. 18, 1426–1436 (1950).CrossRefGoogle Scholar
  3. 3.
    J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6, 1282–1298 (1965).CrossRefGoogle Scholar
  4. 4.
    H. C. Andersen and D. Chandler, J. Chem. Phys. 57, 1918–1929, (1972).CrossRefGoogle Scholar
  5. H. C. Andersen and D. Chandler, J. Chem. Phys. 57, 2626–2631 (1972).CrossRefGoogle Scholar
  6. 5.
    J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1–13 (1958).CrossRefGoogle Scholar
  7. 6.
    J. L. Lebowitz and J. Percus, Phys. Rev. 144, 251–258 (1966).CrossRefGoogle Scholar
  8. 7.
    E. Waisman and J. L. Lebowitz, J. Chem. Phys. 52, 4307–4309 (1970).CrossRefGoogle Scholar
  9. 8.
    E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3086–3093 (1972).CrossRefGoogle Scholar
  10. E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3093–3099 (1972).CrossRefGoogle Scholar
  11. 9.
    T. Morita and K. Hiroike, Prog. Theor. Phys. 25, 537–578 (1961).CrossRefGoogle Scholar
  12. 10.
    G. Stell, in: The Equilibrium Theory of Classical Fluids ( H. L. Frisch and J. L. Lebowitz, eds.), pp. 171 — 266, Benjamin, New York (1964).Google Scholar
  13. 11.
    G. E. Uhlenbeck and G. W. Ford, in: Studies in Statistical Mechanics (J. de Boer and G. E. Uhlenbeck, eds.), Vol. I, pp. 119–211, North-Holland Publ., Amsterdam (1962).Google Scholar
  14. 12.
    J. W. Essam and M. E. Fisher, Rev. Mod. Phys. 42, 272–288 (1970).CrossRefGoogle Scholar
  15. 13.
    J. L. Lebowitz and O. Penrose, J. Math. Phys. 5, 841–843 (1964).CrossRefGoogle Scholar
  16. 14.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1964).Google Scholar
  17. 15.
    E. A. Mason and T. H. Spurling, The Virial Equation of State, Pergamon Press, Oxford and New York (1969).Google Scholar
  18. 16.
    H. L. Friedman, Ionic Solution Theory, Wiley ( Interscience ), New York (1962).Google Scholar
  19. 17.
    W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276–305 (1945).CrossRefGoogle Scholar
  20. 18.
    H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. 4, 1597–1607 (1971).CrossRefGoogle Scholar
  21. 19.
    R. E. Jacobs and H. C. Andersen, Chem. Phys. 10, 73–85 (1975).CrossRefGoogle Scholar
  22. 20.
    H. C. Andersen, D. Chandler, and J. D. Weeks, J. Chem. Phys. 56, 3812–3823 (1972).CrossRefGoogle Scholar
  23. 21.
    S. Sung and D. Chandler, J. Chem. Phys. 56, 4989–4994 (1972).CrossRefGoogle Scholar
  24. 22.
    J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237–5247 (1971).CrossRefGoogle Scholar
  25. 23.
    L. Verlet and J.-J. Weis, Phys. Rev. 5, 939–952 (1972).CrossRefGoogle Scholar
  26. 24.
    L. Verlet and J.-J. Weis, Mol. Phys. 5, 1013–1024 (1972).CrossRefGoogle Scholar
  27. 25.
    R. W. Zwanzig, J. Chem. Phys. 22, 1420–1426 (1954).CrossRefGoogle Scholar
  28. 26.
    J. A. Barker and D. Henderson, J. Chem. Phys. 47, 2856–2861, (1967).CrossRefGoogle Scholar
  29. 26.
    J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714–4721 (1967).CrossRefGoogle Scholar
  30. 27.
    D. A. McQuarrie and J. L. Katz, J. Chem. Phys. 44, 2393–2397 (1966).CrossRefGoogle Scholar
  31. 28.
    J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 55, 5422–5423 (1971).CrossRefGoogle Scholar
  32. 29.
    J. A. Barker and D. Henderson, Ann. Rev. Phys. Chem. 23, 439–484 (1972).CrossRefGoogle Scholar
  33. 30.
    D. Henderson, J. Chem. Phys. 61, 926–931 (1974).CrossRefGoogle Scholar
  34. 31.
    G. S. Rushbrooke, G. Stell, and J. S. Hoye, Mol. Phys. 26, 1199–1215 (1973).CrossRefGoogle Scholar
  35. 32.
    G. Stell, J. C. Rasaiah, and H. Narang, Mol. Phys. 27, 1393–1414 (1974).CrossRefGoogle Scholar
  36. 33.
    P. C. Hemmer, J. Math. Phys. 5, 75–84 (1964).CrossRefGoogle Scholar
  37. 34.
    H. C. Andersen and D. Chandler, J. Chem. Phys. 53, 547–554 (1970).CrossRefGoogle Scholar
  38. 35.
    D. Chandler and H. C. Andersen, J. Chem. Phys. 54, 26–33 (1971).CrossRefGoogle Scholar
  39. 36.
    H. C. Andersen and D. Chandler, J. Chem. Phys. 55, 1497–1504 (1971).CrossRefGoogle Scholar
  40. 37.
    G. Stell, J. Chem. Phys. 55, 1485–1486 (1971).CrossRefGoogle Scholar
  41. 38.
    S. H. Sung and D. Chandler, Phys. Rev. 9, 1688–1697 (1974).CrossRefGoogle Scholar
  42. 39.
    H. C. Andersen, J. Chem. Phys. 59, 4714–4725 (1973).CrossRefGoogle Scholar
  43. 40.
    H. C. Andersen, J. Chem. Phys., 61, 4985–4992 (1974).CrossRefGoogle Scholar
  44. 41.
    F. H. Stillinger and F. P. Buff, J. Chem. Phys. 37, 1–12 (1962).CrossRefGoogle Scholar
  45. 42.
    G. Stell, in: Phase Transitions and Critical Phenomena (C. Domb and M. S. Green, eds.), Vol. 5, Academic Press, London (1975).Google Scholar
  46. 43.
    E. Meeron, J. Math. Phys. 1, 192–201 (1960).CrossRefGoogle Scholar
  47. 44.
    M. S. Green, J. Chem. Phys. 33, 1403–1409 (1960).CrossRefGoogle Scholar
  48. 45.
    J. J. M. van Leeuwen, J. Groeneveld, and J. de Boer, Physica 25, 792–803 (1959).CrossRefGoogle Scholar
  49. 46.
    T. Morita and K. Hiroike, Progr. Theoret. Phys. 23, 385–387, (1960).CrossRefGoogle Scholar
  50. T. Morita and K. Hiroike, Progr. Theoret. Phys. 23, 1003–1027 (1960).CrossRefGoogle Scholar
  51. 47.
    G. Nienhuis and J. M. Deutch, J. Chem. Phys. 55, 4213–4229 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Hans C. Andersen
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations