Advertisement

Phylogenetics and Ontogenetics of the Complement Systems

  • Mark Ballow
Part of the Comprehensive Immunology book series (COMIMUN, volume 2)

Abstract

The biological significance of the complement (C) systems, e.g., the classical and alternative C pathways, has recently become more fully appreciated with the recognition of a number of C deficiencies associated with disease in man and laboratory animals (see Chapters 11 and 13). Activation of the C system results in several important biological functions, including enhancement of phagocytosis, cell lysis, bactericidal activity, chemotactic factors, and anaphylatoxins, which lead to the augmentation of various effector host defense mechanisms in inflammation. Although much information is available on these C-dependent biological functions, a whole new concept is developing of the importance of the C system in specific immune responses in relation to cell-cell cooperation (Pepys, 1972), antigen focusing (Dukor et al., 1970), and secondary signals (Dukor et al., 1974). Although many questions remain to be answered, ontogenetic and phylogenetic studies of the C systems might help to determine the role of C in these new biological functions.

Keywords

Complement System Hemolytic Activity Horseshoe Crab High Vertebrate Nurse Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adinolfi, M., 1970, Levels of two components of complement (C′4 and C′3) in human fetal and newborn sera, Dev. Med. Child Neurol. 12: 306–308.PubMedCrossRefGoogle Scholar
  2. Adinolfi, M., 1972, Ontogeny of components of complement and lysozyme, in: Ciba Found. Symp., Ontogeny of Acquired Immunity, ( R. Porter and J. Knight, eds.), pp. 65–85, Associates Scientific Publishers, Amsterdam.Google Scholar
  3. Adinolfi, M., Gardner, B., 1967, Synthesis of β1E and β1C components of complement in human foetuses, Acta Paediatr. Scand. 56: 450–554.PubMedCrossRefGoogle Scholar
  4. Adinolfi, M., Gardner, B., Wood, C. B. S., 1968, Ontogenesis of Two Components of human complement: β1E and β1C-1A globulins, Nature (London) 219: 189–191.CrossRefGoogle Scholar
  5. Alper, C. A., Boenisch, T., Watson, L., 1972, Genetic polymorphism in human glycine-rich-beta-glycoprotein, J. Exp. Med. 135: 68–80.PubMedCrossRefGoogle Scholar
  6. Bach, S., Ruddy, S., MacLaren, J. A., Austen, K. F., 1971, Electrophoretic polymorphism of the fourth component of human complement (C4) in paired maternal and foetal plasmas, Immunology 21: 869–878.PubMedGoogle Scholar
  7. Ballow, M., Cochrane, C. A., 1969, Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them, J. Immunol. 103: 944–952.PubMedGoogle Scholar
  8. Ballow, M., Fang, F., Good, R. A., Day, N. K., 1974, Developmental aspects of complement components in the newborn: the presence of complement components and C3 proactivator (Properdin Factor B) in human colostrum, Clin. Exp. Immunol. 18: 257–266.PubMedGoogle Scholar
  9. Ballow, M., Good, R. A., Day, N. K., 1975, Complement in graft versus host disease. I. Depletion of complement components during a systemic graft versus host reaction in the rat, Proc. Soc. Exp. Biol. Med. 148: 170–176.PubMedGoogle Scholar
  10. Berill, N. J., 1955, The Origin of Vertebrates, Oxford University Press, New York.Google Scholar
  11. Bond, G. C., Sherwood, N. P., 1939, Serological studies of the reptilia. II. The hemolytic property of snake serum, J. Immunol. 36: 11–16.Google Scholar
  12. Brambell, F. W. R., 1970, The transmission of antibodies in: The Transmission of Passive Immunity from Mother to Young (A. Neuberger and E. L. Tatum, eds.), pp. 242–250, North-Holland Publishing Company, Amsterdam und London.Google Scholar
  13. Colten, H. R., 1972, Ontogeny of the human complement system: In vitro biosynthesis of individual complement components by fetal tissues, J. Clin. Invest. 51: 725–730.PubMedCrossRefGoogle Scholar
  14. Colten, H. R., 1973, Biosynthesis of the fifth component of complement (C5) by human fetal tissues, Clin. Immunol. Immunopathol. 1: 346–352.PubMedCrossRefGoogle Scholar
  15. Colten, H. R., Gordon, J. M., Borsos, T., Rapp, H. J., 1968, Synthesis of the first component of human complement in vitro, J. Exp. Med. 128: 595–604.PubMedCrossRefGoogle Scholar
  16. Cooper, E. L., 1970, Transplantation immunity in helminths and annelids, Transplant. Proc. 3: 216–221.Google Scholar
  17. Cooper, E. L., 1971, Phylogeny of transplantation immunity: graft rejection in earthworms, Transplant. Proc. 3: 214–216.PubMedGoogle Scholar
  18. Cushing, J. E., Jr., 1945, A comparative study of complement. I. The specific inactivation of the components, J. Immunol. 50: 61–89.Google Scholar
  19. Day, N.K. B., Pickering, R. J., Gewurz, H., Good, R. A., 1969, Ontogenetic development of the complement system, Immunology 16: 319–326.PubMedGoogle Scholar
  20. Day, N. K. B., Gewurz, H., Johannsen, R., Finstad, J., Good, R. A., 1970a, Complement and complement-like activity in lower vertebrates and invertebrates, J. Exp. Med. 132: 941–950.PubMedCrossRefGoogle Scholar
  21. Day, N. K., Good, R. A., Finstad, J., Johannsen, R., Pickering, R. J., Gewurz, H., 1970b, Interactions between endotoxic lipopolysaccharides and the complement system in the sera of lower vertebrates, Proc. Soc. Exp. Biol. and Med. 133: 1397–1401.Google Scholar
  22. Day, N. K., Gewurz, H., Pickering, R. J., Good, R. A., 1970c, Ontogenetic development of Clq synthesis in the piglet, J. Immunol. 104: 1316–1319.PubMedGoogle Scholar
  23. Day, N., Geiger, H., Finstad, J., Good, R. A., 1972, A starfish hemolymph factor which activates vertebrate complement in the presence of cobra venom factor, J. Immunol. 109: 164–167.PubMedGoogle Scholar
  24. Dukor, P., Bianco, C., Nussenzweig, V., 1970, Tissue localization of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes, Proc. Nat. Acad. Sci. U.S.A. 67: 990–997.CrossRefGoogle Scholar
  25. Dukor, P., Schumann, G., Gisler, R. J., Dierich, M., Konig, W., Hadding, U., Bitter-Suermann, D., 1974, Complement-dependent B-cell activation by cobra venom factor and other mitogens?, J. Exp. Med. 139: 337–354.PubMedCrossRefGoogle Scholar
  26. Duprat, P. C., 1970, Specificity of allograft reaction in Eisenia foetida, Transplant. Proc. 2: 222–225.Google Scholar
  27. Finstad, J., Good, R. A., 1966, Phylogenetic studies of adaptive immune responses in the lower vertebrates, in: Phylogeny of Immunity ( R. T. Smith, P. A. Miescher, and R. A. Good, eds.), pp. 173–188, University of Florida Press, Gainesville.Google Scholar
  28. Fireman, P., Zuchowski, D. A., Taylor, P. M., 1969, Development of human complement system, J. Immunol. 103: 25–31.PubMedGoogle Scholar
  29. Fishel, C. W., Pearlman, D. S., 1961, Complement components of paired mother-cord sera, Soc. Exp. Biol. Med. Proc. 107: 695–699.Google Scholar
  30. Flexner, S., Noguchi, H., 1903, Snake venom in relation to hemolysis, bacteriolysis, and toxicity, J. Exp. Med. 6: 277–301.CrossRefGoogle Scholar
  31. Fong, J. S. C., Muschel, L. H., Good, R. A., 1971, Kinetics of bovine complement. I. Formation of a lytic intermediate, J. Immunol. 107: 28–33.PubMedGoogle Scholar
  32. Freeman, G., 1970, Transplantation specificity in echinoderms and lower chordates, Transplant. Proc. 2: 236–239.PubMedGoogle Scholar
  33. Gabrielsen, A. E., Pickering, R. J., Linna, T. J., Good, R. A., 1973, Haemolysis in chicken serum. II. Ontogenetic development, Immunology 25: 179–184.PubMedGoogle Scholar
  34. Gewurz, H., Finstad, J., Muschel, L. M., Good, R. A., 1966, Phylogenetic inquiry into the origins of the complement system, in: Phylogeny of Immunity ( R. T. Smith, P. A. Miescher, and R. A. Good, eds.) pp. 105–117, University of Florida Press, Gainesville.Google Scholar
  35. Gewurz, H., Pickering, R. J., Good, R. A., 1968, Complement and complement component activities in diseases associated with repeated infections and malignancy, Int. Arch. Allergy 33: 368–388.PubMedCrossRefGoogle Scholar
  36. Geiger, H., Day, N., Good, R. A., 1972a, The ontogenetic development of the later complement components in fetal piglets, J. Immunol. 108: 1098–1104.PubMedGoogle Scholar
  37. Geiger, H., Day, N., Good, R. A., 1972b, Ontogenetic development and synthesis of hemolytic C8 by piglet tissues, J. Immunol 108: 1092–1097.PubMedGoogle Scholar
  38. Gigli, I., 1974, Control mechanisms of the classical and alternate ? sequences, Transplant. Proc. 6: 9–12.PubMedGoogle Scholar
  39. Gigli, I., Austen, K. F., 1971, Phylogeny and function of the complement system, Annu. Rev. Microbiol. 25: 309–332.PubMedCrossRefGoogle Scholar
  40. Gitlin, D., Biasucci, A., 1969, Development of γG, γA, γM, β1C/β1A, C′l esterase inhibitor, ceruloplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, α1-antitrypsin, oroscomucoid, B-lipoprotein, α2-macroglobulin and prealbumin in the human conceptus, J. Clin. Invest. 48: 1433–1446.PubMedCrossRefGoogle Scholar
  41. Good, R. A., Papermaster, B. W., 1964, Ontogeny and phylogeny of adaptive immunity, Adv. Immunol. 4: 1–115.CrossRefGoogle Scholar
  42. Good, R. A., Finstad, J., Pollara, B., Gabrielsen, A. E., 1966, Morphologic studies on the evolution of the lymphoid tissues among the lower vertebrates, in: Phylogeny of Immunity ( R. T. Smith, P. A. Miescher, and R. A. Good, eds.), pp. 149–170, University of Florida Press, Gainesville.Google Scholar
  43. Gôtze, O., Miiller-Eberhard, H. J., 1971, The C3-activation system: an alternate pathway of complement activation, J. Exp. Med. 134: 90S - 108S.PubMedGoogle Scholar
  44. Hildemann, W. H., 1972a, Transplantation reactions of two species of osteichthyes (Teleostei) from South Pacific Coral Reefs, Transplantation 14: 261–267.PubMedCrossRefGoogle Scholar
  45. Hildemann, W. H., 1972b, Phylogeny of transplantation reactivity, in: Transplantation Antigens ( B. D. Kahan and R. A. Reisfeld, eds.), pp. 3–73, Academic Press, New York.Google Scholar
  46. Hildemann, W. H., 1974, Some new concepts in immunological phylogeny, Nature London 250: 116–120.PubMedCrossRefGoogle Scholar
  47. Hildemann, W. H., Dix, T. G., 1972, Transplantation reactions of tropical Australian echinoderms, Transplantation 15: 624–633.CrossRefGoogle Scholar
  48. Hildemann, W. H., Reddy, A. L., 1973, Phylogeny of immune responsiveness: marine invertebrates, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 32: 2188–2194.Google Scholar
  49. Hochwald, G. M., Thorbecke, G. J., Asofsky, R., 1965, Sites of formation of immune globulins and of a component of C′3: I. A new technique for the demonstration of the synthesis of individual serum proteins by tissues in vitro, J. Exp. Med. 114: 459–470.CrossRefGoogle Scholar
  50. Jensen, J. A., 1969, A specific inactivator of mammalian C′4 isolated from nurse shark (Ginglymstoma cirratum), J. Exp. Med. 130: 217–241.PubMedCrossRefGoogle Scholar
  51. Kohler, P. F., 1968, Quantitative comparison of complement in the mother and newborn, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 27: 491 (abstract).Google Scholar
  52. Kohler, P. F., 1973, Maturation of the human complement system. I. Onset time and sites of fetal Clq, C4, C3, and C5 synthesis, J. Clin. Invest. 52: 671–677.PubMedCrossRefGoogle Scholar
  53. Legler, D. W., Evans, E. E., 1966, Comparative Immunology: hemolytic complement in amphibia, Proc. Soc. Exp. Biol. Med. 121: 1158–1162.PubMedGoogle Scholar
  54. Legler, D. W., Evans, E. E., 1967, Comparative Immunology: hemolytic complement in elasmo- branchs, Proc. Soc. Exp. Biol. Med. 124: 30–34.PubMedGoogle Scholar
  55. Litman, G. W., Frommel, D., Chartrand, S., Finstad, J., Good, R. A., 1971, Significance of heavy chain mass and antigenic relationship in immunoglobulin evolution, Immunochemistry 8: 345–349.PubMedCrossRefGoogle Scholar
  56. Marchalonis, J. J., 1974, Phylogenetic origin of antibodies and immune recognition, in: Progress in Immunology II, Vol. 2 ( C. Brent and J. Holborow, eds.), pp. 249–259, North-Holland Publishing Co., Amsterdam.Google Scholar
  57. Marchalonis, J. J., Cone, R. W., 1973, The phylogenetic emergence of vertebrate immunity, Aust. J. Exp. Med. Sci. 51: 461–488.CrossRefGoogle Scholar
  58. Mayer, M. M., 1961, Complement and complement fixation, in: Experimental Immunochemistry ( E. A. Kabat and M. M. Mayer, eds.), pp. 133–240, Charles C. Thomas, Springfield, Illinois.Google Scholar
  59. Miyakawa, Y., Sekine, T., Shibata, S., Nichioka, K., 1971, Studies on rat complement: a method for titration of rat Cl, C2, C3, C4, as well as C5, and the effect of rabbit nephrotoxic serum on the first five components of complement in rat serum, J. Immunol. 106: 545–551.PubMedGoogle Scholar
  60. Muir, R., 1911, Relationships between the complements and immune bodies of different animals; the mode of action of immune body, J. Pathol. Bacteriol. 16: 523–534.CrossRefGoogle Scholar
  61. Miiller-Eberhard, H. J., 1968, Chemistry and reaction mechanisms of the complement system, Adv. Immunol. 8: 1–80.CrossRefGoogle Scholar
  62. Nelson, R. A., Jr., Biro, C. E., 1968, Complement components of a hemolytically deficient strain of rabbits, Immunology 14: 525–540.Google Scholar
  63. Nelson, R. A., Jensen, J., Gigli, I., Tamura, R., 1966, Methods for the separation purification and measurements of the nine components of hemolytic complement in guinea pig serum, Immunochemistry 3: 111–135.PubMedCrossRefGoogle Scholar
  64. Noguchi, H., Bronfenbrenner, J., 1911, The comparative merits of various complements and amboceptors in the serum diagnosis of syphilis, J. Exp. Med. 13: 78–91.PubMedCrossRefGoogle Scholar
  65. Osier, A. G., Sandberg, A. C., 1973, Alternate complement pathway, Prog. Allergy 17: 51–92.Google Scholar
  66. Pepys, M. B., 1972, Role of complement in induction of the allergic response, Nature London New Biol. 237: 157–159.CrossRefGoogle Scholar
  67. Pickering, R. J., Wolfson, M. R., Good, R. A., Gewurz, H., 1969, Hemolysis induced by cobra venom factor activation of terminal complement (C′) components in guinea pig serum (GPS), Fed. Proc. Fed. Amer. Soc. Exp. Biol. 28: 818.Google Scholar
  68. Pillemer, L., Blum, L., Lepow, I. H., Todd, E. W., Wardlaw, A. C., 1954, The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomenon, Pediatrics 52: 134–136.Google Scholar
  69. Propp, R. P., Alper, C. A., 1968, C′3 synthesis in the human fetus and lack of transplacental passage, Science 162: 672–673.PubMedCrossRefGoogle Scholar
  70. Rausen, A. R., Gerald, P. S., Diamond, L. K., 1961a, Haptoglobin patterns in cord blood serums, Nature London 191: 717.PubMedCrossRefGoogle Scholar
  71. Rausen, A. R., Gerald, P. S., Diamond, L. K., 1961b, Genetical evidence for synthesis of transferrin in the foetus, Nature London 192: 182.PubMedCrossRefGoogle Scholar
  72. Rice, C. E., Crowson, C. N., 1950, The interchangeability of the complement components of different animal species. II. In the hemolysis of sheep erythrocytes sensitized with rabbit amboceptor, J. Immunol. 65: 201–210.Google Scholar
  73. Rice, C. E., Silverstein, A. M., 1964, Haemolytic complement activity of sera of foetal and new-born lambs, Can. J. Comp. Med. Vet. Sci. 28: 34–37.PubMedGoogle Scholar
  74. Ruddy, S., Kelmperer, M. R., Rosen, F. S., Austen, K. F., Kumate, J., 1970, Hereditary deficiency of the second component of complement in man: correlation of C2 haemolytic activity with immunochemical measurements of C2 protein Immunology 18: 943–954.PubMedGoogle Scholar
  75. Sargent, A. U., Austen, K. F., 1970, The effective molecular titration of the components of dog complement, Proc. Soc. Exp. Biol. Med. 133: 1117–1122.PubMedGoogle Scholar
  76. Sawyer, M. K., Forman, M. L., Kuplic, L. S., Stiehm, E. R., 1971, Developmental aspects of the human complement system, Biol. Neonate 19: 148–162.PubMedCrossRefGoogle Scholar
  77. Schur, P. H., Connelly, A., Jones, T. C., 1975, Phylogeny of complement components in non-human primates, J. Immunol. 114: 270–273.PubMedGoogle Scholar
  78. Smith, M. J., 1970, The blood cells and tunic of the ascidian halocynthia aurantium (Pallas). I. Hematology, tunic morphology, and partition of cells between blood and tunic, Biol. Bull. 138: 354–378.CrossRefGoogle Scholar
  79. Stossel, T. P., Alper, C. A., Rosen, F. S., 1973, Opsonic activity in the newborn: role of properdin, Pediatrics 52: 134–136.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Mark Ballow
    • 1
  1. 1.Department of PediatricsUConn Health CenterFarmingtonUSA

Personalised recommendations