Biologic Aspects of Leukocyte Chemotaxis

  • Ralph Snyderman
  • Marilyn Pike
Part of the Comprehensive Immunology book series (COMIMUN, volume 2)


To protect a host against microbial invasion and the development of neoplasms, the immune system must discriminate self from nonself and then efficiently localize and eliminate material recognized as nonself. The process of localizing, degrading, and eliminating nonself can be termed an immune effector function and is largely mediated by the accumulation of wandering phagocytic cells, such as polymorpho-nuclear leukocytes (PMNs) and macrophages. One process that could result in the local accumulation of immune effector cells is chemotaxis, the unidirectional migration of cells along a concentration gradient of a chemoattractant substance. During the past decade, it has clearly been shown that the interaction of lymphocytes or immunoglobulins with antigens can result in the production or release of biologically active products that are capable of enhancing vascular permeability and attracting leukocytes. The production of chemotactic gradients as well as the ability of wandering cells to respond normally to such gradients appears to be critical for immunologically mediated host defense. Dysfunctions of leukocyte chemotaxis may render an individual more susceptible to infectious, inflammatory, and perhaps neoplastic diseases. In this chapter, we will review methodology for quantifying chemotaxis, describe factors that are chemotactic for polymorphonuclear leukocytes, and discuss recent observations of abnormalities of human leukocyte chemotaxis and their relationship to human disease states.


Migration Inhibitory Factor Polymorphonuclear Leukocyte Chemotactic Factor Chemotactic Activity Monocyte Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper, C. A., Abramson, N., Johnston, R. B., Jr., Jandl, J. H., Rosen, F. S., 1970, Increased susceptibility to infection associated with abnormalities of complement-mediated functions and of the third component of complement (C3), N. Engl. J. Med. 282: 349–354.CrossRefGoogle Scholar
  2. Altman, L. C., Snyderman, R., Oppenheim, J. J., Mergenhagen, S. T., 1973, A human mononuclear leukocyte chemotactic factor: characterization, specificity and kinetics of production by homologous leukocytes, J. Immunol. 110: 801–810.PubMedGoogle Scholar
  3. Altman, L. C., Mackler, B. F., Chassey, R. M., 1974a, Physiochemical characterization of chemotactic lymphokines produced by human thymus derived (T) and bone marrow derived (B) lymphocytes, J. Reticuloendothel. Soc. 16 (Suppl.): 15a.Google Scholar
  4. Altman, L. C., Snyderman, R., Blaese, R. M., 1974b, Abnormalities of chemotactic lymphokine synthesis and mononuclear leukocyte chemotaxis in Wiskott-Alrich syndrome, J. Clin. Invest. 54: 486–493.PubMedCrossRefGoogle Scholar
  5. Becker, E. L., 1972, The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a and C567, and a bacterial chemotactic factor to their ability to activate the proesterase I of rabbit polymorphonuclear leukocytes, J. Exp. Med. 135: 376–387.PubMedCrossRefGoogle Scholar
  6. Berenberg, J. L., Ward, P. A., 1973, Chemotactic factor inactivation in normal human serum, J. Clin. Invest. 52: 1200–1206.PubMedCrossRefGoogle Scholar
  7. Boetcher, D. A., Leonard, E., 1973, Basophil chemotaxis: augmentation by a factor from stimulated lymphocyte cultures, Immunol. Commun. 2: 421–429.PubMedGoogle Scholar
  8. Boetcher, D. A., Leonard, E. J., 1974, Abnormal monocyte chemotactic response in cancer patients, J. Nat. Cancer Inst. 52: 1091–1099.PubMedGoogle Scholar
  9. Bokisch, V. A., Miiller-Eberhard, H. J., Cochrane, C. G., 1969, Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum, J. Exp. Med. 129: 1109–1130.PubMedCrossRefGoogle Scholar
  10. Boyden, S., 1962, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes, J. Exp. Med. 115: 453–466.PubMedCrossRefGoogle Scholar
  11. Boxer, L. A., Hedley-Whyte, E. T., Stossel, T. P., 1974, Neutrophil actin dysfunction and abnormal neutrophil behavior, N. Engl. J. Med. 291: 1093–1099.PubMedCrossRefGoogle Scholar
  12. Brier, A. M., Snyderman, R., Mergenhagen, S. E., Notkins, A. L., 1970, Inflammation and herpes simplex virus; release of a chemotaxis-generating factor from infected cells, Science 170: 1104–1106.PubMedCrossRefGoogle Scholar
  13. Chapitis, J., Ward, P. A., Lepow, I. H., 1971, Generation of chemotactic activity from human serum and purified components of complement by Serratia proteinase, J. Immunol. 107: 317 (abstract).Google Scholar
  14. Clark, R. A., Kimball, H. R., 1971, Defective granulocyte chemotaxis in the Chediak-Higashi syndrome, J. Clin. Invest. 50: 2645–2652.PubMedCrossRefGoogle Scholar
  15. Cohen, S., Ward, P. A., Toshida, T., Burek, C. L., 1973, Biologic activity of extracts of delayed hypersensitivity skin reaction sites, Cell Immunol. 9: 363–376.PubMedCrossRefGoogle Scholar
  16. Day, N. K., Geiger, H., Stroud, R., DeBracco, M., Mancado, B., Windhorst, D., Good, R. A., 1972, Clr deficiency: an inborn error associated with cutaneous anergy and renal disease, J. Clin. Invest. 51: 1102–1108.PubMedCrossRefGoogle Scholar
  17. Fauve, R. M., Hevin, B., Jacob, H., Gaillard, J. A., Jacob, F., 1974, Anti-inflammatory effects of murine malignant cells, Proc. Nat. Acad. Sci. U.S.A. 71: 4052–4056.CrossRefGoogle Scholar
  18. Gallin, J. I., 1975, Abnormal chemotaxis: cellular and humoral components, in: The Phagocytic Cell in Host Resistance ( J. A. Bellanti and D. H. Dayton, eds.) pp. 227–248, Raven Press, New York.Google Scholar
  19. Gallin, J. I., Rosenthal, A. A., 1974, Regulatory role of divalent cations in human granulocyte chemotaxis: evidence for an association between calcium exchanges and microtubule assembly, J. Cell Biol. 62: 594–609.PubMedCrossRefGoogle Scholar
  20. Gallin, J. I., Clark, R. A., Kimball, H. R., 1973, Granulocyte chemotaxis. An improved in vitro assay employing 51Cr labeled granulocytes, J. Immunol. 110: 233–240.PubMedGoogle Scholar
  21. Gewurz, H. A., Page, A. R., Pickering, R. J., Good, R. A., 1967, Complement activity and neutrophil exudation in man. Studies in patients with glomerulonephritis, essential hypocomplemen- temia and agammaglobulinemia, Int. Arch. Allergy Appl. Immunol. 32: 64–90.PubMedCrossRefGoogle Scholar
  22. Goetzl, E. J., Austen, K. F., 1972, A neutrophil immobilizing factor derived from human leukocytes. I. Generation and partial characterization, J. Exp. Med. 136: 1564–1580.PubMedCrossRefGoogle Scholar
  23. Graham, J. B., Graham, R. M., 1964, Tolerance agent in human cancer, Surg. Gynecol. Obstet. 118: 1217–1222.PubMedGoogle Scholar
  24. Hausman, M. S., Snyderman, R., Mergenhagen, S. E., 1972, Humoral mediators of chemotaxis of mononuclear leukocytes, J. Inf. Dis. 125: 595–602.CrossRefGoogle Scholar
  25. Haasman, M. S., Brosman, S., Snyderman, R., Mickey, M. R., Fahey, J., 1973, Defective monocyte function in patients with genitourinary carcinoma, Clin. Res. 21: 646A.Google Scholar
  26. Hill, H. R., Quie, P. G., 1974, Raised serum IgE levels and defective neutrophil chemotaxis in three children with eczema and recurrent bacterial infections, Lancet 1: 183–187.PubMedCrossRefGoogle Scholar
  27. Horwitz, D. A., Garrett, N. A., 1971, Use of leukocyte chemotaxis in vitro to assay mediators generated by immune reactions I. Quantification of mononuclear and polymorphonuclear leukocyte chemotaxis with polycarbonate (nucleopore) filters, J. Immunol. 106: 649–655.PubMedGoogle Scholar
  28. Jensen, J., Snyderman, R., Mergenhagen, S. E., 1969, Chemotactic activity: A property of guinea pig C5 anaphylatoxin, in: Cellular and Humoral Mechanisms in Anaphylaxis and Allergy (Third Int. Congress of Allergy and Anaphylaxis), pp. 265–278, S. Karger, Basel.Google Scholar
  29. Jungi, T. W., 1975, Assay of chemotaxis by a reversible Boyden chamber eliminating cell detachment, Int. Arch. Allergy Appl. Immunol. 48: 341–352.PubMedCrossRefGoogle Scholar
  30. Kaplan, A. P., Kay, A. B., Austen, K. F., 1972, A prealbumin activator of prekallikrein III. Appearance of chemotactic activity for human neutrophils by the conversion of prekallikrein to kallikrein, J. Exp. Med. 135: 81–97.PubMedCrossRefGoogle Scholar
  31. Kay, A. B., 1970, Studies on eosinophil leukocyte migration II. Factors specifically chemotactic for eosinophils and neutrophils generated from guinea pig serum by antigen antibody complexes, Clin. Exp. Immunol. 7: 723–737.PubMedGoogle Scholar
  32. Kay, A. B., Austen, K. F., 1972, Chemotaxis of human basophil leukocytes, Clin. Exp. Immunol. 11: 557–563.PubMedGoogle Scholar
  33. Keller, H. U., Sorkin, E., 1965,1. On the chemotactic and complement-fixing activity of gammaglobulins, Immunology 9: 241–248.Google Scholar
  34. Keller, H. U., Sorkin, E., 1967, Studies on chemotaxis V. On the chemotactic effect of bacteria, Int. Arch. Allergy Appl. Immunol. 31: 505–517.CrossRefGoogle Scholar
  35. Keller, H. U., Sorkin, E., 1969, Studies on chemotaxis XIII. Differences in the chemotactic response of neutrophil and eosinophil polymorphonuclear leukocytes, Int. Arch. Allergy Appl. Immunol. 35: 279–290.PubMedCrossRefGoogle Scholar
  36. Kleinerman, E. S., Snyderman, R., Daniels, C. A., 1974, Depression of human monocyte chemotaxis by herpes simplex and influenza virus, J. Immunol. 113: 1562–1567.PubMedGoogle Scholar
  37. Kleinerman, E. S., Daniels, C. A., Snyderman, R., 1975, Depression of human monocyte chemotaxis during acute influenza infection, Lancet 2: 1063–1065.PubMedCrossRefGoogle Scholar
  38. Kleinerman, E. S., Snyderman, R., Daniels, C. A., 1976, Effect of virus infection on the inflammatory response: depression of macrophage accumulation in influenza infected mice, Am. J. Path., in press.Google Scholar
  39. Leber, T. 1888, Uber die Entstehung der Entzundung und die Wirkung der entzundungerregenden Schadlichkeiten, Fortschr. Med. 4: 460–480.Google Scholar
  40. Mackler, B. F., Altman, L. C., Rosenstreich, D. L., Oppenheim, J. J., 1974, Induction of lymphokine production by EAC and of blastogenesis by soluble mitogens during human B cell activation, Nature London 249: 834–837.PubMedCrossRefGoogle Scholar
  41. McKenzie, R., Pepper, D. S., Kay, A. B., 1975, The generation of chemotactic activity for human leukocytes by the action of plasmin on human fibrinogen, Thrombosis Res. 6: 1–8.CrossRefGoogle Scholar
  42. Miller, M. E., Nilsson, U. F., 1970, A familial deficiency of the phagocytosis-enhancing activity of serum related to a dysfunction of the fifth component of complement (C5), N. Engl. J. Med. 282: 354–358.PubMedCrossRefGoogle Scholar
  43. Miller, M. E., Oski, F. A., Harris, M. B., 1971, Lazy-leukocyte syndrome: a new disorder of neutrophil function, Lancet 1: 665–669.PubMedCrossRefGoogle Scholar
  44. Miller, M. E., Norman, M. G., Koblenzer, P. J., Schonauer, T., 1973, A new familial defect of neutrophil movement, J. Lab. Clin. Med. 82: 1–8.PubMedGoogle Scholar
  45. Mowat, A. G., Baum, J., 1971a, Chemotaxis of polymorphonuclear leukocytes from patients with rheumatoid arthritis, J. Clin. Invest. 50: 2541–2549.PubMedCrossRefGoogle Scholar
  46. Mowat, A. G., Baum, J., 1971b, Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus, N. Engl. J. Med. 284: 621–627.PubMedCrossRefGoogle Scholar
  47. Oppenheim, J. J., Levanthal, B. G., Hersh, E. M., 1968, The transformation of column purified lymphocytes with nonspecific and specific antigenic stimuli, J. Immunol. 101: 262–270.PubMedGoogle Scholar
  48. Pike, M. C., Daniels, C. A., 1975, Production of C5a upon the interaction of staphylococcal protein A with human serum, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34: 853A.Google Scholar
  49. Postlethwaite, A. E., Snyderman, R., 1975, Characterization of chemotactic activity produced in vivo by a cell mediated immune reaction in the guinea pig, J. Immunol. 114: 274–278.PubMedGoogle Scholar
  50. Ratnoff, O. D., 1969, Some relationships among hemostasis, fibrinolytic phenomena, immunity and the inflammatory response, Adv. Immunol. 10: 145–227.PubMedCrossRefGoogle Scholar
  51. Rosenfield, S. I., Leddy, J. P., 1974, Hereditary deficiency of the fifth component of complement of man, Clin. Res. 22: 162A.Google Scholar
  52. Ruddy, S., Gigli, I., Austen, K. F., 1972, The complement system of man, N. Engl. J. Med. 287: 592–596.PubMedCrossRefGoogle Scholar
  53. Sandberg, A. L., Snyderman, R., Frank, M. M., Osier, A. G., 1972, Production of chemotactic activity by guinea pig immunoglobulins following activation of the C3 complement shunt pathway, J. Immunol. 108: 1227–1231.PubMedGoogle Scholar
  54. Schiffmann, E., Corcoran, B. A., Wahl, S. M., 1975, TV-Formyl methionyl peptides as chemo- attractants for leukocytes, Proc. Nat. Acad. Sci. U.S.A. 72: 1059–1062.CrossRefGoogle Scholar
  55. Seigler, H. F., Shingleton, W. W., Metzgar, R. S., Buckley, C. E., Bergoe, P. M., 1973, Immuno-therapy in patients with melanoma, Ann. Surg. 178: 352–359.CrossRefGoogle Scholar
  56. Shin, H. S., Snyderman, R., Friedman, E., Mellors, A., Mayer, M. M., 1968, Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement, Science 162: 361–363.PubMedCrossRefGoogle Scholar
  57. Shin, H. S., Gewurz, H., Snyderman, R., 1969, Reaction of cobra venom factor with guinea pig complement and generation of an activity chemotactic for polymorphonuclear leukocytes, Proc. Soc. Exp. Biol Med. 131: 203–207.PubMedGoogle Scholar
  58. Snyderman, R., Mergenhagen, S. E., 1976, Chemotaxis of macrophages, in: Immunobiology of the Macrophage ( D. S. Nelson, ed.), pp. 323–348, Academic Press, New York.Google Scholar
  59. Snyderman, R., Pike, M. C., 1976, An inhibitor of macrophage chemotaxis produced by neoplasms, Science 192: 370–372.PubMedCrossRefGoogle Scholar
  60. Snyderman, R., Stahl, C., 1975, Defective immune effector function in patients with neoplastic and immune deficiency diseases, in: The Phagocytic Cell in Host Resistance ( J. A. Bellanti and D. H. Dayton, eds.), pp. 267–281, Raven Press, New York.Google Scholar
  61. Snyderman, R., Gewurz, H., Mergenhagen, S. E., 1968, Interactions of the complement system with endotoxic lipopolysaccharide. Generation of a factor chemotactic for polymorphonuclear leukocytes, J. Exp. Med. 128:259-–275.Google Scholar
  62. Snyderman, R., Phillips, J. K., Mergenhagen, S. E., 1970, Polymorphonuclear leukocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes. Evidence for C5a as the major chemotactic factor, Infect. Immun. 1: 521–525.PubMedGoogle Scholar
  63. Snyderman, R., Phillips, J. K., Mergenhagen, S. E., 1971a, Biological activity of complement in vivo: role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates, J. Exp. Med. 134: 1131–1143.PubMedCrossRefGoogle Scholar
  64. Snyderman, R., Shin, H. S., Hausman, M. S., 1971b, A chemotactic factor for mononuclear leukocytes, Proc. Soc. Exp. Biol. Med. 138: 387–390.PubMedGoogle Scholar
  65. Snyderman, R., Shin, H. S., Dannenberg, A. M., 1972a, Macrophage proteinase and inflammation. The production of chemotactic activity from the fifth component of complement, J. Immunol. 109: 869–898.Google Scholar
  66. Snyderman, R., Altman, L. C., Hausman, M. S., Mergenhagen, S. E., 1972b, Human mononuclear leukocyte chemotaxis: a quantitative assay for mediators of humoral and cellular chemotactic factors, J. Immunol. 108: 857–860.PubMedGoogle Scholar
  67. Snyderman, R., Altman, L. C., Frankel, A., Blaese, R. M., 1973, Defective mononuclear leukocyte chemotaxis: a previously unrecognized immune dysfunction, Ann. Intern. Med. 78: 509–513.PubMedGoogle Scholar
  68. Snyderman, R., Dickson, J., Meadows, L., Pike, M. C., 1974, Defective mononuclear leukocyte chemotaxis in patients with cancer, Clin. Res. 22: 430A.Google Scholar
  69. Snyderman, R., Blaylock, ?., Pike, M. C., 1975a, Depression of macrophage chemotaxis in vivo in tumor bearing mice, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34: 991A.Google Scholar
  70. Snyderman, R., Pike, M. C., Altman, L. C., 1975b, Abnormalities of leukocyte chemotaxis in human disease, Ann. N. Y. Acad. Sci. 256: 386–401.PubMedCrossRefGoogle Scholar
  71. Snyderman, R., Pike, M. C., Meadows, L., Wells, S., Hemstreet, G., 1975c, Depression of monocyte chemotaxis by neoplasms, Clin. Res. 23: 297A.Google Scholar
  72. Snyderman, R., Pike, M. C., McCarley, D., Lang, L., 1975d, Quantification of mouse macrophage chemotaxis in vitro: role of C5 for the production of chemotactic activity, Infect. Immun. 11: 488–492.PubMedGoogle Scholar
  73. Stecher, V. J., Sorkin, E., 1969, Studies on chemotaxis. XII. Generation of chemotactic activity for polymorphonuclear leukocytes in sera with complement deficiencies, Immunology 16: 231–239.PubMedGoogle Scholar
  74. Stecher, V. J., Sorkin, E., 1972, The chemotactic activity of fibrin lysis products, Int. Arch. Allergy Appl. Immunol. 43: 879–886.PubMedCrossRefGoogle Scholar
  75. Steerman, R. L., Snyderman, R., Leiken, S. L., Colten, H. R., 1971, Intrinsic defect of the polymorphonuclear leukocyte resulting in impaired chemotaxis and phagocytosis, Clin. Exp. Immunol. 9: 939–946.PubMedGoogle Scholar
  76. Stroud, R. M., Shin, H. S., Shelton, E., 1974, Complement components: assays, purification and ultrastructure methods, in: Immune Responses at the Cellular Level ( T. Zacharia, ed.), pp. 161–211, Marcel Dekker, New York.Google Scholar
  77. Taylor, F. B., Ward, P. A., 1967, Generation of chemotactic activity in rabbit serum by plasmino-gen-streptokinase mixtures, J. Exp. Med. 126: 149–158.PubMedCrossRefGoogle Scholar
  78. Tempel, T. R., Snyderman, R., Jordan, H. V., Mergenhagen, S. E., 1970, Factors from saliva and oral bacteria, chemotactic for polymorphonuclear leukocytes. Their possible role in gingival inflammation, J. Periodontology 41:3/71–12/78.Google Scholar
  79. Till, G., Ward, P. A., 1973, The chemotactic factor inactivator in human serum, J. Immunol. 111: 299A.Google Scholar
  80. Till, G., Ward, P. A., 1975, Two distinct chemotactic factor inactivators in human serum, J. Immunol. 114: 843–847.PubMedGoogle Scholar
  81. Turner, S., Campbell, J., Lynn, W. S., 1975, Arachidonic acid, a precursor of polymorphonuclear leukocyte (PMN) chemotaxis, Clin. Res. 23: 54A.Google Scholar
  82. Van Epps, D. C., Palmer, D. L., Williams, R. C., Jr., 1974, Characterization of serum inhibitors of neutrophil chemotaxis associated with anergy, J. Immunol. 113: 189–200.PubMedGoogle Scholar
  83. Wahl, S. M., Iverson, G. M., Oppenheim, J. J., 1974, Induction of guinea pig B-cell lymphokine synthesis by mitogenic and non-mitogenic symbols to Fc, Ig and C3 receptors, J. Exp. Med. 140: 1631–1645.PubMedCrossRefGoogle Scholar
  84. Wahl, S. M., Wilton, J. M., Rosenstreich, D. L., Oppenheim, J. J., 1975, The role of macrophages in the production of lymphokines by T and B lymphocytes, J. Immunol. 114: 1296–1301.PubMedGoogle Scholar
  85. Waidmann, T. A., Strober, W., Blaease, R. M., 1972, Immuno-deficiency disease and malignancy: various immunologic deficiencies of man and the role of immune processes in the control of malignant disease, Ann. Intern. Med. 77: 605–628.Google Scholar
  86. Walker, W. S., Bartlet, R. L., Kurtz, H. M., 1969, Isolation and partial characterization of a staphylococcal leukocyte cytotaxin, J. Bacteriol. 97: 1005–1008.PubMedGoogle Scholar
  87. Ward, P. A., 1969, Chemotaxis of hunfcrn eosinophils, Amer. J. Pathol. 54: 121–128.Google Scholar
  88. Ward, P. A., Berenberg, J. L., 1974, Defective regulation of inflammatory mediators in Hodgkin’s disease. Supra-normal levels of chemotactic factor inactivator, N. Engl. J. Med. 290: 76–80.PubMedCrossRefGoogle Scholar
  89. Ward, P. A., Hill, J. H., 1970, C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils, J. Immunol. 104: 535.PubMedGoogle Scholar
  90. Ward, P. A., Newman, L. J., 1969, A neutrophil chemotactic factor from human C5, J. Immunol. 102: 93–99.PubMedGoogle Scholar
  91. Ward, P. A., Zvaifler, N. J., 1971, Complement-derived leukotactic factors in inflammatory synovial fluids of humans, J. Clin. Invest. 50: 606–616.PubMedCrossRefGoogle Scholar
  92. Ward, P. A., Cochrane, C. G., Miiller-Eberhard, H. J., 1965, The role of serum complement in chemotaxis of leukocytes in vitro, J. Exp. Med. 122: 327–346.PubMedCrossRefGoogle Scholar
  93. Ward, P. A., Cochrane, C. G., Miiller-Eberhard, 1966, Further studies on the chemotactic factor of complement and its formation in vivo, Immunology 11: 141–153.Google Scholar
  94. Ward, P. A., Lepow, I. H., Newman, L. J., 1968, Bacterial factors chemotactic for polymorphonu-clear leukocytes, Amer. J. Pathol. 52: 725–736.Google Scholar
  95. Ward, P. A., Remold, H. G., David, J. R., 1969, Leukotactic factors produced by sensitized lymphocytes, Science 163: 1079–1081.PubMedCrossRefGoogle Scholar
  96. Ward, P. A., Remold, H. G., David, J. R., 1970, The production from antigen-stimulated lymphocytes of a leukotactic factor distinct from migration inhibitory factor, Cell. Immunol. 1: 162–174.PubMedCrossRefGoogle Scholar
  97. Weiss, A. S., Gallin, J. I., Kaplan, A. P., 1974, Fletcher-factor deficiency. A diminished rate of Hageman factor activation caused by absence of pre-kallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity and kinin generation, J. Clin. Invest. 53: 622–633.PubMedCrossRefGoogle Scholar
  98. Wilkinson, P. C., 1974, Principles of the measurement of leukocyte chemotaxis using Boyden’s method, in: Chemotaxis and Inflammation ( P. C. Wilkinson, ed.), pp. 33–53, Churchill-Livingstone, Edinburgh.Google Scholar
  99. Wilkinson, P. C., Borel, J. F., Stecher-Levin, V. J., Sorkin, E., 1969, Macrophage and neutrophil-specific chemotactic factors in serum, Nature (London) 222: 244–250.CrossRefGoogle Scholar
  100. Wilkinson, P. C., O’Neill, G. J., Wapshaw, K. G., Symon, D. N. K., 1972, Enhancement of macrophage chemotaxis by adjuvant-active bacteria, Ann. Immunol. 4: 119–130.Google Scholar
  101. Wilkinson, P. C., O’Neill, G. J., Wapshaw, K. G., 1973, Role of anaerobic cornyeforms in specific and non-specific immunological reactions II. Production of a chemotactic factor specific for macrophages, Immunology 24: 997–1006.PubMedGoogle Scholar
  102. Wolf, S. M., Dale, D. C., Clark, R. A., Root, R. K., Kimball, H. R., 1972, The Chediak-Higashi syndrome: studies of host defense, Ann. Intern. Med. 76: 293–306.Google Scholar
  103. Zbar, B., Wepsic, H. T., Rapp, H. J., Stewart, L. C., Borsos, T., 1970, Two-step mechanism of tumor graft rejection in syngeneic guinea pigs: II. Initiation of reaction by a cell fraction containing lymphocytes and neutrophils, J. Nat. Cancer Inst. 44: 701–717.PubMedGoogle Scholar
  104. Zigmond, S. H., Hirsch, J. G., 1973, Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of cell derived chemotactic factor, J. Exp. Med. 137: 387–410.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Ralph Snyderman
    • 1
  • Marilyn Pike
    • 2
  1. 1.Division of Rheumatic and Genetic DiseasesDuke University Medical CenterDurhamUSA
  2. 2.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations