Advertisement

Complement Synthesis

  • Harvey R. Colten
Part of the Comprehensive Immunology book series (COMIMUN, volume 2)

Abstract

In the past two decades, considerable progress has been made in the study of complement biosynthesis, following the isolation and characterization of the individual components of complement, the design of suitable immunochemical and functional assays for complement proteins, and improvements in tissue- and organ- culture techniques. These advances have made it possible to identify the sites of synthesis of most of the complemment proteins and, more recently with these methods, an approcah to questions of more general biological interest has been possible. Genetic variants of complement proteins have been recognized and well-defined deficiencies of complement have been described in humans and experimental animals, providing excellent models for studies of genetic control of protein synthesis. In addition, changes in serum complement resulting from the acute phase response or in specific autoimmune diseases have raised important general questions about the control of plasma protein metabolism, which can be approached with current methods. One purpose of this chapter is to emphasize these actual and potential applications of studies of complement biosynthesis.

Keywords

Complement Component Complement Protein Peritoneal Cell Fourth Component Membranoproliferative Glomerulonephritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper, C. A., Rosen, F. S., 1967, Studies of the In vivo behavior of human C3 in normal subjects and patients, J. Clin. Invest. 46: 2021–2034.PubMedCrossRefGoogle Scholar
  2. Alper, C. A., Rosen, F. S., 1971, Genetic aspects of the complement system, in: Advances in Immunology ( H. G. Kunkel and F. J. Dixon, eds.), vol. 14, pp. 252–290, Academic Press, New York.Google Scholar
  3. Alper, C. A., Levin, A. S., Rosen, F. S., 1966, Beta-lC-globulin: metabolism in glomerulonephritis, Science 153: 180–183.PubMedCrossRefGoogle Scholar
  4. Alper, C. A., Johnson, A. M., Birtch, A. G., Moore, F. D., 1969, Human C′3: evidence for the liver as the primary site of synthesis, Science 163: 286–288.PubMedCrossRefGoogle Scholar
  5. Atkinson, J. P., Frank, M. M., 1973, Effect of cortisone therapy on serum complement components, J. Immunol. 111: 1061–1066.PubMedGoogle Scholar
  6. Ballow, M., Day, N. K., Biggar, W. D., Park, B. H., Yount, W. J., Good, R. A., 1973, Reconstitution of Clq after bone marrow transplantation in patients with severe combined immunodeficiency, Clin. Immunol. Immunopathol. 2: 28–35.PubMedCrossRefGoogle Scholar
  7. Baltch, A. L., Osborne, W., Canarile, L., Hassirdjian, A., Bunn, P., 1962, Serum properdin complement and agglutinin changes in dogs with staphylococcal bacteremia, J. Immunol. 88: 361–368.PubMedGoogle Scholar
  8. Bing, D. H., Spurlock, S. E., Bern, M. M., 1975, Synthesis of the first component of complement by primary cultures of human tumors of the colon and urogenital tract and comparable normal tissue, Clin. Immunol. Immunopath. 4: 341–351.CrossRefGoogle Scholar
  9. Bokisch, V. A., Top, F. H., Russell, P. K., Dixon, F. J., Müller-Eberhard, H. J., 1973, The potential pathogenic role of complement in dengue hemorrhagic shock syndrome, New Eng. J. Med. 289: 996–1000.PubMedCrossRefGoogle Scholar
  10. Carpenter, C. B., Ruddy, S., Shehadeh, I. H., Müller-Eberhard, H. J., Merrill, J. P. and Austen, K. F., 1969, Complement metabolism in man: hypercatabolism of the fourth (C4) and third (C3) components in patients with renal allograft rejection and hereditary angioedema (HAE), J. Clin. Invest. 48: 1495–1505.PubMedCrossRefGoogle Scholar
  11. Chan, P. C. Y., 1970, Detection of complement-producing cells with macrophage antisera, Experientia 26: 189.PubMedCrossRefGoogle Scholar
  12. Chan, P. C. Y., Cebra, J. J., 1966, Studies of the fourth component of guinea pig serum, Immunochemistry 3: 496 (abstract).CrossRefGoogle Scholar
  13. Churchill, W. H., Weintraub, R. M., Borsos, T., Rapp, H. J., 1967, Mouse complement: the effect of sex hormones and castration on two of the late acting components, J. Exp. Med. 125: 657–672.PubMedCrossRefGoogle Scholar
  14. Cinader, B., Dubiski, S., 1963, An alpha-globulin allotype in the mouse (MuBl), Nature London 200: 781.PubMedCrossRefGoogle Scholar
  15. Cohn, Z. A., Benson, B., 1965, The in vitro differentiation of mononuclear phagocytes. II. The influence of serum on granule formation hydrolase production and pinocytosis, J. Exp. Med. 121: 835–848.PubMedCrossRefGoogle Scholar
  16. Colten, H. R., 1972a, Ontogeny of the human complement system: in vitro biosynthesis of individual complement components by fetal tissues, J. Clin. Invest. 51: 725–730.PubMedCrossRefGoogle Scholar
  17. Colten, H. R., 1972b, In vitro synthesis of a regulator of mammalian gene expression, Proc. Nat. Acad. Sci. U.S.A. 69: 2233–2236.CrossRefGoogle Scholar
  18. Colten, H. R., 1973, Biosynthesis of the fifth component (C5) of human complement, Clin. Immunol. Immunopath. 1: 346–352.CrossRefGoogle Scholar
  19. Colten, H. R., 1974a, Deficiency of the fourth component of complement (C4): studies of the molecular basis of the genetic abnormality, in: Somatic Cell Hybridization ( R. L. Davidson and F. F. de la Cruz, eds.), Raven Press, New York.Google Scholar
  20. Colten, H. R., 1974b, Biosynthesis of serum complement, in: Proceedings of the Ilnd International Congress of Immunology ( L. Brent and J. Holbrow, eds.), Vol. 1, pp. 183–190b, North Holland, Amsterdam.Google Scholar
  21. Colten, H. R., Frank, M. M., 1972, Biosynthesis of the second and fourth components of complement in vitro by tissues isolated from guinea pigs with genetically determined C4 deficiency, Immunology 22: 991–999.PubMedGoogle Scholar
  22. Colten, H. R., Parkman, R., 1972, Biosynthesis of the fourth component of complement (C4) by C4- deficient guinea pig-HeLa cell hybrids, Science 176: 1029–1031.PubMedCrossRefGoogle Scholar
  23. Colten, H. R., Wyatt, H. V., 1972, Biosynthesis of serum complement, in: Biological Activities of Complement, ( D. G. Ingram, ed.), pp. 244–255, Karger, Basel.Google Scholar
  24. Colten, H. R., Borsos, T., Rapp, H. J., 1966, In vitro synthesis of the first component of complement by guinea pig small intestine, Proc. Nat. Acad. Sci. U.S.A. 56: 1158–1163.CrossRefGoogle Scholar
  25. Colten, H. R., Gordon, J. M., Borsos, T., Rapp, H. J., 1968a, Synthesis of the first component of human complement in vitro, J. Exp. Med. 128: 595–604.PubMedCrossRefGoogle Scholar
  26. Colten, H. R., Gordon, J. M., Rapp, H. J., Borsos, T., 1968b, Synthesis of the first component of guinea pig complement by columnar epithelial cells of the small intestine, J. Immunol. 100: 788–792.PubMedGoogle Scholar
  27. Colten, H. R., Levey, R. H., Rosen, F. S., Alper, C. A., 1973, Decreased synthesis of C3 in membranoproliferative glomerulonephritis, J. Clin. Invest. 52: 20a (abstract).Google Scholar
  28. Davidson, R. L., Benda, P., 1970, Regulation of specific functions of glial cells in somatic hybrids. II. Control of inducability of glycerol-3-phosphate dehydrogenase, Proc. Nat. Acad. Sci. U.S.A. 67: 1870–1877.CrossRefGoogle Scholar
  29. Day, N. K., Gewurz, H., Pickering, R. J., Good, R. A., 1970, Ontogenetic development of Clq synthesis in the piglet, J. Immunol. 104: 1316–1319.PubMedGoogle Scholar
  30. Dick, G. F., 1912, On the development of proteolytic ferments in the blood during pneumonia, J. Inf. Dis. 10: 383–387.CrossRefGoogle Scholar
  31. Dick, G. F., 1913, On the origin and action of hemolytic complement, J. Inf. Dis. 12: 111–126.CrossRefGoogle Scholar
  32. Ecker, E. E., Rees, H. M., 1922, Effect of hemorrhage on complement, J. Infect. Dis. 31: 361–367.CrossRefGoogle Scholar
  33. Ecker, E. E., Seifter, S., Dozois, T. F., Barr, L., 1946, Complement in infectious disease in man, J. Clin. Invest. 25: 800–808.CrossRefGoogle Scholar
  34. Einstein, L. P., Alper, C. A., Bloch, K. H., Herrin, J. T., Rosen, F. S., David, J. R., Colten, H. R., 1975, Biosynthetic defect in monocytes from human beings with genetic deficiency of the second component of complement (C2), N. Engl. J. Med. 292: 1169–1171.PubMedCrossRefGoogle Scholar
  35. Einstein, L. P., Schneeberger, E. E., Colten, H. R., 1976, Synthesis of the second component of complement by long-term primary cultures of human monocytes, J. Exp. Med. 143: 114–126.PubMedCrossRefGoogle Scholar
  36. Ellman, L., Green, I., Frank, M. M., 1970, Genetically controlled total deficiency of the fourth component of complement in the guinea pig, Science 170: 74–75.PubMedCrossRefGoogle Scholar
  37. Fireman, P., Zuchowski, D. A., Taylor, P. M., 1969, Development of human complement system, J. Immunol. 103: 25–31.PubMedGoogle Scholar
  38. Fougere, ?., Reinze, F., Ephrussi, ?., 1972, Gene dosage dependence of pigment synthesis in 65 melanoma x fibroblast hybrids, Proc. Nat. Acad. Sci. U.S.A. 69:330–334.Google Scholar
  39. Frank, M. M., May, J., Gaither, T., Ellman, L., 1971, In vitro studies of complement function in sera of C4-deficient guinea pigs, J. Exp. Med. 134: 176–187.PubMedCrossRefGoogle Scholar
  40. Fu, S. M., Kunkel, H. G., Brusman, H. P., Allen, F. H., Fotino, M., 1974, Evidence for linkage between HL-A histocompatability genes and those involved in the synthesis of the second component of complement, J. Exp. Med. 140: 1108–1111.PubMedCrossRefGoogle Scholar
  41. Fiist, G., Surjân, M., 1971, Effect of antimacrophage sera on the In vivo synthesis of guinea pig complement components, Boll. Inst. Sieroter. Milan. 50: 488–494.Google Scholar
  42. Fiist, G., Surjân, M., Keresztes, M., 1972, Studies on the synthesis of the fourth component of rat complement In vivo, Boll. Inst. Sieroter. Milan. 51: 304–313.Google Scholar
  43. Gabrielsen, A. E., Linna, T. J., Wertekamp, D. P., Pickering, R. J., 1974, Reduced haemolytic CI activity in serum of hypogammaglobulinaemic chickens, Immunology 27: 463–468.PubMedGoogle Scholar
  44. Geiger, H., Day, N., Good, R. A., 1972, Ontogenetic development and synthesis of hemolytic C8 by piglet tissues, J. Immunol. 108: 1092–1097.PubMedGoogle Scholar
  45. Gewurz, H., Pickering, R. J., Christian, C. L., Synderman, R., Mergenhagen, S. E., Good, R. A., 1968, Decreased Clq protein concentrations and agglutinating activity in agammaglobulinemia syndromes: an inborn error reflected in the complement system, Clin. Exp. Immunol. 5: 437–445.Google Scholar
  46. Gitlin, D., Biasucci, A., 1969, Development of γG, γA, γM, B1C/B1A, Cl esterase inhibitor, cerruloplasmin transferrin hemopexin, haptoglobin fibrinogen, plasminogen α1 antitrypsin orosomucoid β lipoprotein a2 macroglobulin and prealbumin in the human conceptus, J. Clin. Invest. 48: 1433–1446.PubMedCrossRefGoogle Scholar
  47. Glade, P. R., Chessin, L. N., 1968, Synthesis of B1/1A(C′3) by human lymphoid cells, Int. Arch. Allergy Appl. Immunol. 34: 181–187.PubMedCrossRefGoogle Scholar
  48. Gordon, P., 1955, Complement activity in the eviscerate rat, Proc. Soc. Exp. Biol. Med. 89: 607–608.PubMedGoogle Scholar
  49. Gordon, S., Ripps, C. S., Cohn, Z., 1971, The preparation and properties of macrophage-L cell hybrids, J. Exp. Med. 134: 1187–1199.PubMedCrossRefGoogle Scholar
  50. Hartveit, F., Borve, W., Thunold, S., 1973, Serum complement levels and response to turpentine inflammation in mice, Acta Pathol. Microbiol. Scand. Sec. A Suppl. 236: 54–59.Google Scholar
  51. Hochwald, G. M., Thorbecke, G. J., Asofsky, R., 1961, Sites of formation of immune globulins and of a component of C′3. I A new technique for the demonstration of synthesis of individual serum proteins by tissues in vitro, J. Exp. Med. 114: 459–470.PubMedCrossRefGoogle Scholar
  52. Hunsicker, L. G., Ruddy, S., Carpenter, C. B., Schur, P. H., Merrill, J. P., Müller-Eberhard, H. J., Austen, K. F., 1972, Metabolism of third complement component (C3) in nephritis: role of the classical and alternate (properdin) pathways for complement activation, N. Engl. J. Med. 287: 835.PubMedCrossRefGoogle Scholar
  53. Hurlimann, J., Thorbecke, G. J., Hochwald, G. M., 1966, The liver as the site of C-reactive protein formation, J. Exp. Med. 123: 365–378.PubMedCrossRefGoogle Scholar
  54. Ilgen, C. L., Burkholder, P. M., 1974, Isolation of C4 synthesizing cells from guinea pig liver by ficoll density gradient centrifugation, Immunology 26: 197–203.PubMedGoogle Scholar
  55. Ingraham, J. S., Bussard, A., 1964, Application of a localized hemolysin reaction for specific detection of individual antibody forming cells, J. Exp. Med. 119: 667–682.PubMedCrossRefGoogle Scholar
  56. Jensen, J. A., Garces, M. C., Iglesias, E., 1971, Specific inactivation of the fourth complement component. I. In vivo studies, Infect. Immuno. 4: 12–19.Google Scholar
  57. Jerne, N. K., Nordin, A. A., 1963, Plaque formation in agar by single antibody producing cells, Science 140: 405.CrossRefGoogle Scholar
  58. Johnson, A. M., Alper, C. A., Rosen, F. S., Craig, J. M., 1971a, CI inhibitor: evidence for decreased hepatic synthesis in hereditary angioneurotic edema, Science 173: 553–554.PubMedCrossRefGoogle Scholar
  59. Johnson, A. M., Alper, C. A., Rosen, F. S., Craig, J. M., 1971b, Immunofluorescent hepatic localization of complement proteins: evidence for a biosynthetic defect in hereditary angioneurotic edema (HANE), J. Clin. Invest. 50: 50a (abstract).Google Scholar
  60. Jungeblut, C. W., Berlot, J. A., 1926, The role of the reticuloendothelial system in immunity. II. The complement titer after blockade and the physiological regeneration of the reticuloendothelial system as measured by the reduction tests, J. Exp. Med. 43: 797–806.PubMedCrossRefGoogle Scholar
  61. Kashiwagi, N., Groth, C. G., Starzl, T. E., 1968, Changes in serum haptoglobin and group specific component after orthotopic liver homotransplantation in humans, Proc. Soc. Exp. Biol. Med. 128: 247–250.PubMedGoogle Scholar
  62. Kohler, P. F., 1973, Maturation of the human complement system. I. Onset time and sites of fetal Clq, C4, C3, and C5 synthesis, J. Clin. Invest. 52: 671–677.PubMedCrossRefGoogle Scholar
  63. Kohler, P. F., Müller-Eberhard, H. J., 1969, Complement immunoglobulin relation: deficiency of Clq associated with impaired immunoglobulin G Synthesis, Science 163: 474.PubMedCrossRefGoogle Scholar
  64. Kohler, P. F., Müller-Eberhard, H. J., 1972, Metabolism of human Clq. Studies in hypogammaglobulinemia myeloma and systemic lupus erythematosis, J. Clin. Invest. 51: 868–875.PubMedCrossRefGoogle Scholar
  65. Lai A Fat, R. F. M., van Furth, R., 1975, In vitro synthesis of some complement components (Clq, C3 and C4) by lymphoid tissues and circulating leukocytes in man, Immunology 28: 359–368.Google Scholar
  66. Lamm, L. U., Friedrich, U., Petersen, G. B., Jorgensen, J., Nielsen, J., Therkelsen, A. J., Kissmeyer-Nielsen, F., 1974, Assignment of the major histocompatibility complex to chromosome #6 in a family with a pericentric inversion, Hum. Hered. 24: 273–284.PubMedCrossRefGoogle Scholar
  67. Leddy, J. P., Frank, M. M., Gaither, T., Baum, T., Klemperer, M. R., 1974, Hereditary deficiency of the sixth component of complement in man. I. Immunochemical, biological and family studies, J. Clin. Invest. 53: 544–553.PubMedCrossRefGoogle Scholar
  68. Lepow, I. H., 1965, Ciba Found. Symp. Complement (G. E. W. Wolstenholme and J. Knight, eds.), p. 117, Churchill, London.Google Scholar
  69. Levisohn, S. R., Thompson, E. B., 1973, Contact inhibition and gene expression in HTC/L cell hybrid lines, J. Cell Physiol. 81: 225–232.PubMedCrossRefGoogle Scholar
  70. Levy, N. L., Ladda, R. L., 1971, Restoration of haemolytic complement activity in C5-deficient mice by gene complementation in hybrid cells. Nature New Biol. 229: 51–52.PubMedCrossRefGoogle Scholar
  71. Levy, N. L. Synderman, R., Ladda, R. L., Lieberman, R., 1973, Cytogenetic engineering In vivo: restoration of biological complement activity to C5-deficient mice by intravenous innoculation of hybrid cells, Proc. Nat. Acad. Sci. U.S.A. 70: 3125–3129.Google Scholar
  72. Littleton, C., Kessler, D., Burkholder, P. M., 1970, Cellular basis for synthesis of the fourth component of guinea pig complement as determined by a haemolytic plaque technique, Immunology 18: 691–702.Google Scholar
  73. Mathews, C. M. E., 1957, The theory of tracer experiments with 131I-labeled plasma proteins, Phys, Med. Biol. 2: 36–53.CrossRefGoogle Scholar
  74. Merrill, D. A., Kirkpatrick, C. A., Wilson, W. E. C., Riley, ?. M., 1964, Change in serum haptoglobin type following human liver transplantation, Proc. Soc. Exp. Biol. Med. 116: 748–751.Google Scholar
  75. O’Connell, R. M., Enriquez, P., Linman, J. W., Gleich, G. J., McDuffie, F. C., 1967, Absence of activity of first component of complement in man: association with thymic alymphoplasia and defective inflammatory response, J. Lab. Clin. Med. 70: 715.Google Scholar
  76. Peters, D. K., Martin, A., Weinstein, A., Cameron, J. S., Barrett, T. M., Ogg, C. S., Lachmann, P. J., 1972, Complement studies in membranoproliferative glomerulonephritis, Clin. Exp. Immunol. 11: 311–320.PubMedGoogle Scholar
  77. Peterson, J. A., Weiss, M. C., 1972, Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids, Proc. Nat. Acad. Sci. U.S.A. 69: 571–578.CrossRefGoogle Scholar
  78. Pickering, R. J., Naff, G. B., Stroud, R. M., Good, R. A., Gewurz, H., 1970, Deficiency of Clr in human serum. Effects on the structure and function of macromolecular Cl, J. Exp. Med. 131: 803–815.PubMedCrossRefGoogle Scholar
  79. Phillips, M. E., Thorbecke, G. J., 1965, Serum protein formation of donor type in rat-into-mouse chimeras, Nature London 207: 376–378.PubMedCrossRefGoogle Scholar
  80. Phillips, M. E., Rother, U. A., Rother, K. O., Thorbecke, G. J., 1969, Studies on the serum proteins of chimeras. III. Detection of donor type C5 in allogeneic and congenic post-irradiation chimeras, Immunology 17: 315–321.PubMedGoogle Scholar
  81. Propp, R. P., Alper, C. A., 1968, C′3 synthesis in the human fetus and lack of transplacental passage, Science 162: 672–673.PubMedCrossRefGoogle Scholar
  82. Rapp, H. J., Borsos, T., 1970, Molecular basis of complement action; Appleton-Century-Crofts, New York.Google Scholar
  83. Rommel, F. A., Goldlust, M. B., Bancroft, F. C., Mayer, M. M., Tashjian, A. H., Jr., 1970, Synthesis of the ninth component of complement by a clonal strain of rat hepatoma cells, J. Immunol. 105: 396–403.PubMedGoogle Scholar
  84. Rosenberg, L. T., Tachibana, D. K., 1962, Activity of mouse complement, J. Immunol. 89: 861–867.PubMedGoogle Scholar
  85. Rother, K., Rother, U., Müller-Eberhard, H. J., Nilsson, U. R., 1966, Deficiency of the sixth component of complement in rabbits with an inherited complement defect, J. Exp. Med. 124: 773–785.PubMedCrossRefGoogle Scholar
  86. Rother, U., Thorbecke, G. J., Stecher-Levin, V. J., Hurlimann, J., Rother, K., 1968, Formation of C′6 by rabbit liver tissue in vitro, Immunology 14: 649–655.PubMedGoogle Scholar
  87. Rubin, D. J., Borsos, T., Rapp, H. J., Colten, H. R., 1971, Synthesis of the second component of guinea pig complement in vitro, J. Immunol. 106: 295–303.PubMedGoogle Scholar
  88. Ruddy, S., Colten, H. R., 1974, Rheumatoid arthritis: biosynthesis of complement proteins by synovial tissues, N. Engl. J. Med. 290: 1284–1288.PubMedCrossRefGoogle Scholar
  89. Siboo, R., Vas, S. I., 1965, Studies on in vitro antibody production. III. Production of complement, Can. J. Microbiol. 11: 415–425.PubMedCrossRefGoogle Scholar
  90. Sliwinski, A. J., Zvaifler, N. J., 1972, Decreased synthesis of the third component of complement (C3) in hypocomplementemic systemic lupus erythematosis, Clin. Exp. Immunol. 11: 21–29.PubMedGoogle Scholar
  91. Stecher, V. J., Thorbecke, G. J., 1967a, Sites of synthesis of serum proteins. I. Serum proteins produced by macrophages in vitro, J. Immunol. 99: 643–652.PubMedGoogle Scholar
  92. Stecher, V. J., Thorbecke, G. J., 1967b, Sites of synthesis of serum proteins. II. Medium require-ments for serum protein production by macrophages, J. Immunol. 99: 653–659.PubMedGoogle Scholar
  93. Stecher, V. J., Thorbecke, G. J., 1967c, Sites of synthesis of serum proteins. III. Production of B1C, B1E, and transferrin by primate and rodent cell lines, J. Immunol. 99: 660–668.PubMedGoogle Scholar
  94. Stecher, V. J., Morse, J. H., Thorbecke, G. J., 1967, Sites of production of primate serum proteins associated with the complement system, Proc. Soc. Exp. Med. 124: 433–438.Google Scholar
  95. Stroud, R. M., Donaldson, V., 1974, Genetic defects of complement (Workshop), in: Progress in Immunology II, Vol. 1 ( L. Brent and J. Holbrow, eds.), p. 288, North Holland, Amsterdam.Google Scholar
  96. Stroud, R. M., Nagaki, K., Pickering, R. J., Gewurz, H., Good, R. A., Cooper, M. D., 1970, Subunits of first complement component in immunological deficiency: independence of C1s and Clq, Clin. Exp. Immunol. 7: 133.PubMedGoogle Scholar
  97. Strunk, R. S., Tashjian, A. H., Colten, H. R., 1975, Complement biosynthesis in vitro by rat hepatoma cell strains, J. Immunol. 114: 331–335.PubMedGoogle Scholar
  98. Terry, W. D., Borsos, T., Rapp, H. J., 1964, Differences in serum complement activity among inbred strains of mice, J. Immunol. 92: 576–578.PubMedGoogle Scholar
  99. Thorbecke, G. J., Hochwald, G. M., van Furth, R., Müller-Eberhard, H. J., Jacobson, E. B., 1965, Problems in determining the sites of synthesis of complement components, in: Ciba Symposium “Complement” (G. E. W. Wolstenholme and J. Knight, eds.), pp. 99–119, J & A Churchill, London.CrossRefGoogle Scholar
  100. Urbach, G., Cinader, B., 1966, Hormonal control of MuBl concentration, Proc. Soc. Exp. Biol. Med. 122: 779–782.PubMedGoogle Scholar
  101. van Someren, H., Westerveld, A., Hagemeijer, A., Mees, J. R., Meera Khan, P., Zaalberg, O. B., 1974, Human antigen and enzyme markers in man-chinese hamster somatic cell hybrids: evidence for synteny between the HL-A, PGM3, MEb and IPO-B loci, Proc. Nat. Acad. Sci. U.S.A. 71: 962–965.CrossRefGoogle Scholar
  102. van Zaipel, G., 1970, Separation from HeLa cell cultures of three esterases, one of which resembles human activated ? C1s, Acta Pathol. Microbiol. Scand. 78: 258–260.Google Scholar
  103. Williams, C. A., Jr., Asofsky, R., Thorbecke, G. J., 1963, Plasma protein formation in vitro by tissues from mice infected with staphylococci, J. Exp. Med. 118: 315–326.PubMedCrossRefGoogle Scholar
  104. Wyatt, H. V., 1974, Synthesis of the second and fourth components of complement by tissue culture cell lines, Eur. J. Immunol. 4: 34–38.PubMedCrossRefGoogle Scholar
  105. Wyatt, H. V., Colten, H. R., Borsos, T., 1972, Production of the second (C2) and fourth (C4) components of guinea pig complement by single peritoneal exudate cells. Evidence that one cell may produce both components, J. Immunol. 108: 1609–1614.PubMedGoogle Scholar
  106. Yount, W. J., Utsinger, P. D., Gatti, R. A., Good, R. A., 1974, Immunoglobulin classes, IgG subclasses, Gm genetic markers and Clq following bone marrow transplantation in x-linked combined immunodeficiency, J. Pediat. 84: 193–199.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Harvey R. Colten
    • 1
    • 2
  1. 1.Division of Allergy, Department of MedicineChildren’s Hospital Medical CenterBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations