Human Performance and Workload in Simulated Landing-Approaches with Autopilot-Failures

  • Gunnar Johannsen
  • Claudius Pfendler
  • Willi Stein
Part of the NATO Conference Series book series (NATOCS, volume 1)


One objective of introducing autopilots into aircraft landing-approaches is always to reduce pilot’s workload. Then, the changed role of the pilot is monitoring the autopilot functioning and taking over control manually, e.g., in rough turbulence and failure situations. However, the described human-automatic function allocation puts a high workload on the pilot if a severe failure occurs near touch-down. In these cases, the advantages of the autopilot under normal conditions may change into considerable disadvantages. This is a special problem with Short Takeoff and Landing (STOL) aircrafts, particularly under Instrument Flight Rule (IFR) conditions.


Manual Control Detection Time Secondary Task Longitudinal Motion Human Pilot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Richtlinien für den Allwetterflugbetrieb nach Betriebsstufe II. Nachrichten für Luftfahrer 1–350/72, 1972.Google Scholar
  2. [2]
    Richtlinien für den Allwetterflugbetrieb nach Betriebsstufe IIIa. Entwurf, 1974.Google Scholar
  3. [3]
    A.R. EPHRATH: Detection of system failures in multi-axes tasks. 11th Annual Conf. Manual Control, NASA TM X-62, 464, pp.151 – 169,1975.Google Scholar
  4. [4]
    E.G. GAI, R.E. CURRY: Failure detection by pilots during automatic landing: models and experiments. 11th Annual Conf. Manual Control, NASA TM X-62, 464, pp.78–93, 1975.Google Scholar
  5. [5]
    D.W. JAHNS: A concept of operator workload in manual vehicle operations. Forschungsbericht Nr. 14, Forschungsinstitut für Anthropotechnik, Meckenheim, 1973.Google Scholar
  6. [6]
    J.M. ROLFE: The secondary task as a measure of mental load. In: W.T. Singleton et al. (Eds.): Measurement of man at work. London: Taylor and Francis, pp. 135–148, 1971.Google Scholar
  7. [7]
    G. JOHANNSEN: Nebenaufgaben als Beanspruchungsmeßverfahren in Fahrzeugführungsaufgaben. Zeitschrift für Arbeitswissenschaft 30 (2NF) 1976/1, S. 45–50.Google Scholar
  8. [8]
    W. BERHEIDE, G. JOHANNSEN, G. NOSSING: Festsitz-Teilsimulator für anthropotechnische Untersuchungen von Landeanflügen. Bericht, Forschungsinstitut für Anthropotechnik, Meckenheim, 1976 (in preparation).Google Scholar
  9. [9]
    U. HARTMANN: Ein Beitrag zum Entwurf digitaler, selbstadaptiver Flugregelsysteme. Dissertation, Techn.Univ.Hannover, 1974.Google Scholar
  10. [10]
    G. JOHANNSEN, G. NOSSING, C. PFENDLER: Pilotenbeanspruchung und -leistung in einem simulierten STOL-Anflug. Vortrag, FA Anthropotechnik, DGLR (Köln), 1975 (FBWT-Rep. in press).Google Scholar
  11. [11]
    J.A. MICHON: A note on the measurement of perceptual motor load. Ergonomics, vol. 7, pp. 461–463, 1964.CrossRefGoogle Scholar
  12. [12]
    J.A. MICHON: Tapping regularity as a measure of perceptual motor load. Ergonomics, vol. 9, pp. 401–412, 1966.PubMedCrossRefGoogle Scholar
  13. [13]
    J.P. GUILFORD: Psychometric methods. New York: McGraw-Hill, 1954.Google Scholar
  14. [14]
    L. SACHS: Angewandte Statistik. Berlin: Springer, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Gunnar Johannsen
    • 1
  • Claudius Pfendler
    • 1
  • Willi Stein
    • 1
  1. 1.Forschungsinstitut für Anthropotechnik (FAT)MeckenheimF. R. Germany

Personalised recommendations