Neurophysiology of Movement Disorders

  • J. C. De La Torre
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


The relation of the cortex, cerebellum, and basal ganglia and their participation in movement disorders is presented. Studies have shown that lesions to the cortex will produce contralateral paralysis while damage to the basal ganglia or cerebellum will re sult in movement abnormalities. These data provide support for the view that subcortical but not cortical structures initiate and control movement activity. It would appear that the basal ganglia and cerebellum receive signals from the auditory, visual, and somatosensory cortex integrate this information, and relay signals back to the motor cortex, which in turn sends out efferent fibers to the motor neurons of the spinal cord. The electronic and neurophysiological basis of the somatosensory evoked responses (SER) test following peripheral nerve stimulation and sensory recording in human cortex is given. Control values of SER peak to peak latency waveforms from 66 normal volunteers show the practicality of this test. Preliminary results using SER in patients are discussed from clinical case reports. The subjects had mild to marked movement disorders secondary to Parkinson’s disease, vascular occlusion, multiple sclerosis, and spino-cerebellar degeneration. The potential of the SER as a clinical and experimental tool in evaluating movement abnormalities and other neuropathological conditions is presented.


Multiple Sclerosis Basal Ganglion Movement Disorder Median Nerve Somatosensory Cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe-Fessard, D. and Bowsher, D. (1965). Responses of monkey thalamus to somatic stimuli under chloralase anaesthesia. Electvo enceph. Clin. Neurophysiol. 19 ,1–15.CrossRefGoogle Scholar
  2. Allison, T., Goff, W.R., Abrahamian, H.A. and Rosner, B.S. (1962) Electroenceph. Clin. Neurophysiol. (Suppl. 24) 68–75.Google Scholar
  3. Bucy, P.C. (1951). The surgical treatment of extrapyramidal diseases. J. Neurol. Neurosurg. and Psychiat. 14 ,108–117.CrossRefGoogle Scholar
  4. Chandler, W.F. and Crosby, E.C. (1975). Motor effects of stimulation and ablation of the caudate nucleus of the monkey. Neurology 25 ,1160–1163.PubMedCrossRefGoogle Scholar
  5. Cools, A.R. (1973). Chemical and electrical stimulation of the caudate nucleus in freely moving cats: the role of dopamine. Brain Res. 58 ,437–451.PubMedCrossRefGoogle Scholar
  6. Dawson, G.D. (1947). Cerebral responses to electrical stimulation of peripheral nerve in man. J. Neurol. Neurosurg. and Psychiat. 10 ,137–140.Google Scholar
  7. de la Torre, J.C. and Trimble, J.L. (1976). Progr. Abs. Soc. Neurosci. 2 (Part 2), 932. Toronto, Canada.Google Scholar
  8. de la Torre, J.C. (1968). Med. Hyg. No. 1477 ,1–16.Google Scholar
  9. DeLong, M.R. (1974). Motor functions of the basal ganglia: single unit activity during movement. In: The Neurosciences, Third Study Program (Schmitt, F.O. and Worden, F.G., Eds.) pp. 319–325. MIT Press, Cambridge, Mass.Google Scholar
  10. Denny-Brown, D. (1960). Motor mechanisms -An introduction: the general principles of motor integration. In: Handbook of Physio logy: Neurophysiology ,vol. II. (Field, J., Magoun, H.W. and Hall, V.E., Eds.) pp. 781–796. American Physiological Society, Washington, D.C.Google Scholar
  11. Denny-Brown, D. (1966). The Cerebral Control of Movement. Charles C. Thomas, Springfield, III.Google Scholar
  12. Descartes, R. (1662). De Homine. Leyden, Moyardus and Leffen, Fol. 118.Google Scholar
  13. Evarts, E.V. (1967). Representation of movements and muscles by pyramidal tract neurons of the precentral motor cortex. In: Neuro physiological Basis of Normal and Abnormal Motor Activities. (Yahr, M.D. and Purpura, D.P., Eds.) pp. 215–251. Raven Press, New YorkGoogle Scholar
  14. Foreman, D. and Ward, J.W. (1957). Responses to electrical stimulation of caudate nucleus in cats in chronic experiments. J. Neurophysiol. 20 ,230–244.Google Scholar
  15. Fritsch, G. and Hitzig, E. (1870). Über die elektrische Erregbarkeit des Grosshirns. In: The Cerebral Cortex (von Bonin, G., Ed.) pp. 73–96. Charles C. Thomas, Springfield, Ill.Google Scholar
  16. Fukushima, T., Mayanagi, Y. and Bouchard, G. (1976). Thalamic evoked potentials to somatosensory stimulation in man. Electroenceph. Clin. Neurophysiol. 40 ,481–490.PubMedCrossRefGoogle Scholar
  17. Giblin, D.R. (1964). Somatosensory evoked potentials in healthy subjects and in patients with lesions of the nervous system. Ann. N.X. Acad. Sci. 112 ,93.CrossRefGoogle Scholar
  18. Guiot, G., Derome, P., Arfel, G. and Walter, S. (1973). Progr. Neurol. Surg. 5 ,189–221.Google Scholar
  19. Halliday, A.M. (1967). Changes in the form of cerebral evoked responses in man associated with various lesions of the nervous system. Electroenceph. Clin. Neurophysiol. (Suppl. 25) 178–192.Google Scholar
  20. Horsley, V. (1909). The function of the so-called motor area of the brain. Brit. Med. J. 2 ,125–132.Google Scholar
  21. Jackson, J.H. (1873). Observations on the localization of movements in the cerebral hemispheres, as revealed by cases of convul sion, chorea, and aphasia. In: Selected Writings of John Hughlings Jackson ,I. (Taylor, J., Holmes, G. and Walsche, F.M.R., Eds.) pp. 77–89. Basic Books, New York.Google Scholar
  22. Klemme, R.M. (1940). Surgical treatment of dystonia, Chapter XVII. Assoc. Res. Nerv ,and Ment. Bis ., Proc. 21, 596.Google Scholar
  23. Klüver, H. and Bucy, P.C. (1937). Amer. J. Physiol. 119 ,352.Google Scholar
  24. Kornhuber, H.H. (1974). Cerebral cortex, cerebellum and basal ganglia: An introduction to their motor functions. in: The Neurosciences Third Study Program (Schmitt, F.O. and Worden, F.G., Eds.) pp. 267–280. MIT Press, Cambridge, Mass.Google Scholar
  25. Larson, S.J., Sances, A. and Christenson, P.C. (1966). Evoked somatosensory potentials in man. Arch. Neurol. 15 ,88–93.PubMedCrossRefGoogle Scholar
  26. Larson, S.J. and Sances, A. (1968). Averaged evoked potentials in stereotaxic surgery. J. Neurosurg. 28 ,227–232.PubMedCrossRefGoogle Scholar
  27. Lashley, K.S. (1929). Brain Mechanisms and Intelligence. Univ. of Chicago Press, Chicago, Ill.CrossRefGoogle Scholar
  28. Liles, S.L. and Davis, G.D. (1969). Athetoid and chloreiform hyperkinesias produced by caudate lesions in the cat. Science 164 195–197.PubMedCrossRefGoogle Scholar
  29. Luria, A.R. (1966). Higher Cortical Functions in Man. pp. 23–38. Tavistock Publications, London.Google Scholar
  30. Mettler, F.A. (1967). Cortical, subcortical relations in abnormal motor functions. In: Neurophysiological Basis of Normal and Abnormal Motor Activities (Yahr, M.D. and Purpura, D.P., Eds.) pp. 445–496. Raven Press, New York.Google Scholar
  31. Meyers, R. (1953). The Extrapyramidal System: An inquiry into the validity of the concept. Neurology 3 ,627–655.PubMedCrossRefGoogle Scholar
  32. Mountcastle, V.B. (1966). The neural replication of sensory events in the somatic afferent system. In: Brain and Conscious Experience (Eccles, C., Ed.) p. 86. Springer-Verlag, New York.Google Scholar
  33. Namerow, N.S. (1968). Somatosensory evoked responses in multiple sclerosis. Bull. L.A. Neurosurg. Soc. 33 ,74–81.Google Scholar
  34. Penfield, W. and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60 ,389–443.CrossRefGoogle Scholar
  35. Sherrington, C.S. (1906). Integrative Action of the Nervous System. Yale Univ. Press. New Haven, Conn.Google Scholar
  36. Symon, L., Pasztor, E. and Branston, N.M. (1974). The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5, 355–364.PubMedCrossRefGoogle Scholar
  37. Tissot, R., Gaillard, J.M., Guggisberg, M., Gauthier, G. and de Ajuriaguerra, J. (1969). Therapeutique du syndrome de Parkinson par la L-Dopa “per os” associée à un inhibiteur de la décarboxylase. Presse Med. 77 ,619–622.PubMedGoogle Scholar
  38. Tsumoto, T., Nonaka, S., Hirose, N.. and Takahashi, M. (1972). Analy sis of somatosensory evoked potentials to lateral popliteal nerve stimulation in man. Electroenceoph. Clin. Neurophysiol 33 ,379–388.CrossRefGoogle Scholar
  39. Twitchell, T.E. (1965). Attitudinal reflexes. J. Amer. Phys. Ther. Asso. 45 ,414.Google Scholar
  40. Willis, T. (1664). Cerebri Anatome. Marlyn and Allestry, London.Google Scholar
  41. Yu, M.K., Wright, T.L., Dettbarn, W.D. and Olson, W.H. (1974). Pargyline-induced myopathy with histochemical characteristics of Duchenne muscular dystrophy. Neurology 24 ,237–244.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. C. De La Torre
    • 1
  1. 1.Institute of Neurological Surgery, Brain Research InstituteUniversity of Chicago Pritzker School of MedicineChicagoUSA

Personalised recommendations