Advertisement

Parkinsonism and Epilepsy

  • Tamas L. Frigyesi
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Clinical observations indicate that parkinsonians do not, or only exceptionally, exhibit epileptic phenomena and vice versa (Scholz, 1957; Klee, 1975). Yakovlev reported (1928) that when epileptic patients develop parkinsonism, the epilepsy pari passu disappears. The exact neurophysiological mechanisms underlying these pathological conditions are poorly understood. Yet, it is apparent, that both of these diseases dominantly involve the sensorimotor system. Thus the question appears to be of more than heuristic importance as to why these two disease states are mutu ally exclusive. Whereas epilepsy readily lends itself to experimental approaches in the domain of electrophysiology, parkinsonism does not, because only its morphological and biochemical features but not its clinical symptomatology can be reproduced in experimental animals. The normal integration of sensorimotor activities, and the electrophysiological consequences of caudatal and nigral damage (established sites of pathology in parkinsonism) to such integrative processes, have extensively been explored in felines and subhuman primates (Fvigyesi, 1975a, 1975b); these studies yielded data which, when extrapolated to parkinsonism, suggested the nature of elementary processes which underlie, at least some symptoms of, parkinsonism (Frigyesi, 1971; Frigyesi, et al., 1974).

Keywords

Motor Cortex Lower Trace Proprioceptive Feedback Thalamic Neuron Spike Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajmone-Marsan, C. (1961). Electrographic aspects of “epileptic” neuronal aggregates. Epilepsia 2 ,22–38.PubMedCrossRefGoogle Scholar
  2. Angell, J.R. and Pierce, A. (1982). Experimental research upon the phenomena of attention. Amer. J. Psychol. 4 ,528–541.CrossRefGoogle Scholar
  3. Axelrod, J. (1976). Discussion In: Basal Ganglia. M.D. Yahr, Ed. Raven Press, New York, pp. 178–179.Google Scholar
  4. Ayala, G.F., Dichter, M., Gumnit, R.J. Matsumoto, H. and Spencer, W.A.. Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysm. Brain Res. 52 ,1–17.Google Scholar
  5. Barbeau, A. (1976). Parkinson’s Disease: Etiological considerations. In: The Basal Ganglia. M.D. Yahr (ed). Raven Press, New York, pp. 281–282.Google Scholar
  6. Beretervide, J.J. and Carrega-Casaffousth, C.F. (1933). Parkinsonism: case with hemiplegia and psychic disturbances following carbon monoxide poisoning. Hosp. Argent. 4 ,239–243.Google Scholar
  7. Borina, E.G. (1950). A history of experimental psychology. AppletonCentury, New York.Google Scholar
  8. Braitenberg, V. (1973). Gehirngespinste. Springer, Berlin.Google Scholar
  9. Burns, B.D. (1968). The uncertain nervous system. Edward Arnold, London.Google Scholar
  10. Buzzo, A. and Guerra, C. (1930). Secuelas de la intoxication cian- hidrica prentado uno de ellos parkonsonismo y otro polineoritos. Rev. esp. Oto-neuro-oft. 1 ,243–253.Google Scholar
  11. Calvin, W.H. (1972). Synaptic potential summation and repetitive firing mechanisms: input-output theory for the recruitment of neurons into epileptic bursting firing patterns. Brain Res. 39, 71–94.PubMedCrossRefGoogle Scholar
  12. Dewan, E.M. (1969). Cybernetics and attention. In: Attention and Neurophysiology. Ed. C.R. Evans and T.B. Mulholland. Apple- ton-Century-Crofts, New York, pp. 323–347.Google Scholar
  13. Dinnerstein, A.J., Frigyesi, T.L. and Lowenthal, M. (1962). Delayed feedback as a possible mechanism in parkinsonism. Perc. Mot. Skills 15 ,667–680.CrossRefGoogle Scholar
  14. Domesick, V.B. and Nauta, W.J.M. (1976). Some ascending and descend ing projections of the substantia nigra and ventral tegmental area in the rat. Neurosci. Abstr. 2 ,61.Google Scholar
  15. Duvoisin, R.C. (1976). Parkinsonism: animal analogues of the human disorder. In: The Basal Ganglia. M.D. Yahr (ed.) Raven Press, New York, pp. 293–303.Google Scholar
  16. Edsall, D.L. and Drinker, C.K. (1919). The clinical aspects of chronic manganese poisoning. Contrib. Med. biol. Res. ded. to Sir W. Osier 1 ,447–449.Google Scholar
  17. Esplin, D.W. (1957). Effects of diplenylhydantoin on synaptic trans mission in cat spinal cord and stellate ganglion. J. Pharmac. Extl. Therap. 120 ,301–323.Google Scholar
  18. Frigyesi, T.L. (1971). Organization of synaptic pathways linking the head of caudate nucleus to the dorsal thalamus. Int. J. NeuroZ. 8 ,111–138.Google Scholar
  19. Firgyesi, T.L. (1972). Intracellular recordings from neurons in the dorsolateral thalamic reticular nucleus during capsular, basal ganglia and midline thalamic stimulation. Brain Res. 48 ,157–172.CrossRefGoogle Scholar
  20. Frigyesi, T.L. (1975). Structure-function relationship of the interconnection between the caudate nucleus, globus pallidus, substantia nigra and thalamus. In: Subcortical Mechanism and Sensorimotor Activities. T.L. Frigyesi (ed.) Hans Huber Publ., Bern, pp. 13–45.Google Scholar
  21. Frigyesi, T.L. (1975b). Basal ganglia-thalamus interface. In: Subcortical Mechanism and Sensorimotor Activities. T.L. Frigyesi (ed.) Hans Huber Publ., Bern, pp. 251–288.Google Scholar
  22. Frigyesi, T.L. and Cohen, L. (1974). Appearance of plasticity in caudato-thalamic relationships in the primate. Ergeb. exp. Med. ,271–297.Google Scholar
  23. Frigyesi, T.L., Ige, A., Iulo, A. and Schwartz, R. (1971). Denigration and sensorimotor disability induced by ventral tegmental injection of 6-Hydroxy-Dopamine in the cat. Exptl. Neurol. 33 ,78–87.CrossRefGoogle Scholar
  24. Frigyesi, T.L. and Machek, J. (1970). Basal ganglia-diencephalon synaptic relations in the cat. I. An intracellular study of dorsal thalamic neurons during capsular and basal ganglia stimulation. Brain Res. 20, 201–217.PubMedCrossRefGoogle Scholar
  25. Frigyesi, T.L. and Machek, J. (1971). Basal ganglia-diencephalon synaptic relations in the cats. II. Intracellular recordings from dorsal thalamic neurons during low-frequency stimulation of the caudato-thalamic projection system and the nigrothalamic pathway. Brain Res. 27 ,59–78.PubMedCrossRefGoogle Scholar
  26. Frigyesi, T.L. and Purpura, D.P. (1964). Functional properties of synaptic pathways influencing transmission in the specific cerebello-thalamocortical projection system. Exptl. Neurol. 10 ,305–324.CrossRefGoogle Scholar
  27. Frigyesi, T.L. and Purpura, D.P. (1965). Diencephalic distribution of evoked responses to brachium conjunctivum stimulation. Proc. VIII. Int. Congr. Anatomists. Wiesbaden, p. 41.Google Scholar
  28. Frigyesi, T.L. and Purpura, D.P. (1965). Alterations in activity of a thalamic relay nucleus (VL) during motor cortex spindle waves. Electroenceph. clin. Neurophysiol. 19, 533.CrossRefGoogle Scholar
  29. Frigyesi, T.L. and Purpura, D.P. (1966). Acetylcholine sensitivity of thalamic synaptic organizations activated by brachium conjunctivum stimulation. Arch. int. pharmacodyn. 163 ,110–132.PubMedGoogle Scholar
  30. Frigyesi, T.L. and Purpura, D.P. (1967). Electrophysiological analy sis of reciprocal caudato-nigral relations. Brain Res. 6 ,440–456.PubMedCrossRefGoogle Scholar
  31. Frigyesi, T.L. and Rabin, A. (1971). Basal ganglia-diencephalon synaptic relations. III. An intracellular study of ansa lenticularis, lenticular fasciculus and pallido-subthalamic projection activities. Brain Res. 35 ,67–78.PubMedCrossRefGoogle Scholar
  32. Frigyesi, T.L. and Schwartz, R. (1972). Cortical control of thalamic sensorimotor relay activities in the cat and the squirrel monkey. In: Corticothalamic Projections and Sensorimotor Activities ,Ed. T.L. Frigyesi, E. Rinvik and M.D. Yahr. Raven Press, New York, pp. 161–196.Google Scholar
  33. Frigyesi, T.L., Tsukamoto, Y., and Grimm, J.J. (1976). Species differential effects of cerebellar stimulation on topical penicillin induced paroxysmal activities in the reciprocal thalamocortical projections (cat and squirrel monkey). Anat. Rec. 180: 407.Google Scholar
  34. Frigyesi, T.L., Tsukamoto, Y., Ige, A., Szabo, J. and Cohen, L. (1974). Substantia nigra and the sensorimotor system. (Chemonigrectomies induced by intrategmental administration of the paraquinone of 6-hydroxydopamine and 6,7-dihydroxytryptamine in the cat and monkey). Int. J. Neurol. 10 ,98–114.Google Scholar
  35. Frigyesi, T.L., Yahr, M.D., and Schwartz, R. (1974). Electrophysiological analysis of the effects of L-DOPA on reciprocal corticothalamic projections in the squirrel monkey. I. Iatrogenic coma and disinhibition of medial thalamic neurons. J. Neural Transm. 35 ,151–173.PubMedCrossRefGoogle Scholar
  36. Groves, P.M., Wilson, C.J., Young, S.J. and Rebec, G.V. (1975). Self-inhibition by dopaminergic neurons. Science 190 ,522–529.PubMedCrossRefGoogle Scholar
  37. Haase, J.-J. and Jansen, P.A.J. (1965). The action of neuroleptic drugs. North-Holland Publ. Co., Amsterdam.Google Scholar
  38. Harding, B.N. (1971). Dendro-dendritic, including reciprocal, synapses in the ventrolateral nucleus of the monkey thalamus. Brain Res. 34 ,181–185.PubMedCrossRefGoogle Scholar
  39. Heath, R.G. (1959). Studies in Schizophrenia. Harvard U. Press, Cambridge.Google Scholar
  40. Hess, R., Tsukamoto, Y., and Frigyesi, T.L. (1974). Electrophysiological analysis of cerebello-thalamocortìcal relations to paroxysmal discharges in the motor cortex (Penicillin focus). Experientia 30 ,679.Google Scholar
  41. Hunt, E.L. and Lisa, J.R. (1927). Frontal lobe tumor. A case simulating epidemic encephalitis with Parkinson’s syndrome. J. Amer. Med. Assoc. 89 ,1674–1676.CrossRefGoogle Scholar
  42. Kalmus, M., Fry, D.B., and Denes, P. (1960). Effects of delayed visual control on writing, drawing and tracing. Lang. Speech 3 ,96–108.Google Scholar
  43. Klee, M. (1975). Increased excitability of interneurons vs. enhanced positive feedback; possible mechanisms of epileptic activity. In: Sübcortical Mechanism and Sensorimotor Activities. Ed. T.L. Frigyesi Hans Huber Publ. Bern.Google Scholar
  44. Kulkow, R. (1930). Ueber Quecksilberencephalopathie. Paralysis agitans. Z. ges. Neurol. Psychiat. 125 ,52–57.CrossRefGoogle Scholar
  45. Lebovitz, R.M. (1974). Inhibitory phasing of penicillin interictal discharge. Brain Res. 79 ,301–305.PubMedCrossRefGoogle Scholar
  46. Lee, B.S. (1950). Effects of delayed speech feedback. J. Acoust. Soc. Am. 22 ,824–826.CrossRefGoogle Scholar
  47. Machek, J. (1965). Macrostructural Generators in Seizure Origin and Spread. Excerpta Medica ,Congress Series 124, 183–191.Google Scholar
  48. Matsumoto, H. (1964). Intracellular events during the activation of cortical epileptiform discharges. EEG. din. Neurophysiol. 17, 294–307.CrossRefGoogle Scholar
  49. Mendez, E.S., Cotzias, G., Mena, I. and Papavasiliou, P.S. (1975). Diphenylhydantoin. Arch. Neurol. 32 ,44–46.PubMedCrossRefGoogle Scholar
  50. Merritt, H.M. and Putnam, T.J. (1939). Sodium diphenyl hydantoinate in the treatment of convulsive seizures, toxic symptoms and their prevention. Arch. Neurol and Psychiat. 42 ,1053–1058.CrossRefGoogle Scholar
  51. Mettler, F.A. (1955). Perceptual capacity, functions of the corpus striatum and schizophrenia. Psychiatric Quant. 29 ,89–111.CrossRefGoogle Scholar
  52. Meyer-Koenigsberg, E. (1923). Die Beeinfluessung der Bewegung Stoerungen bei der Encephalitis Lethargica durch ritmische Gefuehle. Muench. Med. Wchnschr. 70 ,459–469.Google Scholar
  53. Nauta, W.J.M. (1976). Discussion in: Basal Ganglia. M.D. Yahr, Ed. Raven Press, New York, pp. 179–180.Google Scholar
  54. Nyquist, H. (1932). Regeneration theory. Bell Syst. tech. J. 11, 126–142.Google Scholar
  55. Penfield, W. and Jasper, H. (1954). Epilepsy and the functional anatomy of the human brain. Little, Brown and Co., Boston.Google Scholar
  56. Powell, E.W. and Leman, R.B. (1976). Connections of the nucleus accumbens. Brain Res. 105 ,389–403.PubMedCrossRefGoogle Scholar
  57. Purpura, D.P. (1972). Synaptic mechanism in coordination of activity in thalamic internuncial common paths. In: Corticothalamic Projection and Sensorimotor Activities. Ed. T.L. Frigyesi, E. Rinvik and M.D. Yahr. Raven Press, New York, 1972, pp. 21–56.Google Scholar
  58. Purpura, D.P. (1976). Physiological organization of the basal ganglia. In: The Basal Ganglia. M.D. Yahr (ed.) Raven Press, New York, pp. 91–114.Google Scholar
  59. Purpura, D.P. and Cohen, B. (1962). Intracellular recordings from thalamic neurons during recruiting responses. J. Neurophysiol. 25 ,621–635.PubMedGoogle Scholar
  60. Purpura, D.P., Frigyesi, T.L., McMurtry, J.G. and Scarff, T. (1966). Synaptic mechanisms in thalamic regulation of cerebello-cortical projection activity. In: The Thalamus. D.P. Purpura and M.D. Yahr (eds.) Columbia U. Press. New York, pp. 154–170.Google Scholar
  61. Racine, R.J., Gartner, J.G. and Mclntyre Burnham, W. (1973). Epileptiform activity and neural plasticity in limbic struc tures. Brain Res. 47 ,262–268.CrossRefGoogle Scholar
  62. Rosen, A.D. (1976). Influence of association cortex on penicillin discharges in the primary visual cortex. EEC clin. Electro physiol. 41 ,571–579.Google Scholar
  63. Rinvik, E. (1972). Organization of thalamic connections from motor and somato-sensory cortical areas in the cat. In: Corticothala mio Projections and Sensorimotor Activities. Ed. T.L. Frigyesi, E. Rinvik, and M.D. Yahr. Raven Press, New York, pp. 57–90.Google Scholar
  64. Scheibel, M.E., Davis, T.L. and Scheibel, A.B. (1972). On dendritic relations in the dorsal thalamus of the adult cat. Exptt. Neurol. 36 ,519–529.CrossRefGoogle Scholar
  65. Scheibel, M.E., Davies, T.L. and Scheibel, A.B. (1973). On thalamic subtrates of cortical synchrony. Neurology 23 ,300–304.PubMedCrossRefGoogle Scholar
  66. Scheibel, M.E. and Scheibel, A.B. (1970). Elementary processes in selected thalamic and cortical subsystems-the structural substrates. In: The Neurosciences. Second study program. Ed. A.C. Quarton et al. Rockefeller U. Press. New York, pp. 443–457.Google Scholar
  67. Scholz, W. (1957). An nervose Systeme gebundene (topistische) Kreiscaufschaden. In: Handbuch Der Speziellen Pathologischen Anatomy und Histologie. Vol. XIII. 1. A. Ed. O. Ludarsch, F. Henke and R. Roessle, Springer-Verlag, Berlin, pp. 1328–1383.Google Scholar
  68. Schwab, R.S. and England, A.C. (1968). Parkinson syndromes due to various specific causes. In: Handbook of Clinical Neurology. P.J. Vinken and G.W. Gruyn (eds.), vol. 6 Diseases of the Basal Ganglia. North-Holland Publ. Co. Amsterdam., pp. 227–247.Google Scholar
  69. Steck, H. (1954). Le syndrome extra-pryamidal et di-encephalique au cors des traitments au largactil et au serpasil. Ann. med.- psychol. 112 ,737–743.Google Scholar
  70. Sutton, S., Hakerem, G., Zubin, J. and Portnoy, M. (1961). The effect of shift of modality on serial reaction time: a comparison of schizophrenics and normals. Am. J. Psychol. 74 ,224–232.CrossRefGoogle Scholar
  71. Von Econorao, C. (1929). Die Encephalitis Lethcœgiga. Urban and Schwarzenberg, Wien.Google Scholar
  72. Walter, G.W. (1953). The living brain. Norton, New York.Google Scholar
  73. Wiener, N. (1950). Human use of human beings. Houghton Mifflin, Boston.Google Scholar
  74. Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine. Second Edition, M.I.T. Press and John Wiley and Sons, New York.CrossRefGoogle Scholar
  75. Wilcoxon, F. (1949). Some rapid approximate statistical procedures. Am. Cyanamid Co., New York.Google Scholar
  76. Wilson, S.A.K. and Cobb, S. (1924). Mesencephalitis Syphilitica. J. Neuro. Psychopath. 5 ,44–60CrossRefGoogle Scholar
  77. Yakovlev, P. (1928). Epilepsy and parkinsonsim. N. E. J. Med. 198, 629–638.CrossRefGoogle Scholar
  78. Yariura-Tobias, J.A., Diamond, B., and Merlis, S. (1970). The action of L-Dopa on schizophrenic patients. (A preliminary report). Curr. Ther. Res. 12 ,528Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Tamas L. Frigyesi
    • 1
  1. 1.Department of PhysiologyTexas Tech University School of MedicineLubbockUSA

Personalised recommendations