The Sympathoadrenal System

  • Lewis Landsberg


In considering the role of catecholamines in the regulation of physiological processes, it is important to remember that the sympathetic nerve endings and the adrenal medulla are extensions of the CNS. The sympathetic nerves function as neurochemical transducers, converting electrical impulses in the nervous system to a chemical messenger that is decoded locally in the innervated tissue by specialized receptors that mediate the physiological response characteristic of the innervated tissue. The chemical messenger of the sympathetic nerves is, of course, norepinephrine (NE), the prototypie neurotransmitter. The adrenal medulla is entirely analogous; it converts neural impulses into a circulating messenger or hormone, epinephrine (E), the message of which is decoded in tissues throughout the body. The diverse physiological manifestations that result depend on the characteristics of the particular tissue that is stimulated by E. As an extension of the nervous system, the physiological effects of the sympathoadrenal system are induced rapidly and dissipated quickly, in distinction to the slower, more prolonged effects of other hormones. In common with that of the other major divisions of the nervous system, sympathoadrenal outflow represents the integrated response of central neurons to a vast array of afferent neural inputs as well as the intrinsic activity of many central nervous structures.


Essential Hypertension Sympathetic Nervous System Sympathetic Activity Plasma Renin Activity Adrenal Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korner, P. L., 1976, Central control of blood pressure: Implications in the pathophysiology of hypertension, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 3–20, Grune & Stratton, New York.Google Scholar
  2. 2.
    Starke, K., Endo, T., and Taube, H. D., 1976, Central noradrenergic mechanisms of neurotransmission, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 21–34, Grune 8c Stratton, New York.Google Scholar
  3. 3.
    Taylor, D. G., and Brody, M. J., 1976, Spinal adrenergic mechanisms regulating sympathetic outflow to blood vessels, Circ. Res. (Suppl. II) 38:II–10–II–20.Google Scholar
  4. 4.
    Ninomiya, L., Nisimaru, N., and Irisawa, H., 1971, Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input, Am. J. Physiol. 221:1346–1351.PubMedGoogle Scholar
  5. 5.
    Nisimaru, N., 1971, Comparison of gastric and renal nerve activity, Am. J. Physiol. 220:1303–1308.PubMedGoogle Scholar
  6. 6.
    Niijima, A., 1976, Baroreceptor effects on renal and adrenal nerve activity, Am. J. Physiol. 230:1733–1736.Google Scholar
  7. 7.
    Niijima, A., 1975, The effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of sympathetic nerves,J. Physiol. (London) 251:231–243.Google Scholar
  8. 8.
    Cryer, P. E., Santiago, J. V., and Shah, S., 1974, Measurement of norepinephrine and epinephrine in small volumes of human plasma by a single isotope derivative method: Response to the upright posture, J. Clin. Endocrinol. Metab. 39:1025–1029.PubMedCrossRefGoogle Scholar
  9. 9.
    Garber, A. J., Cryer, P. E., Santiago, J. V., Haymond, M. W., Pagliara, A. S., and Kipnis, D. M., 1976, The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man, J. Clin. Invest. 58:7–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Young, J. B., Landsberg, L., and Knopp, R. H., 1976, Effect of intravenous glucagon on urinary catecholamine excretion in normal man, Metabolism 25:233–237.PubMedCrossRefGoogle Scholar
  11. 11.
    Landsberg, L., and Axelrod, J., 1968, Influence of pituitary, thyroid, and adrenal hormones on norepinephrine turnover and metabolism in the rat heart, Circ. Res. 22:559–571.PubMedGoogle Scholar
  12. 12.
    Taubin, H. L., Djahanguiri, B., and Landsberg, L., 1972, Noradrenaline concentration and turnover in different regions of the gastrointestinal tract of the rat: An approach to the evaluation of sympathetic activity in the gut, Gut 13:790–795.PubMedCrossRefGoogle Scholar
  13. 13.
    Djahanguiri, B., Täubin, H. L., and Landsberg, L., 1973, Increased sympathetic activity in the pathogenesis of restraint ulcer in rats,J. Pharmacol. Exp. Ther. 184:163–168.PubMedGoogle Scholar
  14. 14.
    Young, J. B., and Landsberg, L., 1977, Suppression of the sympathetic nervous system during fasting, Science 196:1473–1475.PubMedCrossRefGoogle Scholar
  15. 15.
    Reis, D. J., Doba, N., and Nathan, M. A., 1976, Neurogenic arterial hypertension produced by brainstem lesions, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 35–51, Grune & Stratton, New York.Google Scholar
  16. 16.
    Haeusler, G., 1976, Central adrenergic neurons in experimental hypertension, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 53–64, Grime & Stratton, New York.Google Scholar
  17. 17.
    Thorén, P. N., Donald, D. E., and Shepherd, J. T., 1976, Role of heart and lung receptors with nonmedullated vagal afférents in circulatory control, Cir. Res. (Suppl. II) 38:II–2–II–9.Google Scholar
  18. 18.
    Vatner, S. F., and McRitchie, R. J., 1976, Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs, Am. J. Physiol. 230:557–563.PubMedGoogle Scholar
  19. 19.
    Liang, C.-S., and Hood, W. B., Jr., 1976, Afferent neural pathway in the regulation of cardiopulmonary responses to tissue hypermetabolism, Circ. Res. 38:209–214.PubMedGoogle Scholar
  20. 20.
    Gebber, G. L., and McCall, R. B., 1976, Identification and discharge patterns of spinal sympathetic interneurons, Am. J. Physiol. 231:722–733.PubMedGoogle Scholar
  21. 21.
    Blaschko, H., 1973, Catecholamine biosynthesis, Br. Med. Bull. 29:105–109.Google Scholar
  22. 22.
    Williams, T. H., and Palay, S. L., 1969, Ultrastructure of the small neurons in the superior cervical ganglion, Brain Res. 15:17–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Kebabian, J. W., and Greengard, P., 1971, Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission, Science 174:1346–1349.PubMedCrossRefGoogle Scholar
  24. 24.
    Greengard, P., 1972, Adenosine 3′:5′-cyclic monophosphate as a mediator in the action of neurohumoral agents, Biochem. 128:75P–77P.Google Scholar
  25. 25.
    Sampson, S. R., Aminoff, M. J., Jaffe, R. A., and Vidruk, E. H., 1976, Analysis of inhibitory effect of dopamine on carotid body chemoreceptors in cats, Am. J. Physiol. 230:1494–1498.PubMedGoogle Scholar
  26. 26.
    Smith, A. D., 1973, Mechanisms involved in the release of noradrenaline from sympathetic nerves, Br. Med. Bull. 29:123–129.Google Scholar
  27. 27.
    Enero, M. A., Langer, S. Z., Rothlin, R. P., and Stefano, F.J. E., 1972, Role of a-adrenoceptor in regulating noradrenaline overflow by nerve stimulation, Br. J. Pharmacol. 44:672–688.PubMedGoogle Scholar
  28. 28.
    Häggendal, J., 1973, Regulation of catecholamine release, in: Frontiers in Catecholamine Research (E. Usdin and S. H. Snyder, eds.), pp. 531–535, Pergamon Press, New York.Google Scholar
  29. 29.
    Adler-Graschinsky, E., and Langer, S. Z., 1975, Possible role of the β-adrenoceptor in regulation of noradrenaline release by nerve stimulation through a positive feed-back mechanism, Br. J. Pharmacol. 53:43–50.PubMedGoogle Scholar
  30. 30.
    de Champlain, J., 1977, The sympathetic system in hypertension, Clin. Endocrinol. Metab. 6:Chapter 5.Google Scholar
  31. 31.
    Hedqvist, P., 1969, Modulating effect of prostaglandin E2 on noradrenaline release from the isolated cat spleen, Acta Physiol. Scand. 75:511–512.PubMedCrossRefGoogle Scholar
  32. 32.
    Hedqvist, P., 1970, Control by prostaglandin E2 of sympathetic neurotransmission in the spleen, Life Sci. 9:269–278.PubMedCrossRefGoogle Scholar
  33. 33.
    Horton, E. W., 1973, Prostaglandins at adrenergic nerve-endings, Br. Med. Bull. 29:148–151.PubMedGoogle Scholar
  34. 34.
    Malik, K. U., Ryan, P., and McGiff, J. C., 1976, Modification by prostaglandins E1 and E2, indomethacin, and arachidonic acid of the vasoconstrictor responses of the isolated perfused rabbit and rat mesenteric arteries to adrenergic stimuli, Circ. Res. 39:163–168.PubMedGoogle Scholar
  35. 35.
    Vanhoutte, P. M., and Verbeuren, T. J., 1976, Inhibition by acetylcholine of the norepinephrine release evoked by potassium in canine saphenous veins, Circ. Res. 39:263–269.Google Scholar
  36. 36.
    Levy, M. N., and Blattberg, B., 1976, Effect of vagal Stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog, Circ. Res. 38:81–85.PubMedGoogle Scholar
  37. 37.
    McGrath, M. A., and Shepherd, J. T., 1976, Inhibition of adrenergic neurotransmission in canine vascular smooth muscle by histamine; mediation, by H2-receptors, Circ. Res. 39:566–573.PubMedGoogle Scholar
  38. 38.
    Lefkowitz, R. J., 1976, The β-adrenergic receptor, Life Sci. 18:461–472.PubMedCrossRefGoogle Scholar
  39. 39.
    Limbird, L. E., De Meyts, P., and Lefkowitz, R. J., 1975, β-Adrenergic receptors: Evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 64:1160–1168.PubMedCrossRefGoogle Scholar
  40. 40.
    Bolter, C. P., and Ledsome, J. R., 1976, Effect of cervical sympathetic nerve stimulation on canine carotid sinus reflex, Am. J. Physiol. 230:1026–1030.PubMedGoogle Scholar
  41. 41.
    Vander, A. J., 1967, Control of renin release, Physiol. Rev. 47:359–382.PubMedGoogle Scholar
  42. 42.
    Oparil, S., and Haber, E., 1974, The renin-angiotensin system, N. Engl. J. Med. 291:389–401, 446–457.CrossRefGoogle Scholar
  43. 43.
    Ganong, W. F., and Reid, I. A., 1976, Role of the sympathetic nervous system and central α- and β-adrenergic receptors in regulation of renin secretion, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 261–280, Grune & Stratton, New York.Google Scholar
  44. 44.
    Zanchetti, A., Stella, A., Leonetti, G., Morganti, A., and Terzoli, L., 1976, Control of renin release: A review of experimental evidence and clinical implications, Am. J. Cardiol. 37:675–691.PubMedCrossRefGoogle Scholar
  45. 45.
    Barajas, L., 1964, The innervation of the juxtaglomerular apparatus; an electron microscopic study of the innervation of the glomerular arterioles, Lab. Invest. 13:916–929.PubMedGoogle Scholar
  46. 46.
    Nilsson, O., 1965, The adrenergic innervation of the kidney, Lab. Invest. 14:1392–1395.PubMedGoogle Scholar
  47. 47.
    Wâgermark, J., Ungerstedt, U., and Ljungqvist, A., 1968, Sympathetic innervation of the juxtaglomerular cells of the kidney, Circ. Res. 22:149–153.PubMedGoogle Scholar
  48. 48.
    Loeffler, J. R., Stockigt, J. R., and Ganong, W. F., 1972, Effect of alpha- and beta-adrenergic blocking agents on the increase in renin secretion produced by stimulation of the renal nerves, Neuroendocrinology 10:129–138.PubMedCrossRefGoogle Scholar
  49. 49.
    Taher, M. S., McLain, L. G., McDonald, K. M., and Schrier, R. W., 1976, Effect of beta adrenergic blockade on renin response to renal nerve stimulation, J. Clin. Invest. 57:459–465.PubMedCrossRefGoogle Scholar
  50. 50.
    Ganong, W. F., 1973, Biogenic amines, sympathetic nerves, and renin secretion, Fed. Proc. Fed. Am. Soc. Exp. Biol. 32:1782–1784,Google Scholar
  51. 51.
    Richardson, D., Stella, A., Leonetti, G., Bartorelli, A., and Zanchetti, A., 1974, Mechanisms of renal release of renin by electrical stimulation of the brainstem in the cat, Circ. Res. 34:425–434.PubMedGoogle Scholar
  52. 52.
    Yun, J. C. H., Delea, C. S., Bartter F. C., and Kelly, G., 1976, Increase in renin release after sinoaortic denervation and cervical vagotomy, Am. J. Physiol. 230:777–783.PubMedGoogle Scholar
  53. 53.
    Zehr, J. E., Hasbargen, J. A., and Kurz, K. D., 1976, Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs, Circ. Res. 38:232–239.PubMedGoogle Scholar
  54. 54.
    Leenen, F. H. H., Redmond, D. P., and McDonald, R. H., Jr., 1975, Alpha and beta adrenergic-induced renin release in man, Clin. Pharmacol. Ther. 18:31–38.PubMedGoogle Scholar
  55. 55.
    Johnson, J. A., Davis, J. O., Gotshall, R. W., Lohmeier, T. E., Davis, J. L., Braverman, B., and Tempel, G. E., 1976, Evidence for an intrarenal beta receptor in control of renin release, Am. J. Physiol. 230:410–418.PubMedGoogle Scholar
  56. 56.
    Johns, E. J., and Singer, B., 1974, Specificity of blockade of renal renin release by propranolol in the cat, Clin. Sci. Mol. Med. 47:331–343.PubMedGoogle Scholar
  57. 57.
    Weber, M. A., Stokes, G. S., and Gain, J. M., 1974, Comparison of the effects on renin release of beta adrenergic antagonists with differing properties,J. Clin. Invest. 54:1413–1419.PubMedCrossRefGoogle Scholar
  58. 58.
    Desaulles, E., Forler, C., Velly, J., and Schwartz, J., 1975, Effect of catecholamines on renin release in vitro, Biomedicine 22:433–439.PubMedGoogle Scholar
  59. 59.
    Weinberger, M. H., Aoi, W., and Henry, D. P., 1975, Direct effect of beta-adrenergic stimulation on renin release by the rat kidney slice in vitro, Circ. Res. 37:318–324.PubMedGoogle Scholar
  60. 60.
    Capponi, A. M., and Vallotton, M. B., 1976, Renin release by rat kidney slices incubated in vitro; role of sodium and of a- and β-adrenergic receptors, and effect of vincristine, Circ. Res. 39:200–203.PubMedGoogle Scholar
  61. 61.
    Nolly, H. L., Reid, I. A., and Ganong, W. F., 1974, Effect of theophylline and adrenergic blocking drugs on the renin response to norepinephrine in vitro, Circ. Res. 35:575–579.PubMedGoogle Scholar
  62. 62.
    Leonetti, G., Mayer, G., Morganti, A., Terzoli, L., Zanchetti, A., Biachetti, G., Di Salle, E., Morselli, P. L., and Chidsey, C. A., 1975, Hypotensive and renin-suppressing activities of propranolol in hypertensive patients, Clin. Sci. Mol. Med. 48:491–499.Google Scholar
  63. 63.
    Davies, R., and Slater, J. D. H., 1976, Is the adrenergic control of renin release dominant in man?, Lancet 2:594–596.PubMedCrossRefGoogle Scholar
  64. 64.
    Michelakis, A. M., and McAllister, R. G., 1972, The effect of chronic adrenergic receptor blockade on plasma renin activity in man, J. Clin. Endocrinol. Metab. 34:386–394.PubMedCrossRefGoogle Scholar
  65. 65.
    Christlieb, A. R., Munichoodappa, C., and Braaten, J. T., 1974, Decreased response of plasma renin activity to orthostasis in diabetic patients with orthostatic hypotension, Diabetes 23:835–840.PubMedGoogle Scholar
  66. 66.
    Wilcox, C. S., Aminoff, M. J., Kurtz, A. B., and Slater, J. D. H., 1974, Comparison of the renin response to dopamine and noradrenaline in normal subjects and patients with autonomic insufficiency, Clin. Sci. Mol. Med. 46:481–488.PubMedGoogle Scholar
  67. 67.
    Gordon, R. D., Kuchel, O., Liddle, G. W., and Island, D. P., 1967, Role of the sympathetic nervous system in regulating renin and aldosterone production in man, J. Clin. Invest. 46:599–605.PubMedCrossRefGoogle Scholar
  68. 68.
    Bozovie, L., Castenfors, J., and Orö, L., 1970, Plasma renin activity in patients with disturbed sympathetic vasomotor control (postural hypotension), Acta Med. Scand. 188:385–388.CrossRefGoogle Scholar
  69. 69.
    Lewis, E. J., Blaufox, M. D., and Hickler, R. B., 1966, Renin secretion by the denervated kidney, Br. Med. J. 2:1430–1431.PubMedCrossRefGoogle Scholar
  70. 70.
    Attman, P. O., Aureli, M., and Johnsson, G., 1975, Effects of metoprolol and propranolol on furosemide-stimulated renin release in healthy subjects, Eur. J. Clin. Pharmacol. 8:201–204.PubMedCrossRefGoogle Scholar
  71. 71.
    Pettinger, W. A., and Keeton, K., 1975, Altered renin release and propranolol potentiation of vasodilatory drug hypotension, J. Clin. Invest. 55:236–243.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Malley, K., Velasco, M., Wells, J., and McNay, J. L., 1975, Control plasma renin activity and changes in sympathetic tone as determinants of minoxidil-induced increase in plasma renin activity,J. Clin. Invest. 55:230–235.PubMedCrossRefGoogle Scholar
  73. 73.
    Bunag, R. D., Page, I. H., and McCubbin, J. W., 1966, Neural stimulation of release of renin, Circ. Res. 19:851–858.PubMedGoogle Scholar
  74. 74.
    Lowder, S. C., Frazer, M. G., and Liddle, G. W., 1975, Effect of insulin-induced hypoglycemia upon.plasma renin activity in man,J. Clin. Endocrinol. Metab. 41:97–105.PubMedCrossRefGoogle Scholar
  75. 75.
    Hansson, B.-G., and Hökfelt, B., 1976, Long term treatment of moderate hypertension with penbutolol (Hoe 893d). II. Effect on the response of plasma catecholamines and plasma renin activity to insulin-induced hypoglycemia, Eur. J. Clin. Pharmacol. 9:245–251.PubMedCrossRefGoogle Scholar
  76. 76.
    Hansson, B.-G., and Hökfelt, B., 1975, Long term treatment of moderate hypertension with penbutolol (Hoe 893d). I. Effects of blood pressure, pulse rate, catecholamines in blood and urine, plasma renin activity and urinary aldosterone under basal conditions and following exercise, Eur. J. Clin. Pharmacol. 9:9–19.PubMedCrossRefGoogle Scholar
  77. 77.
    Blair, M. L., Feigl, E. O., and Smith, O. A., 1976, Elevation of plasma renin activity during avoidance performance in baboons, Am. J. Physiol. 231:772–776.PubMedGoogle Scholar
  78. 78.
    Clamage, D. M., Sanford, C. S., Vander, A. J., and Mouw, D. R., 1976, Effects of psychosocial stimuli on plasma renin activity in rats, Am.J. Physiol. 231:1290–1294.PubMedGoogle Scholar
  79. 79.
    Boulter, P. R., Spark, R. F., and Arky, R. A., 1974, Dissociation of the renin-aldosterone system and refractoriness to the sodium-retaining action of mineralocorticoid during starvation in man, J. Clin. Endocrinol. Metab. 38:248–254.PubMedCrossRefGoogle Scholar
  80. 80.
    Young, J. B., and Landsberg, L., 1977, Suppression of the sympathetic nervous system during fasting, Science 196:1473–1475.PubMedCrossRefGoogle Scholar
  81. 81.
    Bravo, E. L., Tarazi, R. C., and Dustan, H. P., 1974, On the mechanism of suppressed plasma-renin activity during beta-adrenergic blockade with propranolol, J. Lab. Clin. Med. 83:119–128.PubMedGoogle Scholar
  82. 82.
    Bravo, E. L., Tarazi, R. C., and Dustan, H. P., 1975, β-adrenergic blockade in diuretic-treated patients with essential hypertension, N. Engl. J. Med. 292:66–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Sullivan, J. M., Adams, D. F., and Hollenberg, N. K., 1976, β-Adrenergic blockade in essential hypertension; reduced renin release despite renal vasoconstriction, Circ. Res. 39:532–536.PubMedGoogle Scholar
  84. 84.
    Mayhew, D. A., Wright, P. H., and Ashmore, J., 1969, Regulation of insulin secretion, Pharmacol. Rev. 21:183–212.PubMedGoogle Scholar
  85. 85.
    Porte, D., Jr., and Bagdade, J. D., 1970, Human insulin secretion: An integrated approach, Annu. Rev. Med. 21:219–240.PubMedCrossRefGoogle Scholar
  86. 86.
    Woods, S. C., and Porte, D., Jr., 1974, Neural control of the endocrine pancreas, Physiol. Res. 54:596–619.Google Scholar
  87. 87.
    Bloom, S. R., Edwards, A. V., and Vaughan, N.J. A., 1973, The role of the sympathetic innervation in the control of plasma glucagon concentration in the calf, J. Physiol. (London) 233:457–466.Google Scholar
  88. 88.
    Bloom, S. R., and Edwards, A. V., 1975, The release of pancreatic glucagon and inhibition of insulin in response to stimulation of the sympathetic innervation, J. Physiol. (London) 253:157–173.Google Scholar
  89. 89.
    Porte, D., Jr., Girardier, L., Seydoux, J., Kanazawa, Y., and Posternak, J., 1973, Neural regulation of insulin secretion in the dog, J.Clin. Invest. 52:210–214.PubMedCrossRefGoogle Scholar
  90. 90.
    Marliss, E. B., Girardier, L., Seydoux, J., Wollheim, C. B., Kanazawa, Y., Orci, L., Renold, A. E., and Porte, D., Jr., 1973, Glucagon release induced by pancreatic nerve stimulation in the dog, J. Clin. Invest, 52:1246–1259.PubMedCrossRefGoogle Scholar
  91. 91.
    Esterhuizen, A. C., and Howell, S. L., 1970, Ultrastructure of the A-cells of cat islets of Langerhans following sympathetic stimulation of glucagon secretion, J. Cell Biol. 46:593–599.PubMedCrossRefGoogle Scholar
  92. 92.
    Frohman, L. A., and Bernardis, L. L., 1971, Effect of hypothalamic stimulation on plasma glucose, insulin, and glucagon levels, Am. J. Physiol. 221:1596–1603.PubMedGoogle Scholar
  93. 93.
    Frohman, L. A., Bernardis, L. L., and Stachura, M. E., 1974, Factors modifying plasma insulin and glucose responses to ventromedial hypothalamic stimulation, Metabolism 23:1047–1056.PubMedCrossRefGoogle Scholar
  94. 94.
    Porte, D., Jr., Graber, A. L., Kuzuya, T., and Williams, R. H., 1966, The effect of epinephrine on immunoreactive insulin levels in man, J. Clin. Invest. 45:228–236.PubMedCrossRefGoogle Scholar
  95. 95.
    Lerner, R. L., and Porte, D., Jr., 1971, Epinephrine: Selective inhibition of the actue insulin response to glucose, J.Clin. Invest. 50:2453–2457.CrossRefGoogle Scholar
  96. 96.
    Cerasi, E., Luft, R., and Efendić, S., 1971, Antagonism between glucose and epinephrine regarding insulin secretion; a dose-response study in man, Acta Med. Scand. 190:411–417.PubMedCrossRefGoogle Scholar
  97. 97.
    Gerich, J. E., Karam, J. H., and Forsham, P. H., 1973, Stimulation of glucagon secretion by epinephrine in man, J. Clin, Endocrinol. Metab. 37:479–481.CrossRefGoogle Scholar
  98. 98.
    Gerich, J. E., Langlois, M., Noacco, C., Schneider, V., and Forsham, P. H., 1974, Adrenergic modulation of pancreatic glucagon secretion in man, J.Clin. Invest. 53:1441–1446.PubMedCrossRefGoogle Scholar
  99. 99.
    Kaneto, A., Miki, E., and Kosaka, K., 1975, Effect of beta and beta2 adreno-receptor stimulants infused intrapancreatically on glucagon and insulin secretion, Endocrinology 97:1166–1173.PubMedCrossRefGoogle Scholar
  100. 100.
    Vance, J. E., Buchanan, K. D., O’Hara, D., Williams, R. H., and Porte, D., Jr., 1969, Insulin and glucagon responses in subjects with pheochromocytoma: Effect of alpha adrenergic blockade,J.Clin. Endocrinol. Metab. 29:911–916.PubMedCrossRefGoogle Scholar
  101. 101.
    Colwell, J. A., 1969, Inhibition of insulin secretion by catecholamines in pheochromocytoma, Ann. Intern. Med. 71:251–256.PubMedGoogle Scholar
  102. 102.
    Coore, H. G., and Rändle, P. J., 1964, Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro, Biochem. J. 93:66–78.PubMedGoogle Scholar
  103. 103.
    Malaisse, W., Malaisse-Lagae, F., Wright, P. H., and Ashmore, J., 1967, Effects of adrenergic and cholinergic agents upon insulin secretion in vitro, Endocrinology 80:975–978.PubMedCrossRefGoogle Scholar
  104. 104.
    Leclercq-Meyer, V., Brisson, G. R., and Malaisse, W. J., 1971, Effect of adrenaline and glucose on release of glucagon and insulin in vitro, Nature (London) New Biol. 231:248–249.CrossRefGoogle Scholar
  105. 105.
    Iversen, J., 1971, Secretion of glucagon from the isolated, perfused canine pancreas, J.Clin. Invest. 50:2123–2136.CrossRefGoogle Scholar
  106. 106.
    Iversen, J., 1973, Adrenergic receptors and the secretion of glucagon and insulin from the isolated, perfused canine pancreas,J.Clin. Invest. 52:2102–2116.PubMedCrossRefGoogle Scholar
  107. 107.
    Weir, G. C., Knowlton, S. D., and Martin, D. B., 1974, Glucagon secretion from the perfused rat pancreas; studies with glucose and catecholamines, J.Clin. Invest. 54:1403–1412.PubMedCrossRefGoogle Scholar
  108. 108.
    Jarrousse, C. and Rosselin, G., 1975, Interaction of amino acids and cyclic AMP on the release of insulin and glucagon by newborn rat pancreas, Endocrinology 96:168–177.PubMedCrossRefGoogle Scholar
  109. 109.
    Young, J. B., and Landsberg, L., 1976, Pancreatic and hepatic norepinephrine (NE) turnover in the rat: A method for assessing sympathetic regulation of carbohydrate metabolism, Clin. Res. 24:640A.Google Scholar
  110. 110.
    Walter, R. M., Dudl, R. J., Palmer, J. P., and Ensinck, J. W., 1974, The effect of adrenergic blockade on the glucagon responses to starvation and hypoglycemia in man,J.Clin. Invest. 54:1214–1220.PubMedCrossRefGoogle Scholar
  111. 111.
    Brodows, R. G., Campbell, R. G., Al-Aziz, A. J., and Pi-Sunyer, F. X., 1976, Lack of central autonomic regulation of substrate during early fasting in man, Metabolism 25:803–807.PubMedCrossRefGoogle Scholar
  112. 112.
    Bloom, S. R., Edwards, A. V., Hardy, R. N., Malinowska, K., and Silver, M., 1975, Cardiovascular and endocrine responses to feeding in the young calf, J. Physiol. (London) 253:135–155.Google Scholar
  113. 113.
    Frohman, L. A., Muller, E. E., and Cocchi, D., 1973, Central nervous system mediated inhibition of insulin secretion due to 2-deoxyglucose, Horm. Metab. Res. 5:21–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Miller, R. E., Waid, T. H., and Joyce, M. P., 1976, Direct neural inhibition of insulin secretion in response to systemic hypoglycemia, Am. J. Physiol. 230:1090–1094.PubMedGoogle Scholar
  115. 115.
    Ensinck, J. W., Walter, R. M., Palmer, J. P., Brodows, R. G., and Campbell, R. G., 1976, Glucagon responses to hypoglycemia in adrenalectomized man, Metabolism 25:227–232.PubMedCrossRefGoogle Scholar
  116. 116.
    Palmer, J. P., Henry, D. P., Benson, J. W., Johnson, D. G., and Ensinck, J. W., 1976, Glucagon response to hypoglycemia in sympathectomized man,J.Clin. Invest. 57:522–525.PubMedCrossRefGoogle Scholar
  117. 117.
    Lindsey, A., Santeusanio, F., Braaten, J., Faloona, G. R., and Unger, R. H., 1974, Pancreatic alpha-cell function in trauma,J.Am. Med. Assoc. 227:757–761.CrossRefGoogle Scholar
  118. 118.
    Baum, D., and Porte, D., Jr., 1969, Effect of acute hypoxia on circulating insulin levels, J.Clin. Endocrinol. Metab. 29:991–994.CrossRefGoogle Scholar
  119. 119.
    Blackard, W. G., Nelson, N. C., and Labat, J. A., 1967, Insulin secretion in hypothermic dogs, Am. J. Physiol. 212:1185.–1187.PubMedGoogle Scholar
  120. 120.
    Baum, D., Dillard, D. H., and Porte, D., Jr., 1968, Inhibition of insulin release in infants undergoing deep hypothermic cardiovascular surgery, N. Engl. J. Med. 279:1309–1314.PubMedCrossRefGoogle Scholar
  121. 121.
    Baum, D., and Porte, D., Jr., 1971, Alpha-adrenergic inhibition of immuno-reactive insulin release during deep hypothermia, Am. J. Physiol. 221:303–311.PubMedGoogle Scholar
  122. 122.
    Kervran, A., Gilbert, M., Girard, J. R., Assan, R., and Jost, A., 1976, Effect of environmental temperature on glucose-induced insulin response in the newborn rat, Diabetes 25:1026–1030.PubMedCrossRefGoogle Scholar
  123. 123.
    Allison, S. P., Hinton, P., and Chamberlain, M. J., 1968, Intravenous glucose-tolerance, insulin, and free-fatty-acid levels in burned patients, Lancet 2:1113–1116.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilmore, D. W., Lindsey, C. A., Moylan, J. A., Faloona, G. R., Pruitt, B. A., and Unger, R. H., 1974, Hyperglucagonaemia after burns, Lancet 1:73–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Orton, C. I., Segal, A. W., Bloom, S. R., and Clarke, J., 1975, Hypersecretion of glucagon and gastrin in severely burnt patients, Br. Med. Jr. 2:170–172.CrossRefGoogle Scholar
  126. 126.
    Cerchio, G. M., Moss, G. S., Popovich, P. A., Butler, E., and Siegel, D. C., 1971, Serum insulin and growth hormone response to hemorrhagic shock, Endocrinology 88:138–143.PubMedCrossRefGoogle Scholar
  127. 127.
    Hiebert, J. M., Sixt, N., Soeldner, J. S., and Egdahl, R. H., 1973, Altered insulin and glucose metabolism produced by epinephrine during hemorrhagic shock in the adrenalectomized primate, Surgery 74:223–234.PubMedGoogle Scholar
  128. 128.
    Hiebert, J. M., Celik, Z., Soeldner, J. S., and Egdahl, R. H., 1973, Insulin response to hemorrhagic shock in the intact and adrenalectomized primate, Am. J. Surg. 125:501–507.PubMedCrossRefGoogle Scholar
  129. 129.
    Lindsey, C. A., Faloona, G. R., and Unger, R. H., 1975, Plasma glucagon levels during rapid exsanguination with and without adrenergic blockade, Diabetes 24:313–316.PubMedCrossRefGoogle Scholar
  130. 130.
    Rocha, D. M., Santeusanio, F., Faloona, G. R., and Unger, R. H., 1973, Abnormal pancreatic alpha-cell function in bacterial infections, N. Engl. J. Med. 288:700–703.PubMedCrossRefGoogle Scholar
  131. 131.
    Dykes, J. R. W., Saxton, C., and Taylor, S. H., 1969, Insulin secretion in cardiogenic shock, Br. Med. J. 2:490.PubMedCrossRefGoogle Scholar
  132. 132.
    Taylor, S. H., Saxton, C., Majid, P. A., Dykes, J. R. W., Ghosh, P., and Stoker, J. B., 1969, Insulin secretion following myocardial infarction; with particular respect to the pathogenesis of cardiogenic shock, Lancet 2:1373–1378.PubMedCrossRefGoogle Scholar
  133. 133.
    Christensen, N. J., and Videbaek, J., 1974, Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction, J. Clin. Invest. 54:278–286.PubMedCrossRefGoogle Scholar
  134. 134.
    Willerson, J. T., Hutcheson, D. R., Leshin, S. J., Faloona, G. R., and Unger, R. H., 1974, Serum glucagon and insulin levels and their relationship to blood glucose values in patients with acute myocardial infarction and acute coronary insufficiency, Am. J. Med. 57:747–753.PubMedCrossRefGoogle Scholar
  135. 135.
    Bloom, S. R., Daniel, P. M., Johnston, D. I., Ogawa, O., and Pratt, O. E., 1973, Release of glucagon, induced by stress, Q.J. Exp. Physiol. 58:99–108.Google Scholar
  136. 136.
    Shah, T. H., Wonsfsurawat, N., Aran, P. P., Motto, G. S., and Bowser, E. N., 1977, A method for studying acute insulin secretion and glucose tolerance in unanesthetized and unrestrained rats; the effect of mild stress on carbohydrate metabolism, Diabetes 26:1–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Galbo, H., Hoist, J. J., and Christensen, N. J., 1975, Glucagon and plasma catecholamine responses to graded and prolonged exercise in man, J.Appl. Physiol. 38:70–76.PubMedGoogle Scholar
  138. 138.
    Luyckx, A. S., Dresse, A., Cession-Fossion, A., and Lefebvre, P. J., 1975, Catecholamines and exercise-induced glucagon and fatty acid mobilization in the rat, Am. J. Physiol. 229:376–383.PubMedGoogle Scholar
  139. 139.
    Luyckx, A. S., and Lefebvre, P. J., 1974, Mechanisms involved in the exercise-induced increase in glucagon secretion in rats, Diabetes 23:81–93.PubMedGoogle Scholar
  140. 140.
    Melander, A., Ericson, L. E., Ljunggren, J.-H., Norberg, K.-A., Persson, B., Sundler, F., Tibblin, S., and Westgren, U., 1974, Sympathetic innervation of the normal human thyroid, J.Clin. Endocrinol. Metab. 39:713–718.PubMedCrossRefGoogle Scholar
  141. 141.
    Melander, A., Ericson, L. E., Sundler, F., and Ingbar, S. H., 1974, Sympathetic innervation of the mouse thyroid and its significance in thyroid hormone secretion, Endocrinology 94:959–966.PubMedCrossRefGoogle Scholar
  142. 142.
    Tice, L. W., and Creveling, C. R., 1975, Electron microscopic identification of adrenergic nerve endings on thyroid epithelial cells, Endocrinology 97:1123–1129.PubMedCrossRefGoogle Scholar
  143. 143.
    Maayan, M. L., and Ingbar, S. H., 1970, Effects of epinephrine on iodine and intermediary metabolism in isolated thyroid cells, Endocrinology 87:588–595.PubMedCrossRefGoogle Scholar
  144. 144.
    Maayan, M. L., Shapiro, R., and Ingbar, S. H., 1973, Epinephrine precursors: Effects on the iodine and intermediary metabolism of isolated calf thyroid cells, Endocrinology 92:912–916.PubMedCrossRefGoogle Scholar
  145. 145.
    Marshall, N.J., von Borcke, S., and Malan, P. G., 1975, Studies on isoproterenol stimulation of adenyl cyclase in membrane preparations from the bovine thyroid, Endocrinology 96:1520–1524.PubMedCrossRefGoogle Scholar
  146. 146.
    Melander, A., Nilsson, E., and Sundler, F., 1972, Sympathetic activation of thyroid hormone secretion in mice, Endocrinology 90:194–199.PubMedCrossRefGoogle Scholar
  147. 147.
    Ericson, L. E., Melander, A., Owman, C., and Sundler, F., 1970, Endocytosis of thyroglobulin and release of thyroid hormone in mice by catecholamines and 5-hydroxytryptamine, Endocrinology 87:915–923.PubMedCrossRefGoogle Scholar
  148. 148.
    Melander, A., and Sundler, F., 1972, Interactions between catecholamines, 5-hydroxytryptamine and TSH on the secretion of thyroid hormone, Endocrinology 90:188–193.PubMedCrossRefGoogle Scholar
  149. 149.
    Melander, A., Ranklev, E., Sundler, F., and Westgren, U., 1975, Beta2-adrenergic stimulation of thyroid hormone secretion, Endocrinology 97:332–336.PubMedCrossRefGoogle Scholar
  150. 150.
    Coleoni, A. H., 1972, Effects of the administration of catecholamine-deplet-ing drugs on the thyroid function of the rat, Pharmacology 8:300–310.PubMedCrossRefGoogle Scholar
  151. 151.
    Hollands, B. C. S., and Vanov, S., 1965, Localization of catechol amines in visceral organs and ganglia of the rat, guinea-pig and rabbit, Br. J. Pharmacol. 25:307–316.Google Scholar
  152. 152.
    Jacobowitz, D., 1965, Histochemical studies of the autonomic innervation of the gut,J.Pharmacol. Exp. Ther. 149:358–364.PubMedGoogle Scholar
  153. 153.
    Hayes, J. R., Ardill, J., Kennedy, T. L., Shanks, R. G., and Buchanan, K. D., 1972, Stimulation of gastrin release by catecholamines, Lancet 1:819–821.PubMedCrossRefGoogle Scholar
  154. 154.
    Stadil, F., and Rehfeld, J. F., 1973, Release of gastrin by epinephrine in man, Gastroenterology 65:210–215.PubMedGoogle Scholar
  155. 155.
    Christensen, K. C., and Stadil, F., 1976, Effect of epinephrine and norepinephrine on gastrin release and gastric secretion of acid in man, Scand. J. Gastroenterol. Suppl. 37:87–92.PubMedGoogle Scholar
  156. 156.
    Brandsborg, O., Brandsborg, M., and Christensen, N.J., 1976, The role of the beta-adrenergic receptor in the secretion of gastrin: Studies in normal subjects and in patients with duodenal ulcers, Eur. J. Clin. Invest. 6:395–401.PubMedCrossRefGoogle Scholar
  157. 157.
    Kronborg, O., 1975, The effect of beta-adrenergic blockade upon basal and pentagastrin-stimulated gastric acid secretion and upon gastrin response to food, Scand. J. Gastroenterol. 10:757–762.PubMedGoogle Scholar
  158. 158.
    Brandsborg, O., Brandsborg, M., and Christensen, N. J., 1975, Plasma adrenaline and serum gastrin: Studies in insulin-induced hypoglycemia and after adrenaline infusions, Gastroenterology 68:455–460.PubMedGoogle Scholar
  159. 159.
    Christensen, K. C., and Stadil, F., 1976, On the beta-adrenergic contribution to the gastric acid and gastrin responses to hypoglycaemia in man, Scand.J.Gastroenterol. Suppl. 37:81–86.PubMedGoogle Scholar
  160. 160.
    Kronborg, O., Pedersen, T., Stadil, F., and Rehfeld, J. F., 1974, The effect of beta-adrenergic blockade upon gastric acid secretion and gastrin secretion during hypoglycaemia before and after vagotomy, Scand, J. Gastroenterol 9:173–176.Google Scholar
  161. 161.
    Kaess, H., Utz, G., Techentrup, U., Hauck, A. M., and Dörner, M., 1975, The effect of propranolol and phentolamine on serum gastrin concentration in response to respiratory acidosis in normal man, Eur. J. Clin. Invest. 5:401–408.PubMedGoogle Scholar
  162. 162.
    Stadil, F., and Rehfeld, J. F., 1974, Effect of insulin injection on serum gastrin concentrations in duodenal ulcer patients and normal subjects, Scand. J. Gastroenterol. 9:143–147.PubMedGoogle Scholar
  163. 163.
    Foster, G. V., 1968, Calcitonin (thyrocalcitonin), N. Engl. J. Med. 279:349–360.PubMedCrossRefGoogle Scholar
  164. 164.
    Hirsch, P. F., and Munson, P. L., 1969, Thyrocalcitonin, Physiol. Rev. 49:548–622.PubMedGoogle Scholar
  165. 165.
    Queener, S. F., and Bell, N. H., 1975, Calcitonin: A general survey, Metabolism 24:555–567.PubMedCrossRefGoogle Scholar
  166. 166.
    Avioli, L. V., Shieber, W., and Kipnis, D. M., 1971, Role of glucagon and adrenergic receptors in thyrocalcitonin release in the dog, Endocrinology 88:1337–1340.PubMedCrossRefGoogle Scholar
  167. 167.
    Bates, R. F. L., Phillippo, M., and Lawrence, C. B., 1970, The effect of propranolol on calcitonin secretion,J.Endocrinol. 48:viii–ix.Google Scholar
  168. 168.
    Bates, R. F. L., Bruce, J. B., and Care, A. D., 1970, The effect of catecholamines on calcitonin secretion in the pig, J.Endocrinol. 46:xi–xii.PubMedGoogle Scholar
  169. 169.
    Care, A. D., Bates, R. F. L., and Gitelman, H. J., 1970, A possible role for the adenyl cyclase system in calcitonin release, J.Endocrinol. 48:1–15.PubMedCrossRefGoogle Scholar
  170. 170.
    Bell, N. H., and Queener, S., 1974, Stimulation of calcitonin synthesis and release in vitro by calcium and dibutyryl cyclic AMP, Nature (London) 248:343–344.CrossRefGoogle Scholar
  171. 171.
    Bell, N. H., 1970, Effects of glucagon, dibutyryl cyclic 3′,5′-adenosine monophosphate, and theophylline on calcitonin secretion in vitro, J.Clin. Invest. 49:1368–1373.PubMedCrossRefGoogle Scholar
  172. 172.
    Phillippo, M., Lawrence, C. B., Bruce, J. B., and Donaldson, D. R., 1972, Feeding and calcitonin secretion in sheep,J.Endocrinol. 53:419–424.PubMedCrossRefGoogle Scholar
  173. 173.
    Milhaud, G., Perault-Staub, A.-M., and Staub, J.-F., 1972, Diurnal variation of plasma calcium and calcitonin function in the rat, J. Physiol. (London) 222:559–567.Google Scholar
  174. 174.
    Swaminathan, R., Bates, R. F. L., Bloom, S. R., Ganguli, P. C., and Care, A. D., 1973, The relationship between food, gastro-intestinal hormones and calcitonin secretion, J. Endocrinol. 59:217–230.PubMedCrossRefGoogle Scholar
  175. 175.
    Altenähr, E., 1971, Electron microscopical evidence for innervation of chief cells in human parathyroid gland, Experientia 27:1077.PubMedCrossRefGoogle Scholar
  176. 176.
    Norberg, K.-A., Persson, B., and Granberg, P.-O., 1975, Adrenergic innervation of the human parathyroid glands, Acta Chir, Scand. 141:319–322.Google Scholar
  177. 177.
    Kukreja, S. C., Banerjee, P., Ayala, G., Bowser, E. N., Hargis, G. K., Henderson, W. J., and Williams, G. A., 1976, Selective ßt receptor mediation of parathyroid hormone secretion, Clin. Res. 24:363A.Google Scholar
  178. 178.
    Williams, G. A., Hards, G. K., Bowser, E. N., Henderson, W. L., and Martinez, N.J., 1973, Evidence for a role of adenosine 3′,5′-monophosphate in parathyroid hormone release, Endocrinology 92:687–691.PubMedCrossRefGoogle Scholar
  179. 179.
    Kukreja, S. C., Johnson, P. A., Ayala, G., Banerjee, P., Bowser, E. N., Hargis, G. K., and Williams, G. A., 1976, Role of calcium and beta-adrenergic system in control of parathyroid hormone secretion, Proc. Soc. Exp. Biol. Med. 151:326–328.PubMedGoogle Scholar
  180. 180.
    Kureja, S. C., Hargis, G. K., Bowser, E. N., Henderson, W. J., Fisherman, E. W., and Williams, G. A., 1975, Role of adrenergic stimuli in parathyroid hormone secretion in man,J.Clin. Endocrinol. Metab. 40:478–481.CrossRefGoogle Scholar
  181. 181.
    Fischer, J. A., Blum, J. W., and Binswanger, U., 1973, Acute parathyroid hormone response to epinephrine in vivo, J. Clin. Invest. 52:2434–2440.PubMedCrossRefGoogle Scholar
  182. 182.
    Shah, J. H., Motto, G. S., Kukreja, S. C., Hargis, G. K., and Williams, G. A., 1975, Stimulation of the secretion of parathyroid hormone during hypoglycemic stress,J.Clin. Endocrinol. Metab. 41:692–696.PubMedCrossRefGoogle Scholar
  183. 183.
    Morey, E. R., and Kenny, A. D., 1964, Effects of catecholamines on urinary calcium and phosphorus in intact and parathyroidectomized rats, Endocrinology 75:78–85.PubMedCrossRefGoogle Scholar
  184. 184.
    Swinton, N. W., Clerkin, E. R., and Flint, L. D., 1972, Hypercalcemia and familial pheochromocytoma; correction after adrenalectomy, Ann. Intern. Med. 76:455–457.PubMedGoogle Scholar
  185. 185.
    Finlayson, J. F., and Casey, J. H., 1975, Hypercalcaemia and multiple pheochromocytomas, Ann. Intern. Med. 82:810–811.PubMedGoogle Scholar
  186. 186.
    Miller, S. S., Sizemore, G. W., Sheps, S. G., and Tyce, G. M., 1975, Parathyroid function in patients with pheochromocytoma, Ann. Intern. Med. 82:372–375.PubMedGoogle Scholar
  187. 187.
    Fisher, J. W., 1972, Erythropoietin: Pharmacology, biogenesis and control of production, Pharmacol. Rev. 24:459–508.PubMedGoogle Scholar
  188. 188.
    Fisher, J. W., Samuels, A., and Langston, J., 1968, Effects of angiotensin, norepinephrine and renal artery constriction on erythropoietin production, Ann. N. Y. Acad. Sci. 149:308–317.PubMedCrossRefGoogle Scholar
  189. 189.
    Bradley, J. E., Young, J. D., Jr., and Lentz, G., 1961, Polycythemia secondary to pheochromocytoma,J.Urol. 86:1–6.Google Scholar
  190. 190.
    Waldmann, T. A., and Bradley, J. E., 1961, Polycythemia secondary to a pheochromocytoma with production of an erythropoiesis stimulating factor by the tumor, Proc. Soc. Exp. Biol. Med. 108:425–427.PubMedGoogle Scholar
  191. 191.
    Takaku, F., Hirashima, K., and Okinaka, S., 1962, Studies on the mechanism of erythropoietin production. II. Effect of bilateral section of the splanchnic nerves, J.Lab. Clin. Med. 59:821–825.Google Scholar
  192. 192.
    Halvorsen, S., 1964, Effects of hypothalamic lesions on the erythropoietic response to hypoxia in rabbits, Acta Physiol. Scand. 61:1–19.PubMedCrossRefGoogle Scholar
  193. 193.
    Fink, G. D., Paulo, L. G., and Fisher, J. W., 1975, Effects of beta adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia, J.Pharmacol. Exp. Ther. 193:176–181.Google Scholar
  194. 194.
    DeQuattro, V., and Chan, S., 1972, Raised plasma-catecholamines in some patients with primary hypertension, Lancet 1:806–809.PubMedCrossRefGoogle Scholar
  195. 195.
    Louis, W. J., Doyle, A. E., and Anavekar, S., 1973, Plasma norepinephrine levels in essential hypertension, N. Engl. J. Med. 288:599–601.PubMedCrossRefGoogle Scholar
  196. 196.
    Louis, W. J., Doyle, A. E., Anavekar, S. N. Johnston, C. I., Geffen, L. B., and Rush, R., 1974, Plasma catecholamine, dopamine-beta-hydroxylase, and renin levels in essential hypertension, Circ. Res. (Suppl. I) 34–35:I–57–I-63.Google Scholar
  197. 197.
    Doyle, A. E., 1975, Sympathetic nervous activity in hypertension, Hosp. Pract. 10(11):87–95.Google Scholar
  198. 198.
    Peart, W. S., 1966, Catecholamines and hypertension, Pharmacol. Rev. 18:667–672.PubMedGoogle Scholar
  199. 199.
    DeQuattro, V., and Sjoerdsma, A., 1968, Catecholamine turnover in normo-tensive and hypertensive man: Effects of antiadrenergic drugs,J.Clin. Invest. 47:2359–2373.CrossRefGoogle Scholar
  200. 200.
    Chalmers, J. P., 1975, Brain amines and models of experimental hypertension, Circ. Res. 36:469–480.PubMedGoogle Scholar
  201. 201.
    Yamori, Y., 1976, Neurogenic mechanisms of spontaneous hypertension, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 65–76, Grune & Stratton, New York.Google Scholar
  202. 202.
    Judy, W. V., Watanabe, A. M., Henry, D. P., Besch, H. R., Murphy, W. R., and Hockel, G. M., 1976, Sympathetic nerve activity; role in regulation of blood pressure in the spontaneously hypertensive rat, Circ. Res. (Suppl. II) 38:II–21–II–29.Google Scholar
  203. 203.
    Louis, W. J., Krauss, K. R., Kopin, I. J., and Sjoerdsma, A., 1970, Catecholamine metabolism in hypertensive rats, Circ. Res. 27:589–594.PubMedGoogle Scholar
  204. 204.
    Nagatsu, T., Kato, T., Numata (Sudo), Y., Ikuta, K., Umezawa, H., Matsuzaki, M., and Takeuchi, T., 1974, Serum dopamine β-hydroxylase activity in developing hypertensive rats, Nature (London) 251:630–631.Google Scholar
  205. 205.
    Saavedra, J. M., Grobecker, H., and Axelrod, J., 1976, Adrenaline-forming enzyme in brainstem: Elevation in genetic and experimental hypertension, Science 191:483–484.PubMedCrossRefGoogle Scholar
  206. 206.
    Ebihara, A., and Martz, B. L., 1970, Comparative effects of currently available antihypertensive agents on spontaneously and renal hypertensive rats, Am. J. Med. Sci. 259:257–261.PubMedCrossRefGoogle Scholar
  207. 207.
    Shiono, K., and Sokabe, H., 1976, Renin-angiotensin system in spontaneously hypertensive rats, Am. J. Physiol. 231:1295–1299.PubMedGoogle Scholar
  208. 208.
    Buńag, R. D., Riley, E., and Montello, M., 1976, Sustained pressor responsiveness to prolonged hypothalamic stimulation in awake rats, Am. J. Physiol. 231:1708–1715.PubMedGoogle Scholar
  209. 209.
    Brown, A. M., Saum, W. R., and Tuley, F. H., 1976, A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats, Circ. Res. 39:488–496.PubMedGoogle Scholar
  210. 210.
    Spector, S., Fleisch, J. H., Maling, H. M., and Brodie, B. B., 1969, Vascular smooth muscle reactivity in normotensive and hypertensive rats, Science 166:1300–1301.PubMedCrossRefGoogle Scholar
  211. 211.
    Hermsmeyer, K., 1976, Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension, Circ. Res. 38:362–367.PubMedGoogle Scholar
  212. 212.
    Hermsmeyer, K., 1976, Cellular basis for increased sensitivity of vascular smooth muscle in spontaneously hypertensive rats, Circ. Res. (Suppl. II) 38:II–53–II–57.Google Scholar
  213. 213.
    McRitchie, R. J., Vatner, S. F., Heyndrick, G. R., and Braunwald, E., 1976, The role of arterial baroreceptors in the regulation of arterial pressure in conscious dogs, Circ. Res. 39:666–670.PubMedGoogle Scholar
  214. 214.
    DeQuattro, V., Nagatsu, T., Maronde, R., and Alexander, N., 1969, Catecholamine synthesis in rabbits with neurogenic hypertension, Circ. Res. 24:545–555.Google Scholar
  215. 215.
    Ripley, R. C., Hollifield, J. W., and Nies, A. S., 1977, Sustained hypertension after section of the glossopharyngeal nerve, Am. J. Med. 62:297–302.PubMedCrossRefGoogle Scholar
  216. 216.
    Doba, N., and Reis, D. J., 1973, Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat, Circ. Res. 32:584–593.PubMedGoogle Scholar
  217. 217.
    Doba, N., and Reis, D. J., 1974, Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in rat, Circ. Res. 34:293–301.PubMedGoogle Scholar
  218. 218.
    Nathan, M. A., and Reis, D. J., 1975, Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of the anterior hypothalamus in the rat, Circ. Res. 37:226–235.PubMedGoogle Scholar
  219. 219.
    de Champlain, J., Mueller, R. A., and Axelrod, J., 1969, Turnover and synthesis of norepinephrine in experimental hypertension in rats, Circ. Res. 25:285–291.PubMedGoogle Scholar
  220. 220.
    de Champlain, J., Krakoff, L. R., and Axelrod, J., 1968, Relationship between sodium intake and norepinephrine storage during the development of experimental hypertension, Circ. Res. 23:479–491.Google Scholar
  221. 221.
    Krakoff, L. R., de Champlain, J., and Axelrod, J., 1967, Abnormal storage of norepinephrine in experimental hypertension in the rat, Circ. Res. 21:583–591.PubMedGoogle Scholar
  222. 222.
    de Champlain, J., Farley, L., Cousineau, D., and van Ameringen, M.-R., 1976, Circulating catecholamine levels in human and experimental hypertension, Circ. Res. 38:109–114.PubMedGoogle Scholar
  223. 223.
    Reid, J. L., Zivin, J. A., and Kopin, I. J., 1975, Central and peripheral adrenergic mechanisms in the development of deoxycorticosterone-sali hypertension in rats, Circ. Res. 37:569–579.PubMedGoogle Scholar
  224. 224.
    de Champlain, J., and van Ameringen, M. R., 1972,.Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats, Circ. Res. 31:617–628.PubMedGoogle Scholar
  225. 225.
    Lewis, P. J., Dargie, H. J., and Dollery, C. T., 1975, Role of saline consumption in the prevention of deoxycorticosterone hypertension in rats by central 6-hydroxydopamine, Clin. Sci. Mol. Med. 48:327–330.PubMedGoogle Scholar
  226. 226.
    Grewal, R. S., and Kaul, C. L., 1971, Importance of the sympathetic nervous system in the development of renal hypertension in the rat, Br. J. Pharmacol. 42:497–504.PubMedGoogle Scholar
  227. 227.
    Lewis, P. J., Reid, J. L., Chalmers, J. P., and Dollery, C. T., 1973, Importance of central catecholaminergic neurones in the development and maintenance of renal hypertension, Clin. Sci. Mol. Med. 45(Suppl. 1): 115s–118s.Google Scholar
  228. 228.
    Douglas, J. R., Jr., Johnson, E. M., Jr., Heist, J. F., Marshall, G. R., and Needle man, P., 1976, Is the peripheral sympatho-adrenal nervous system necessary for renal hypertension?, J.Pharmacol. Exp. Ther. 196:35–43.PubMedGoogle Scholar
  229. 229.
    Goldstein, B. M., and Brody, M. J., 1976, Pressor response to intravertebral angiotensin II: Abolition by central catecholamine depletion, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim. eds.), pp. 183–189, Grune & Stratton, New York.Google Scholar
  230. 230.
    Ferrario, C. M., Gildenberg, P. L., and McCubbin, J. W., 1972, Cardiovascular effects of angiotensin mediated by the central nervous system, Circ. Res. 30:257–262.PubMedGoogle Scholar
  231. 231.
    Severs, W. B., and Daniels-Severs, A. E., 1973, Effects of angiotensin on the central nervous system, Pharmacol. Rev. 25:415–449.PubMedGoogle Scholar
  232. 232.
    Brunjes, S., 1964, Catecholamine metabolism in essential hypertension, N. Engl. J. Med. 271:120–124.PubMedCrossRefGoogle Scholar
  233. 233.
    Berglund, G., Tibblin, G., and Aureli, M., 1975, Urinary noradrenaline excretion and renal function in normal and hypertensive 50-year-old men, Clin. Sci. Mol. Med. 49:485–493.PubMedGoogle Scholar
  234. 234.
    Nestel, P. J., and Esler, M. D., 1970, Patterns of catecholamine excretion in urine in hypertension, Circ. Res. (Suppl. II) 26–27:II–75–II–81.Google Scholar
  235. 235.
    Weidmann, P., Hirsch, D., Beretta-Piccoli, C., Reubi, F. C., and Ziegler, W. H., 1977, Interrelations among blood pressure, blood volume, plasma renin activity and urinary catecholamines in benign essential hypertension, Am. J. Med. 62:209–218.PubMedCrossRefGoogle Scholar
  236. 236.
    Cuche, J.-L., Kuchel, O., Barbeau, A., and Genest, J., 1975, Urinary homo-vanillic acid, dopamine and norepinephrine excretion in patients with essential hypertension, Can. Med. Assoc. J. 112:443–446.PubMedGoogle Scholar
  237. 237.
    Landsberg, L., 1971, L-3,4-Dihydroxyphenylalanine-induced release of norepinephrine from the rat heart, Blochem. Pharmacol. 20:3452–3457.Google Scholar
  238. 238.
    Landsberg, L., and Bruno, S. J., 1973, L-3,4-Dihydroxyphenylalanine, dopamine and norepinephrine storage in the rat heart after L-dopa—further evidence for norepinephrine release, Biochem. Pharmacol. 22:417–425.CrossRefGoogle Scholar
  239. 239.
    Gitlow, S. E., Mendlowitz, M., Bertani, L. M., Wilk, E. K., and Glabman, S., 1969, Tritium excretion of normotensive and hypertensive subjects after administration of tritiated norepinephrine, J.Lab. Clin. Med. 73:129–134.Google Scholar
  240. 240.
    Landsberg, L., de Champlain, J., and Axelrod, J., 1969, Increased biosynthesis of cardiac norepinephrine after hypophysectomy, J.Pharmacol. Exp. Ther. 165:102–107.PubMedGoogle Scholar
  241. 241.
    Naftchi, N. E., Wooten, G. F., Lowman, E. W., and Axelrod, J., 1973, Increased serum dopamine-β-hydroxylase activity during neurogenic hypertension in quadriplegia, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1143–1147, Pergamon Press, New York.Google Scholar
  242. 242.
    Engelman, K., Portnoy, B., and Sjoerdsma, A., 1970, Plasma catecholamine concentrations in patients with hypertension, Circ. Res. (Suppl. I) 26–27:I–141–I–145.Google Scholar
  243. 243.
    DeQuattro, V., Miura, Y., Lurvey, A., Cosgrove, M., and Mendez, R., 1975, Increased plasma catecholamine concentrations and vas deferens norepinephrine biosynthesis in men with elevated blood pressure, Circ. Res. 36:118–126.Google Scholar
  244. 244.
    Lake, C. R., Ziegler, M. G., Coleman, M. D., and Kopin, L. J., 1977, Age-adjusted plasma norepinephrine levels are similar in normotensive and hypertensive subjects, N. Engl. J. Med. 296:208–209.PubMedCrossRefGoogle Scholar
  245. 245.
    Christensen, M. S., and Christensen, N. J., 1972, Plasma catecholamines in hypertension, Scand. J. Clin. Lab. Invest. 30:169–173.PubMedCrossRefGoogle Scholar
  246. 246.
    Chodakowska, J., Nazar, K., Wocial, B., Jarecki, M., and Skórka, B., 1975, Plasma catecholamines and renin activity in response to exercise in patients with essential hypertension, Clin. Sci. Mol. Med. 49:511–514.PubMedGoogle Scholar
  247. 247.
    Mathias, C. J., Christensen, N.J., Corbett, J. L., Frankel, H. L., and Spalding, J. M. K., 1976, Plasma catecholamines during paroxysmal neurogenic hypertension in quadriplegic man, Circ. Res. 39:204–208.PubMedGoogle Scholar
  248. 248.
    Schanberg, S. M., Stone, R. A., Kirshner, N., Gunnells, J. C., and Robinson, R. R., 1974, Plasma dopamine β-hydroxylase: A possible aid in the study and evaluation of hypertension, Science 183:523–525.PubMedCrossRefGoogle Scholar
  249. 249.
    Schanberg, S. M., and Kirshner, N., 1976, Serum dopamine-β-hydroxylase as an indicator of sympathetic activity and primary hypertension, Biochem. Pharmacol. 25:617–621.PubMedCrossRefGoogle Scholar
  250. 250.
    Stone, R. A., Gunnells, J. C., Robinson, R. R., Schanberg, S. M., and Kirshner, N., 1974, Dopamine-beta-hydroxylase in primary and secondary hypertension, Cire. Res. (Suppl. I) 34–35:I–47–I–56.Google Scholar
  251. 251.
    Rockson, S. G., Stone, R. A., Gunnells, J. C., Schanberg, S. M., Kirshner, N., and Robinson, R. R., 1975, Plasma dopamine-β-hydroxylase activity in oral contraceptive hypertension, Circulation 51:916–923.PubMedGoogle Scholar
  252. 252.
    Horwitz, D., Alexander, R. W., Lovenberg, W., and Keiser, H. R., 1973, Human serum dopamine-β-hydroxylase; relationship to hypertension and sympathetic activity, Circ. Res. 32:594–599.PubMedGoogle Scholar
  253. 253.
    Freedman, L. S., Roffman, M., and Goldstein, M., 1973, Changes in human dopamine-β-hydroxylase activity in various physiological and pathological states, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1109–1114, Pergamon Press, New York.Google Scholar
  254. 254.
    Alexandre, J. M., London, G. M., Chevillard, C., Lemaire, P., Safar, M. E., and Weiss, Y., 1975, The meaning of dopamine β-hydroxylase in essential hypertension, Clin. Sci. Mol. Med. 49:573–579.PubMedGoogle Scholar
  255. 255.
    Geffen, L. B., Rush, R. A., Louis, W. J., and Doyle, A. E., 1973, Plasma dopamine β-hydroxylase and noradrenaline amounts in essential hypertension, Clin. Sci. 44:617–620.PubMedGoogle Scholar
  256. 256.
    Laragh, J. H., 1973, Vasoconstriction-volume analysis for understanding and treating hypertension: The use of renin and aldosterone profiles, Am. J. Med. 55:261–274.PubMedCrossRefGoogle Scholar
  257. 257.
    Hollenberg, N. K., Epstein, M., Basch, R. I., Couch, N. P., Hickler, R. B., and Merrill, J. P., 1969, Renin secretion in essential and accelerated hypertension, Am. J. Med. 47:855–859.PubMedCrossRefGoogle Scholar
  258. 258.
    Esler, M. D., Julius, S., Randall, O. S., Ellis, C. N., and Kashima, T., 1975, Relation of renin status to neurogenic vascular resistance in borderline hypertension, Am. J. Cardiol. 36:708–715.PubMedCrossRefGoogle Scholar
  259. 259.
    Esler, M., Julius, S., Zweifler, A., Randall, O., Harburg, E., Gardiner, H., and DeQuattro, V., 1977, Mild high-renin essential hypertension: Neurogenic human hypertension?, N. Engl. J. Med. 296:405–411.PubMedCrossRefGoogle Scholar
  260. 260.
    Fröhlich, E. D., 1971, Beta adrenergic blockade in the circulatory regulation of hyperkinetic states, Am. J. Cardiol. 27:195–199.PubMedCrossRefGoogle Scholar
  261. 261.
    Esler, M., Zweifler, A., Randall, O., Julius, S., Bennett, J., Rydelek, P., Cohen, E., and DeQuattro, V., 1976, Suppression of sympathetic nervous function in low-renin essential hypertension, Lancet 2:115–118.PubMedCrossRefGoogle Scholar
  262. 262.
    Julius, S., and Esler, M., 1975, Autonomic nervous cardiovascular regulation in borderline hypertension, Am. J. Cardiol. 36:685–696.PubMedCrossRefGoogle Scholar
  263. 263.
    Fröhlich, E. D., 1977, Cardiac participation in hypertension, Cardiovasc. Med. 2:109–111.Google Scholar
  264. 264.
    Körner, P. L., and Fletcher, P. J., 1977, Role of the heart in causing and maintaining hypertension, Cardiovasc. Med. 2:139–155.Google Scholar
  265. 265.
    Pfeffer, M. A., Fröhlich, E. D., Pfeffer, J. M., and Weiss, A. K., 1974, Pathophysiological implications of the increased cardiac output of young spontaneously hypertensive rats, Circ. Res. (Suppl. I) 34–35:I–235–I–244.Google Scholar
  266. 266.
    Safar, M. E., Weiss, Y. A., London, G. M., Frąckowiak, R. F., and Milliez, P. L., 1974, Cardiopulmonary blood volume in borderline hypertension, Clin. Sci. Mol. Med. 47:153–164.PubMedGoogle Scholar
  267. 267.
    Tarazi, R. C., Ibrahim, M. M., Dustan, H. P., and Ferrario, C. M., 1974, Cardiac factors in hypertension, Circ. Res. (Suppl. I) 34–35:I–213–I–221.Google Scholar
  268. 268.
    Simon, G., 1976, Altered venous function in hypertensive rats, Circ. Res. 38:412–418.PubMedGoogle Scholar
  269. 269.
    Hollenberg, N. K., and Adams, D. F., 1976, The renal circulation in hypertensive disease, Am. J. Med. 60:773–784.PubMedCrossRefGoogle Scholar
  270. 270.
    Laverty, R., 1973, The mechanisms of action of some antihypertensive drugs, Br. Med. Bull. 29:152–157.PubMedGoogle Scholar
  271. 271.
    Haeusler, G., 1973, Central adrenergic neurons and the control of blood pressure, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 879–881, Pergamon Press, New York.Google Scholar
  272. 272.
    Kobinger, W., 1976, Central modulation of cardiovascular activity by clon-dine and other adrenergic substances, in: Regulation of Blood Pressure by the Central Nervous System (G. Onesti, M. Fernandes, and K. E. Kim, eds.), pp. 283–292, Grune & Stratton, New York.Google Scholar
  273. 273.
    van Zwieten, P. A., 1976, The centrally mediated action of a-methyldopa, in: Regulation of Blood Pressure by the Central Nervous System (G. Önesti, M. Fernandes, and K. E. Kim, eds.), pp. 293–301, Grune & Stratton, New York.Google Scholar
  274. 274.
    Laubie, M., Delbarre, B., Bogaievsky, D., Bogaievsky, Y., Tsoucaris-Kupfer, D., Senon, D., Schmitt, H., and Schmitt, H., 1976, Pharmacological evidence for a central α-sympathomimetic mechanism controlling blood pressure and heart rate, Circ. Res. (Suppl. II) 38: II–35–II–41.Google Scholar
  275. 275.
    Myers, M. G., Lewis, P. J., Reid, J. L., and DoUery, C. T., 1975, Brain concentration of propranolol in relation to hypotensive effect in the rabbit with observations on brain propranolol levels in man, J.Pharmacol. Exp. Ther. 192:327–335.Google Scholar
  276. 276.
    Garvey, H. L., and Ram, N., 1975, Comparative antihypertensive effects and tissue distribution of beta adrenergic blocking drugs, J.Pharmacol. Exp. Ther. 194:220–233.PubMedGoogle Scholar
  277. 277.
    Lewis, P. J., and Haeusler, G., 1975, Reduction in sympathetic nervous activity as a mechanism for hypotensive effect of propranolol, Nature (London 256:440.CrossRefGoogle Scholar
  278. 278.
    Lorimer, A. R., Dunn, F. G., Jones, J. V., and Lawrie, T. D. V., 1976, Beta-adrenoreceptor blockade in hypertension, Am. J. Med. 60:877–885.PubMedCrossRefGoogle Scholar
  279. 279.
    Bühler, F. R., Laragh, J. H., Baer, L., Vaughan, E. D., Jr., and Brunner, H. R., 1972, Propranolol inhibition of renin secretion; a specific approach to diagnosis and treatment of renin-dependent hypertensive diseases, N. Engl. J. Med. 287:1209–1214.PubMedCrossRefGoogle Scholar
  280. 280.
    Bühler, F. R., Laragh, J. H., Vaughan, E. D., Jr., Brunner, H. R. Gavras, H., and Baer, L., 1973, Antihypertensive action of propranolol; specific anti-renin responses in high and normal renin forms of essential, renal, renovascular and malignant hypertension, Am. J. Cardiol. 32:511–522.PubMedCrossRefGoogle Scholar
  281. 281.
    Laragh, J. H., 1976, Modern system for treating high blood pressure based on renin profiling and vasoconstriction-volume analysis; A primary role for beta blocking drugs such as propranolol, Am. J. Med. 61:797–810.PubMedCrossRefGoogle Scholar
  282. 282.
    Karlberg, B. E., and Tolagen, K., 1976, Different antihypertensive effect of beta-blocking drugs in low and normal-high renin hypertension, Am. J. Med. 60:891–896.CrossRefGoogle Scholar
  283. 283.
    Menard, J., Bertagna, X., N’Guyen, P. T., Degoulet, P., and Corvol, P., 1976, Rapid identification of patients with essential hypertension sensitive to ace-butolol (a new cardio selective beta-blocker), Am. J. Med. 60:886–890.PubMedCrossRefGoogle Scholar
  284. 284.
    Stumpe, K. O., Kolloch, R., Vetter, H., Gramann, W., Krück, F., Ressel, C., and Higuchi, M., 1976, Acute and long-term studies of the mechanisms of action of beta-blocking drugs in lowering blood pressure, Am. J. Med. 60:853–865.PubMedCrossRefGoogle Scholar
  285. 285.
    Lewis, P., 1976, The essential action of propranolol in hypertension, Am. J. Med. 60:837–852.PubMedCrossRefGoogle Scholar
  286. 286.
    Holland, O. B., and Kaplan, N. M., 1976, Propranolol in the treatment of hypertension, N. Engl. J. Med. 294:930–936.PubMedCrossRefGoogle Scholar
  287. 287.
    Bravo, E. L., Tarazi, R. C., and Dustan, H. P., 1975, β-Adrenergic blockade in diuretic-treated patients with essential hypertension, N. Engl. J. Med. 292:66–70.PubMedCrossRefGoogle Scholar
  288. 288.
    Woods, J. W., Pittman, A. W., Pulliam, C. C., Werk, E. E., Jr., Waider, W., and Allen, C. A., 1976, Renin profiling in hypertension and its use in treatment with propranolol and chlorthalidone, N. Engl. J. Med. 294:1137–1143.PubMedCrossRefGoogle Scholar
  289. 289.
    Hollifield, J. W., Sherman, K., Zwagg, R. V., and Shand, D. G., 1976, Proposed mechanisms of propranolol’s antihypertensive effect in essential hypertension, N. Engl. J. Med. 295:68–73.PubMedCrossRefGoogle Scholar
  290. 290.
    Mookherjee, S., Eich, R. H., Obeid, A. L., and Smulyan, H., 1977, Hemodynamic and plasma renin effects of propranolol in essential hypertension, Arch. Intern. Med. 137:290–295.PubMedCrossRefGoogle Scholar
  291. 291.
    Weber, M. A., Lopez-Ovejero, J. A., Drayer, J. I., Case, D. B., and Laragh, J. H., 1977, Renin reactivity as a determinant of responsiveness to antihypertensive treatment, Arch. Intern. Med. 137:284–289.PubMedCrossRefGoogle Scholar
  292. 292.
    Atterhög, J.-H., Dunér, H., and Pernow, B., 1976, Experience with pindolol, a betareceptor blocker, in the treatment of hypertension, Am. J. Med. 60:872–876.PubMedCrossRefGoogle Scholar
  293. 293.
    Gutmann, M. C., and Benson, H., 1971, Interaction of environmental factors and systemic arterial blood pressure: A reveiw, Medicine 50:543–553.PubMedCrossRefGoogle Scholar
  294. 294.
    Benson, H., Rosner, B. A., Marzetta, B. R., and Klemchuk, H. M., 1974, Decreased blood pressure in pharmacologically treated hypertensive patients who regularly elicited the relaxation response, Lancet 1:289–291.PubMedCrossRefGoogle Scholar
  295. 295.
    Benson, H., Rosner, B. A., Marzetta, B. R., and Klemchuk, H. P., 1974, Decreased blood pressure in borderline hypertensive subjects who practiced meditation,J.Chronic Dis. 27:163–169.PubMedCrossRefGoogle Scholar
  296. 296.
    Editorial, 1975, Lancet 1:1230–1231.Google Scholar
  297. 297.
    Stone, R. A., and De Leo, J., 1976, Psychotherapeutic control of hypertension, N. Engl. J. Med. 294:80–84.PubMedCrossRefGoogle Scholar
  298. 298.
    Bevan, R. D., 1975, Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery, Circ. Res. 37:14–19.PubMedGoogle Scholar
  299. 299.
    Bevan, J. A., Bevan, R. D., Chang, P. C., Pegram, B. L., Purdy, R. E., and Su, C., 1975, Analysis of changes in reactivity of rabbit arteries and veins two weeks after induction of hypertension by coarctation of the abdominal aorta, Circ. Res. 37:183–190.PubMedGoogle Scholar
  300. 300.
    Lee, T. C., Coffey, R. J., Mackin, J., Cobb, M., Routon, J., and Canary, J. J., 1973, The use of propranolol in the surgical treatment of thyrotoxic patients, Ann. Surg. 177:643–647.PubMedGoogle Scholar
  301. 301.
    Michie, W., Hamer-Hodges, D. W., Pegg, C. A. S., Orr, F. G. G., and Bewsher, P. D., 1974, Beta-blockade and partial thyroidectomy for thyrotoxicosis, Lancet 1:1009–1011.PubMedCrossRefGoogle Scholar
  302. 302.
    Toft, A. D., Irvine, W. J., Mcintosh, D., MacLeod, D. A. D., Seth, J., Cameron, E. H. D., and Lidgard, G. P., 1976, Propranolol in the treatment of thyrotoxicosis by subtotal thyroidectomy, J. Clin. Endocrinol. Metab. 43:1312–1316.PubMedCrossRefGoogle Scholar
  303. 303.
    Marshall, N.J., von Borcke, S., and Malan, P. G., 1975, Studies on inhibition of TSH stimulation of adenyl cyclase activity in thyroid plasma membrane preparations by propranolol, Endocrinology 96:1513–1519.PubMedCrossRefGoogle Scholar
  304. 304.
    Eriksson, M., Rubenfeld, S., Garber, A. J., and Kohler, P. O., 1977, Propranolol does not prevent thyroid storm, N. Engl. J. Med. 296:263–264.PubMedCrossRefGoogle Scholar
  305. 305.
    Williams, L. T., Lefkowitz, R. J., Watanabe, A. M., Hathaway, D. R., and Besch, H. R., Jr., 1977, Thyroid hormone regulation of -adrenergic receptor number, J.Biol Chem. 252:2787–2789.Google Scholar
  306. 306.
    Ciaraldi, T., and Marinetti, G. V., 1977, Thyroxine and propylthiouracil effects in vivo on alpha and beta adrenergic receptors in rat heart, Biochem. Biophys. Res. Commun. 74:984–991.PubMedCrossRefGoogle Scholar
  307. 307.
    Rastogi, R. B., and Singhal, R. L., 1976, Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain, J. Pharmacol. Exp. Ther. 198:609–618.PubMedGoogle Scholar
  308. 308.
    DeLellis, R. A., Wolfe, H. J., Gagel, R. F., Feldman, Z. T., Miller, H. H., Gang, D. L., and Reichlin, S., 1976, Adrenal medullary hyperplasia; a morphometric analysis in patients with familial medullary thyroid carcinoma, A m. J. Pathol. 83:177–196.Google Scholar
  309. 309.
    Carney, J. A„ Sizemore, G. W., and Sheps, S. G., 1976, Adrenal medullary disease in multiple endocrine neoplasia, type 2; pheochromocytoma and its precursors, Am. J. Clin. Pathol. 66:279–290.PubMedGoogle Scholar
  310. 310.
    Horton, W. A., Wong, V., and Eldridge, R., 1976, Von Hippel-Lindau disease; clinical and pathological manifestations in nine families with 50 affected members, Arch. Intern. Med. 136:769–777.PubMedCrossRefGoogle Scholar
  311. 311.
    Carney, J. A., Go, V. L. W., Sizemore, G. W., and Hayles, A. B., 1976, Alimentary-tract ganglioneuromatosis, a major component of the syndrome of multiple endocrine neoplasia, type 2b, N. Engl. J. Med. 295:1287–1291.PubMedCrossRefGoogle Scholar
  312. 312.
    Dunn, F. G., De Carvalho, J. G. R., Kern, D. C., Higgins, J. R., and Fröhlich, E. D., 1976, Pheochromocytoma crisis induced by saralasin; relation of angiotensin analogue to catecholamine release, N. Engl. J. Med. 295:605–607.PubMedCrossRefGoogle Scholar
  313. 313.
    Vetter, H., Vetter, W., Warnholz, C., Bayer, J.-M., Käser, H., Vielhaber, K., and Krück, F., 1976, Renin and aldosterone secretion in pheochromocytoma; effect of chronic alpha-adrenergic receptor blockade, Am. J. Med. 60:866–871.PubMedCrossRefGoogle Scholar
  314. 314.
    Hansen, O. P., Hansen, M., Hansen, H. H., and Rose, B., 1976, Multiple endocrine adenomatosis of mixed type, Acta Med. Scand. 200:327–331.PubMedCrossRefGoogle Scholar
  315. 315.
    Lake, C. R., Ziegler, M. G., and Kopin, I. J., 1976, Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man, Life Sci. 18:1315–1326.PubMedCrossRefGoogle Scholar
  316. 316.
    Cryer, P. E., 1976, Isotope-derivative measurements of plasma norepinephrine and epinephrine in man, Diabetes 25:1071–1085.PubMedGoogle Scholar
  317. 317.
    Cryer, P. E., Haymond, M. W., Santiago, J. V., and Shah, S. D., 1976, Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events, N. Engl. J. Med. 295:573–577.PubMedCrossRefGoogle Scholar
  318. 318.
    Ziegler, M. G., Lake, C. R., and Kopin, I. J., 1976, Deficient sympathetic nervous response in familial dysautonomia, N. Engl. J. Med. 294:630–633.PubMedCrossRefGoogle Scholar
  319. 319.
    Ziegler, M. G., Lake, C. R., and Kopin, I. J., 1977, The sympathetic-nervous-system defect in primary orthostatic hypotension, N. Engl. J. Med. 296:293–297.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Lewis Landsberg
    • 1
    • 2
  1. 1.Harvard Medical SchoolBeth Israel HospitalBostonUSA
  2. 2.Department of MedicineBeth Israel HospitalBostonUSA

Personalised recommendations