• Dorothy T. Krieger


Reports of the presence and presumed synthesis in brain of peptides first demonstrated in the GI tract (gastrin, vasoactive intestinal polypeptide, Substance P),* kidney (renin), and pituitary (ACTH, α-MSH, growth hormone, endorphin), the isolation of previously uncharacterized peptides from brain for which metabolic functions have now been described (i.e., neurotensin), and the demonstration of nonendocrine effects of the “hypothalamic” releasing and inhibiting hormones have opened new vistas and raised new question with regard to the role of such peptides in CNS function.


Growth Hormone Pituitary Adenoma Vasoactive Intestinal Polypeptide Thyrotropin Release Hormone Opiate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vanderhaeghen, J. J., Signeau, J. C., and Gepts, W., 1975, New peptide in the vertebrate CNS reacting with antigastrin antibodies, Nature (London) 257:604–605.CrossRefGoogle Scholar
  2. 2.
    Said, S. I., and Rosenberg, R. N., 1976, Vasoactive intestinal polypeptide: Abundant immunoreactivity in neural cell lines and normal nervous tissue, Science 192:907–908.PubMedCrossRefGoogle Scholar
  3. 3.
    Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B., 1975, Substance P: Localization in the central nervous system and in some primary sensory neurons, Science 190:889–890.PubMedCrossRefGoogle Scholar
  4. 4.
    Brownstein, M. J., Mroz, E. A., Kizer, J. S., Palkovits, M., and Leeman, S. E., 1976, Regional distribution of Substance P in the brain of the rat, Brain Res. 110:299–305.CrossRefGoogle Scholar
  5. 5.
    Carraway, R. E., Demers, L. M., and Leeman, S. E., 1976, Hyperglycemic effect of neurotensin, a hypothalamic peptide, Endocrinology 99:1452–1462.PubMedCrossRefGoogle Scholar
  6. 6.
    Uhl, G. R., and Snyder, S. H., 1977, Neurotensin receptor binding: Regional and subcellular distributions favor transmitter role, Eur. J. Pharmacol. 41:89–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Ganten, D., Minnich, J. L., Granger, P., Hayduk, K., Brecht, H. M., Barbeau, A., Boucher, R., and Genest, J., 1971, Angiotensin-forming enzyme in brain tissue, Science 173:64–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Day, R. P., and Reid, I. A., 1976, Renin activity in dog brain: Enzymological similarity to cathepsin D, Endocrinology 99:93–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Reid, I. A., and Ramsay, D. J., 1975, The effects of intracerebroventricular administration of renin on drinking and blood pressure, Endocrinology 97:536–542.PubMedCrossRefGoogle Scholar
  10. 10.
    Krieger, D. T., Liotta, A., and Brownstein, M. J., 1977, Presence of corticotropin in brain of normal and hypophysectomized rats, Proc. Natl. Acad. Sci. U.S.A. 74:648–652.PubMedCrossRefGoogle Scholar
  11. 11.
    Krieger, D. T., Liotta, A., and Brownstein, M. J., 1977, Presence of corticotropin in limbic system of normal and hypophysectiomized rats, Brain Res. 128:575–579.PubMedCrossRefGoogle Scholar
  12. 12.
    Oliver, C., Eskay, R. L., Porter, J. C., and Cecil, H., 1976, Distribution in the rat brain of α-MSH and its concentration in hypophysial portal blood, Proceedings of the 5th International Congress of Endocrinology, Abstract No. 244.Google Scholar
  13. 13.
    Vaudry, H., Oliver, C., Vaillant, R., and Kraicer, J., 1976, Bioactive and immunoreactive α-MSH in the rat brain, Proceedings of the 5th International Congress of Endocrinology, Abstract No. 274.Google Scholar
  14. 14.
    Pacold, S. T., Lawrence, A. M., and Kirsteins, L., 1976, CNS growth hormone: Secretion of GH-like immunore activity from monolayer tissue cultures of the amygdala, Clin. Res. 24:563A (abstract).Google Scholar
  15. 15.
    Rudman, D., Del Rio, A. E., Hollins, B. M., Houser, D. H., Keeling, M. E., Sutin, J., Scott, J. W., Sears, R. A., and Rosenberg, M. Z., 1973, Melano-tropic-lipolytic peptides in various regions of bovine, simian and human brains and in simian and human cerebrospinal fluids, Endocrinology 92:372–379.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheung, A. L., and Goldstein, A., 1976, Failure of hypophysectomy to alter brain content of opioid peptides (endorphins), Life Sci. 19:1005–1008.PubMedCrossRefGoogle Scholar
  17. 17.
    Guillemin, R., 1977, Endorphins, brain peptides that act like opiates, N. Engl. J. Med. 296:226–228.PubMedCrossRefGoogle Scholar
  18. 18.
    Pearse, A. G. E., 1976, Peptides in brain and intestine, Nature (London) 262:92–94.CrossRefGoogle Scholar
  19. 19.
    Snyder, S. H., 1977, Opiate receptors in the brain, N. Engl. J. Med. 296:266–271.PubMedCrossRefGoogle Scholar
  20. 20.
    Pert, C. JB., Kuhar, M. J., and Snyder, S. H., 1976, Opiate receptor: Autoradiographic localization in rat brain, Proc. Natl. Acad. Sci. U.S.A. 73:3729–3733.PubMedCrossRefGoogle Scholar
  21. 21.
    Lazarus, L. H., Ling, N., and Guillemin, R., 1976, β-Lipotropin as a prohormone for the morphinominetic peptides endorphins and enkephalins, Proc. Natl. Acad. Sci. U.S.A. 73:2156–2159.PubMedCrossRefGoogle Scholar
  22. 22.
    Rónai, A. Z., Székely, J. I., Graf, L., Dunai-Kovács, Z., and Bajusz, S., 1976, Morphine-like analgesic effect of a pituitary hormone, β-lipotropin, Life Sci. 19:733–738.PubMedCrossRefGoogle Scholar
  23. 23.
    Bloom, F., Segal, D., Ling, N., and Guillemin, R., 1976, Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness, Science 194:630–632.PubMedCrossRefGoogle Scholar
  24. 24.
    Jacquet, Y. F., and Marks, N., 1976, The C-fragment of β-lipotropin: An endogenous neuroleptic or antipsychotogen?, Science 194:632–635.PubMedCrossRefGoogle Scholar
  25. 25.
    Graf, L., and Kenessey, A., 1976, Specific cleavage of a single peptide bond (residues 77–78) in β-lipotropin by a pituitary endopeptidase, FEB S Lett. 69:255–260.CrossRefGoogle Scholar
  26. 26.
    Bradley, P. B., Briggs, L., Gayton, R. J., and Lambert, L. A., 1976, Effects of microiontophoretically applied methionine-enkephalin on single neurones in rat brainstem, Nature (London) 261:425–426.CrossRefGoogle Scholar
  27. 27.
    Gent, J. P., and Wolstencroft, J. H., 1976, Effects of methionine-enkephalin and leucine-enkephalin compared with those of morphine on brainstem neurones in cat, Nature (London) 261:426–427.CrossRefGoogle Scholar
  28. 28.
    Guillemin, R., 1976, Somatostatin inhibits the release of acetylcholine induced electrically in the myenteric plexus, Endocrinology 99:1653–1654.PubMedCrossRefGoogle Scholar
  29. 29.
    De Wied, D., 1977, Peptides and behavior, Life Sci. 20:195–204.PubMedCrossRefGoogle Scholar
  30. 30.
    Pomeranz, B., and Chiu, D., 1976, Naloxone blockade of acupuncture analgesia: Endorphin implicated, Life Sci. 19:1757–1762.PubMedCrossRefGoogle Scholar
  31. 31.
    Lampert, A., Nirenberg, M., and Klee, W. A., 1976, Tolerance and dependence evoked by an endogenous opiate peptide, Proc. Natl. Acad. Sci. U.S.A. 73:3165–3167.PubMedCrossRefGoogle Scholar
  32. 32.
    Tseng, L., Loh, H. H., Li, C. H., 1977, Human β-endorphin: Development of tolerance and behavioral activity in rats, Biochem. Biophys. Res. Commun. 74:390–396.PubMedCrossRefGoogle Scholar
  33. 33.
    Rivier, C., Vale, W., Ling, N., Brown, M., and Guillemin, R., 1977, Stimulation in vivo of the secretion of prolactin and growth hormone by β-endor-phin, Endocrinology 100:238–241.PubMedCrossRefGoogle Scholar
  34. 34.
    Lien, E. L., Fenichel, R. L., Garsky, V., Sarantakis, D., and Grant, N. H., 1976, Enkephalin-stimulated prolactin release, Life Sci. 19:837–840.PubMedCrossRefGoogle Scholar
  35. 35.
    Ching, M., and Utiger, R. D., 1976, Measurement of thyrotropin releasing hormone (TRH) activity in pituitary portal blood of rats, Soc. Neurosci. 2:648 (abstract).Google Scholar
  36. 36.
    Carmel, P. W., Araki, S., and Ferin, M., 1976, Pituitary stalk portal blood collection in rhesus monkeys: Evidence for pulsatile release of gonadotropin-releasing hormone (GnRH), Endocrinology 99:243–248.PubMedCrossRefGoogle Scholar
  37. 37.
    Zimmerman, E. A., Carmel, P. W., Husain, M. K., Ferin, M., Tannenbaum, M., Frantz, A. G., and Robinson, A. G., 1973, Vasopressin and neurophysin: High concentrations in monkey hypophyseal portal blood, Science 182:925–927.PubMedCrossRefGoogle Scholar
  38. 38.
    Oliver, C., Mical, R. S., and Porter, J. C., 1977, Hypothalamic-pituitary vasculature: Evidence for retrograde blood flow in the pituitary stalk, Endocrinology 101:598–604.PubMedCrossRefGoogle Scholar
  39. 39.
    Page, R. B., Munger, B. L., and Bergland, R. M., 1976, Scanning microscopy of pituitary vascular casts, Am. J. Anat. 146:273–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Raisman, G., and Field, P. M., 1973, Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen, Brain Res. 54:1–29.PubMedCrossRefGoogle Scholar
  41. 41.
    Dyer, R. G., MacLeod, N. K., and Ellendorff, F., 1976, Electrophysiological evidence for sexual dimorphism and synaptic convergence in the preoptic and anterior hypothalamic areas of the rat, Proc. R. Soc. London Ser. B 193:421–440.CrossRefGoogle Scholar
  42. 42.
    Brown-Grant, K., Fink, G., Greig, F., and Murray, M. A. F., 1975, Altered sexual development in male rats after oestrogen administration during the neonatal period, J. Reprod. Fertil. 44:25–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Araki, S., Toran-Allerand, C. D., Ferin, M., and Wiele, R. L. V., 1975, Immunoreactive gonadotropin-releasing hormone (Gn-RH) during maturation in the rat: Ontogeny of regional hypothalamic differences, Endocrinology 97:693–697.PubMedCrossRefGoogle Scholar
  44. 44.
    Brown-Grant, K., 1973, Recent studies in the sexual differentiation of the brain, in: Foetal and Neonatal Physiology (R. Gomline, G. Dawes, and P. W. Nathanielsz, eds.), pp. 527–545, Cambridge University Press, Cambridge.Google Scholar
  45. 45.
    Beach, F. A., and Buehler, M. G., 1977, Male rats with inherited insensitivity to androgen show reduced sexual behavior, Endocrinology 100:197–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Money, J., and Ehrhardt, A. A., 1972, Gender dimorphic behavior and fetal sex hormones, Recent Prog. Horm. Res. 28:735–763.PubMedGoogle Scholar
  47. 47.
    Goy, R. W., and Resko, J. A., 1972, Gonadal hormones and behavior of normal and pseudohermaphroditic non-human female primates, Recent Prog. Horm. Res. 28:707–733.PubMedGoogle Scholar
  48. 48.
    Witelson, S. F., 1976, Sex and the single hemisphere: Specialization of the right hemisphere for spatial processing, Science 193:425–427.PubMedCrossRefGoogle Scholar
  49. 49.
    Waber, D. P., 1976, Sex differences in cognition: A function of maturation rate?, Science 192:572–574.PubMedCrossRefGoogle Scholar
  50. 50.
    Goldman, P. S., Crawford, H. T., Stokes, L. P., Galkin, T. W., and Rosvold, H. E., 1974, Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey, Science 186:540–542.PubMedCrossRefGoogle Scholar
  51. 51.
    Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., Kuhn, M., White, R. J., Takaoka, Y., and Wolin, L., 1975, The formation of estrogens by central neuroendocrine tissues, Recent Prog. Horm. Res. 31:295–319.PubMedGoogle Scholar
  52. 52.
    Korach, K. S., and Muldoon, T. G., 1975, Inhibition of anterior pituitary estrogen-receptor complex formation by low-affinity interaction with 5α-dihydrotestosterone, Endocrinology 97:231–236.PubMedCrossRefGoogle Scholar
  53. 53.
    Gerall, A. A., McMurray, M. M., and Farrell, A., 1975, Suppression of the development of female hamster behaviour by implants of testosterone and non-aromatizable androgens administered neonatally, J. Endocrinol 67:439–445.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayashi, S., 1976, Failure of intrahypothalamic implants of an estrogen antagonist, ethamoxytriphetol (MER-25), to block neonatal androgen-sterili-zation, Proc. Soc. Exp. Biol. Med. 152:389–392.PubMedGoogle Scholar
  55. 55.
    Arai, Y., and Górski, R. A., 1968, Critical exposure time for androgenization of the rat hypothalamus determined by antiandrogen injection, Proc. Soc. Exp. Biol. Med. 127:590–593.PubMedGoogle Scholar
  56. 56.
    Schwarzel, W. C., Kruggel, W. G., and Brodie, H., 1973, Studies on the mechanism of estrogen biosynthesis. VIII. The development of inhibitors of the enzyme system in human placenta, Endocrinology 92:866–880.PubMedCrossRefGoogle Scholar
  57. 57.
    Sar, M., and Stumpf, W. E., 1973, Effects of progesterone or cyproterone acetate on androgen uptake in the brain, pituitary and peripheral tissues, Proc. Soc. Exp. Biol. Med. 144:26–29.PubMedGoogle Scholar
  58. 58.
    Shapiro, B. H., Goldman, A. S., Bongiovanni, A. M., and Marino, J. M., 1976, Neonatal progesterone and feminine sexual development, Nature (London) 264:795–796.CrossRefGoogle Scholar
  59. 59.
    Nishizuka, M., 1976, Neuropharmacological study on the induction of hypothalamic masculinization in female mice, Neuroendocrinology 20:157–165.PubMedCrossRefGoogle Scholar
  60. 60.
    Fox, T. O., 1975, Oestradiol receptor of neonatal mouse brain, Nature (London) 258:441–444.CrossRefGoogle Scholar
  61. 61.
    Maclusky, N. J., Chaptal, C., Lieberburg, I., and McEwen, B. S., 1976, Properties and subcellular interrelationships of presumptive estrogen receptor macromolecules in the brains of neonatal and prepubertal female rats, Brain Res. 114:158–165.PubMedCrossRefGoogle Scholar
  62. 62.
    Attardi, B., and Ohno, S., 1976, Androgen and estrogen receptors in the developing mouse brain, Endocrinology 99:1279–1290.PubMedCrossRefGoogle Scholar
  63. 63.
    Westley, B. R., and Salaman, D. F., 1976, Role of oestrogen receptor in . androgen-induced sexual differentiation of the brain, Nature (London) 262:407–408.CrossRefGoogle Scholar
  64. 64.
    Ozaki, Y., Lynch, H. J., and Wurtman, R. J., 1976, Melatonin in rat pineal, plasma and urine: 24-hour rhythmicity and effect of chlorpromazine, Endocrinology 98:1418–1424.PubMedCrossRefGoogle Scholar
  65. 65.
    Rollag, M. D., and Niswender, G. D., 1976, Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens, Endocrinology 98:482–489.PubMedCrossRefGoogle Scholar
  66. 66.
    Vaughan, G. M., Pelham, R. W., Pang, S. F., Loughlin, L. L., Wilson, K. M., Sandock, K. L., Vaughan, M. K., Koslow, S. H., and Reiter, R. J., 1976, Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: Attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs, J. Clin. Endocrinol. Metab. 42:752–764.PubMedCrossRefGoogle Scholar
  67. 67.
    Hedlund, L., Lischko, M. M., Rollag, M. D., and Niswender, G. D., 1977, Melatonin: Daily cycle in plasma and cerebrospinal fluid of calves, Science 195:686–687.PubMedCrossRefGoogle Scholar
  68. 68.
    Ozaki, Y., and Lynch, H. J., 1976, Presence of melatonin in plasma and urine of pinealectomized rats, Endocrinology 99:641–644.PubMedGoogle Scholar
  69. 69.
    Wetterberg, L., Arendt, J., Paunier, L., Sizonenko, P. C., van Donselaar, W., and Heyden, T., 1976, Human serum melatonin changes during the men-stral cycle, J. Clin. Endocrinol. Metab. 42:185–188.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin, J. E., Engel, J. N., and Klein, D. C., 1977, Inhibition of the in vitro pituitary response to luteinizing hormone-releasing hormone by melatonin, serotonin and 5-methoxytryptamine, Endocrinology 100:675–680.PubMedCrossRefGoogle Scholar
  71. 71.
    Fideleff, H., Aparicio, N. J., Guitelman, A., Debeljuk, L., Mancini, A., and Cramer, C., 1976, Effect of melatonin on the basal and stimulated gonadotropin levels in normal men and postmenopausal women, J. Clin. Endocrinol. Metab. 42:1014–1017.PubMedCrossRefGoogle Scholar
  72. 72.
    Jenkins, J. S., Ash, S., and Bloom, H. J. G., 1972, Endocrine function after external pituitary irradiation in patients with secreting and nonsecreting pituitary tumors, Q.J. Med. 41(161):57–69.PubMedGoogle Scholar
  73. 73.
    Waltz, T. A., and Brownell, B., 1966, Sarcoma: A possible late result of effective radiation therapy for pituitary adenoma, J.Neurosurg. 24:901–907.PubMedCrossRefGoogle Scholar
  74. 74.
    Kelly, K. H., Feldsted, E. T., Brown, R. F., Ortega, P., Bierman, H. R., Low-Beer, B. V. A., and Shimkin, M. B., 1951, Irradiation of the normal human hypophysis in malignancy: Report of three cases receiving 8, 100–10,000 r tissue dose to the pituitary gland,J.Natl. Cancer. Inst. 11:967–984.PubMedGoogle Scholar
  75. 75.
    Arnold, A., 1954, Effects of X-irradiation on the hypothalamus: A possible explanation for the therapeutic benefits following X-irradiation of the hypophysial region for pituitary dysfunction,J.Clin. Endocrinol. Metab. 14:859–868.PubMedCrossRefGoogle Scholar
  76. 76.
    Samaan, N. A., Bakdash, M. M., Caderao, J. B., Cangir, A., Jesse, Jr., R. H., and Ballantyne, A. J., 1975, Hypopituitarism after external irradiation, Ann. Intern. Med. 83:771–777.PubMedGoogle Scholar
  77. 77.
    Perry-Keene, D. A., Connelly, J. F., Young, R. A., Wettenhall, H. N. B., and Martin, F. I. R., 1976, Hypothalamic hypopituitarism following external radiotherapy for tumours distant from the adenohypophysis, Clin. Endocrinol. 5:373–380.CrossRefGoogle Scholar
  78. 78.
    Richards, G. E., Wara, W. M., Grumbach, M. M., Kaplan, S. L., Sheline, G. E., and Conte, F. A., 1976, Delayed onset of hypopituitarism: Sequelae of therapeutic irradiation of central nervous system, eye, and middle ear tumors, J.Pediatr. 89:553–559.PubMedCrossRefGoogle Scholar
  79. 79.
    Shalet, S. M., Beardwell, C. G., Morris Jones, P. H., and Pearson, D., 1976, Growth hormone deficiency after cranial irradiation, Proceedings of the 5th International Congress of Endocrinology, Abstract N. 171.Google Scholar
  80. 80.
    Friend, J. N., Judge, D. M., Sherman, B. M., and Santen, R. J., 1976, FSH-secreting pituitary adenomas: Stimulation and suppression studies in two patients,J.Clin. Endocrinol. Metab. 43:650–657.PubMedCrossRefGoogle Scholar
  81. 81.
    Hamilton, C. R., Jr., and Maloof, F., 1973, Unusual types of hyperthyroidism, Medicine (Baltimore) 52:195–215.CrossRefGoogle Scholar
  82. 82.
    Jacobs, H. S., Franks, S., Murray, M. A. F., Hull, G. R., Steele, S. J., and Nabarro, J. D. N., 1976, Clinical and endocrine features of hyperprolacti-naemic amenorrhoea, Clin. Endocrinol. 5:439–454.CrossRefGoogle Scholar
  83. 83.
    Plotz, C. M., Knowlton, A. I., and Ragan, C., 1952, The natural history of Cushing’s syndrome, Am. J. Med. 13:597–614.PubMedCrossRefGoogle Scholar
  84. 84.
    Ludecke, D., Kautzky, R., Saeger, W., and Schrader, D., 1976, Selective removal of hyper secreting pituitary adenomas?, Acta Neurochir. 35:27–42.CrossRefGoogle Scholar
  85. 85.
    Hardy, J., 1975, Trans-sphenoidal microsurgical removal of pituitary microadenoma, in: Progress in Neurological Surgery, Vol. 6 (H. Krayenbuhl, P. E. Maspes, and W. H. Sweet, eds.), pp. 200–216, Karger, Basel.Google Scholar
  86. 86.
    Judge, D. M., Kulin, H. E., Page, R., Santen, R., and Trapukdi, S., 1977, Hypothalamic hamartoma: A source of luteinizing-hormone-releasing factor in precocious puberty, N. Engl. J. Med. 296:7–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Cryer, P. E., and Daughaday, W. H., 1974, Adrenergic modulation of growth hormone secretion in acromegaly: Suppression during phentolamine and phentolamine-isoproterenol administration, J. Clin. Endocrinol. Metab. 39:658–663.PubMedCrossRefGoogle Scholar
  88. 88.
    Krieger, D. T., 1972, The central nervous system and Cushing’s syndrome, Mt. Sinai J. Med. N. Y. 39:416–428.Google Scholar
  89. 89.
    Hardy, J., Somma, M., and Vezina, J. L., 1976, Treatment of acromegaly: Radiation or surgery?, in: Current Controversies in Neurosurgery (T. P. Morley, ed.), pp. 377–391, W. B. Saunders, Philadelphia.Google Scholar
  90. 90.
    Jaquet, P., Grisoli, F., Guibout, M., and Lissitzky, J. C., 1976, Resultats de l’exerese chirurgicale par voie trans-sphenoidale dans 30 cas d’adénomes hypophysaires hypersécrétants, Ann. Endocrinol. 37:283–284.Google Scholar
  91. 91.
    Hardy, J., 1973, Transphenoidal surgery of hypersecreting pituitary tumors, in: Diagnosis and Treatment of Pituitary Tumors (P. O. Kohler and G. T. Ross, eds.), pp. 179–194, American Elsevier Publishing Co., New York.Google Scholar
  92. 92.
    Lagerquist, L. G., Meikle, A. W., West, C. D., and Tyler, F. H., 1974, Cushing’s disease with cure by resection of a pituitary adenoma: Evidence against a primary hypothalamic defect, Am. J. Med. 57:826–830.PubMedCrossRefGoogle Scholar
  93. 93.
    Muller, O. A., Marguth, F., and Scriba, P. C., 1976, Cushing’s disease due to autonomous pituitary ACT H release, Proceedings of the 5th International Congress of Endocrinology, Abstract No. 201.Google Scholar
  94. 94.
    Schnall, A. M., Brodkey, J., and Pearson, O. H., 1976, Pituitary function following removal of pituitary microadenomas in Cushing’s disease, Proc. Endocrinol. Soc. (58th meeting), p. 94.Google Scholar
  95. 95.
    Ganguly, A., Stanchfield, J. B., Roberts, T. S., West, C. D., and Tyler, F. H., 1976, Cushing’s syndrome in a patient with an empty sella turcica and a microadenoma of the adenohypophysis, Am. J. Med. 60:306–309.PubMedCrossRefGoogle Scholar
  96. 96.
    Cook, D. M., Jordan, R. M., Kendall, J. W., and Linfoot, J. A., 1976, Rapid appearance of transient secondary adrenocortical insufficiency after alpha-particle radiation therapy for Cushing’s disease, J.Clin. Endocrinol. Metab. 43:295–300.PubMedCrossRefGoogle Scholar
  97. 97.
    Arimura, A., and Schally, A. V., 1976, Increase in basal and thyrotropin-releasing hormone (TRH)-stimulated secretion of thyrotropin (TSH) by passive immunization with antiserum to somatostatin in rats, Endocrinology 98:1069–1072.PubMedCrossRefGoogle Scholar
  98. 98.
    Gordin, A., Arimura, A., and Schally, A. V., 1976, Effect of thyroid hormone excess and deficiency on serum thyrotropin in rats immunized passively with antiserum to somatostatin, Proc. Soc. Exp. Biol. Med. 153:319–323.PubMedGoogle Scholar
  99. 99.
    Straus E., Muller, J. E., Choi, H. S., Paronetto, F., and Yalow, R. S., 1977, Immunohistochemical localization in rabbit brain of a peptide resembling the COOH-terminal octapeptide of cholecystokinin, Proc. Natl. Acad. Sci. U.S.A. 74:3033–3034.PubMedCrossRefGoogle Scholar
  100. 100.
    Krieger, D. T., Liotta, A., Suda, T., Palkovits, M., and Brownstein, G. J., 1977, Presence of immunoassayable β-lipotropin in bovine brain and spinal cord, Biochem. Biophys. Res. Commun. 76:930–936.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Dorothy T. Krieger
    • 1
  1. 1.Division of Endocrinology and Metabolism, Department of MedicineMount Sinai School of MedicineNew YorkUSA

Personalised recommendations