Advertisement

Metabolism of Amino Acids and Organic Acids

  • Leon E. Rosenberg
  • Kay Tanaka

Abstract

In last year’s introductory volume to this series, we indicated that our strategy in these annual surveys of amino acid and organic acid metabolism would involve detailed discussion of a few topics rather than cursory treatment of many. We have maintained that posture this year. Three topics have been chosen for discussion: phenylketonuria and its variants, the γ-glutamyl cycle and 5-oxoprolinuria, and Jamaican vomiting sickness and glutaric aciduria. These areas concern “old” (phenylketonuria) and “new” (5-oxoprolinuria) diseases, common (Jamaican vomiting sickness) and rare (glutaric aciduria) ones. Although the metabolic pathways chosen for discussion are widely different, the scientific and clinical signposts are familiar. They include considerations of biochemical and genetic heterogeneity, evaluation of diagnostic and therapeutic modalities, the convergence of information gained from related acquired and inherited abnormalities, and, in all instances, the existence of important, unanswered questions. We have attempted to cite only major, recent references individually, and have depended on reviews in each section to provide the interested reader with older but clearly not lesser works. In this way, we hope that involved workers and serious readers will gain the flavor of the field without much in the way of a bitter or sour aftertaste.

Keywords

Glutathione Lysine NADPH Tryptophan Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, Z., Orlowski, M., and Szewczuk, A., 1961, Histochemical demonstration of gamma-glutamyltranspeptidase, Nature (London) 191:767.CrossRefGoogle Scholar
  2. Bartholomé, K., Lutz, P., and Bickel, H., 1975, Determination of phenylalanine hydroxylase activity in patients with phenylketonuria and hyperphenylalaninemia, Pediatr. Res. 9:899.PubMedGoogle Scholar
  3. Besrat, A., Polan, C. E., and Henderson, L. M., 1969, Mammalian metabolism of glutaric acid, J. Biol. Chem. 244:1461.PubMedGoogle Scholar
  4. Beuder, E., 1976, Glutathione deficiency, pyroglutamic acidemia and amino acid transport, N. Engl. J. Med. 295:441.CrossRefGoogle Scholar
  5. Billington, D., Kean, E. A., Osmundsen, H., and Sherratt, H. S. A., 1974/Inhibition of butyryl CoA dehydrogenase and isovaleryl CoA dehydrogenase in rat liver mitochondria by hypoglycin metabolites, Int. Res. Commun. Syst. (Biochem. Pharmacol.) 2:1712.Google Scholar
  6. Binkley, F., and Wiesemann, M. L., 1975, Glutathione and gamma glutamyl transferase in secretory process, Life Sci. 17:1359.PubMedCrossRefGoogle Scholar
  7. Booth, A. G., and Kenney, A. J., 1974, A rapid method for the preparation of microvilli from rabbit kidney, Biochem J. 142:575.PubMedGoogle Scholar
  8. Bressler, R., Corredor, C., and Brendel, K., 1969, Hypoglycin and hypoglycin-like compounds, Pharmacol. Rev. 21:105.PubMedGoogle Scholar
  9. Cornell, J., and Meister, A., 1976, Glutathione and γ-glutamyl cycle enzymes in crypt and villus tip cells of rat jejunal mucosa, Proc. Natl. Acad. Sci. U.S.A. 73:420.PubMedCrossRefGoogle Scholar
  10. Corredor, C., Brendel, K., and Bressler, R., 1967, Studies of the mechanism of the hypoglycemic action of 4-pentenoic acid, Proc. Natl. Acad. Sci. U.S.A. 58:2299.PubMedCrossRefGoogle Scholar
  11. Corredor, C., Brendel, K., and Bressler, R., 1969, Effects of 4-pentenoic acid on carbohydrate metabolism in pigeon liver homogenate, J. Biol. Chem. 244:1212.PubMedGoogle Scholar
  12. DeLap, L. W., Tate, S. S., and Meister, A., 1975, Gamma-glutamyl transpeptidase of rat seminal vesicles: Effect of orchidectomy and hormone administration on the transpeptidase in relation to its possible role in secretory activity, Life Sci. 16:691.PubMedCrossRefGoogle Scholar
  13. Dobson, J. C., Kushida, E., Williamson, M., and Friedman, E. G., 1976, Intellectual performance of 36 phenylketonuria patients and their nonaffected siblings, Pediatrics 58:53.PubMedGoogle Scholar
  14. Eldjarn, L., Jellum, E., and Stokke, O., 1972, Pyroglutamic aciduria: Studies on the enzymic block and on the metabolic origin of pyroglutamic acid, Clin. Chink Acta 40:461.CrossRefGoogle Scholar
  15. Eldjarn, L., Jellum, E., and Stokke, O., 1973, Pyroglutamic aciduria: Rate of formation and degradation of pyroglutamate, Clin. Chim. Acta 49:311.PubMedCrossRefGoogle Scholar
  16. Enteman, M., and Bressler, R., 1967, The mechanism of action of hypoglycin on long chain fatty acid oxidation, Mol. Pharmacol 3:333.Google Scholar
  17. Friedman, P. A., Fisher, D. B., Kang, E. S., and Kaufman, S., 1973, Detection of hepatic phenylalanine 4-hydroxylase in classical phenylketonuria, Proc. Natl. Acad. Sci. U.S.A. 70:552.PubMedCrossRefGoogle Scholar
  18. Garvey, T. Q., Hyman, P. E., and Isselbacher, K.J., 1976, γ-Glutamyl transpeptidase of rat intestine: Localization and possible role in amino acid transport, Gastroenterology 71:778.PubMedGoogle Scholar
  19. Glenner, G. G., and Folk, J. E., 1961, Glutamyl peptidase in rat and guinea pig kidney slices, Nature (London) 192:338.CrossRefGoogle Scholar
  20. Goodman, S. I., Mace, J. W., and Pollak, S., 1971, Serum gamma-glutamyl transpeptidase deficiency, Lancet 1:234.PubMedCrossRefGoogle Scholar
  21. Goodman, S. I., Markey, S. P., Moe, P. G., Miles, B. S., and Teng, C. C., 1975, Glutaric aciduria: A “new” disorder of amino acid metabolism, Biochem. Med. 12:12.PubMedCrossRefGoogle Scholar
  22. Goodman, S. I., Norenberg, M. D., Shikes, R. H., Breslin, D. J., and Moe, P. G., 1977, Glutaric aciduria: Biochemical and morphologic considerations, J. Pediatr. 90:746.PubMedCrossRefGoogle Scholar
  23. Green, D. E., and Allman, D. W., 1968, Fatty acid oxidation, in: Metabolic Pathways, Vol. II, 3rd Ed. (D. M. Greenberg, ed.), pp. 1–36, Academic Press, New York.Google Scholar
  24. Hagenfeldt, L., Larsson, A., and Zetterstrom, R., 1974, Pyroglutamic aciduria: Studies in an infant with chronic metabolic acidosis, Acta Pediatr. Scand. 63:1.CrossRefGoogle Scholar
  25. Harris, H., 1975, Enzyme and protein diversity in human populations, in: The Principles of Human Biochemical Genetics (H. Harris, ed.), pp. 278–338, North-Holland/American Elsevier, Amsterdam.Google Scholar
  26. Hassal, C. H., and Reyle, K., 1955, Hypoglycin A and B, two biological active polypeptides from Blighia sapida, Biochem. J. 60:334.Google Scholar
  27. Hill, K. R., 1952, The vomiting sickness of Jamaica: A review, West Ind. Med. J. 1:243.Google Scholar
  28. Hoffbauer, R. W., and Schrempf, G., 1976, Phenylketonuria hydroxylation in cultured fibroblasts from patients with PKU, Lancet 2:194.PubMedCrossRefGoogle Scholar
  29. von Holt, C., and Benedict, I., 1959, Biochemie des Hypoglycins A. II. Der Einfluss des Hypoglycins auf die Oxydation von Glucose und Fettsäuren, Biochem. Zschr. 331:430.Google Scholar
  30. von Holt, C., von Holt, M., and Böhm, H., 1966, Metabolic effects of hypoglycin and methylenecyclopropaneacetic acid, Biochim. Biophys. Acta 125:11.Google Scholar
  31. Holtzman, N. A., Welcher, D. W., and Mellits, E. D., 1975, Termination of restricted diet in children with phenylketonuria: A randomized controlled study, N. Engl. J. Med. 293:1121.PubMedCrossRefGoogle Scholar
  32. Jackson, R. C., 1969, Studies in the enzymology of glutathione metabolism in human erythrocytes, Biochem. J. 111:309.PubMedGoogle Scholar
  33. Jeliffe, D. B., and Stuart, K. L., 1954, Acute toxic hypoglycemia in the vomiting sickness of Jamaica, Brit. Med. J. 1:75.CrossRefGoogle Scholar
  34. Jellum, E., Kluge, T., Borresen, H. C., Stokke, O., and Eldjarn, L., 1970, Pyroglutamic aciduria—a new inborn error of metabolism, Scand. J. Clin. Lab. Invest. 26:327.PubMedCrossRefGoogle Scholar
  35. Kaufman, S., 1976, The phenylalanine hydroxylating system in phenylketonuria and its variants, Biochem. Med. 15:42.PubMedCrossRefGoogle Scholar
  36. Kaufman, S., Holtzman, N. A., Milstien, S., Butler, I. J., and Krumholz, A., 1975a, Phenylketonuria due to a deficiency of dihydropteridine reductase, N. Engl. J. Med. 293:785.PubMedCrossRefGoogle Scholar
  37. Kaufman, S., Max, E. E., and Kang, E. S., 1975b, Phenylalanine hydroxylase activity in liver biopsies from hyperphenylalaninemia heterozygotes: Deviation from proportionality with gene dosage, Pediatr. Res. 9:632.PubMedCrossRefGoogle Scholar
  38. Kean, E. A., 1976, Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin, Biochim. Biophys. Acta 422:8.PubMedGoogle Scholar
  39. Knox, W. E., 1972, Phenylketonuria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. P. Wyngaarden, and D. S. Fredrickson, eds.), pp. 266–295, McGraw-Hill, New York.Google Scholar
  40. Koch, R., Blaskovics, M., Wenz, E., Fishier, K., and Schaeffler, G., 1974, Phenylalaninemia and phenylketonuria, in: Heritable Disorders of Amino Acid Metabolism: Patterns of Clinical Expression and Genetic Variation (W. L. Nyhan, ed.), pp. 109–140, Wiley-Interscience, New York.Google Scholar
  41. Larsson, A., and Mattson, B., 1976, On the mechanism of 5-oxoproline overproduction in 5-oxoprolinuria, Clin Chim. Acta 67:245.PubMedCrossRefGoogle Scholar
  42. Larsson, A., Zetterstrom, R., Hagenfeldt, L., Anderson, R., Dreborg, S., and Hornell, H., 1974, Pyroglutamic aciduria (5-oxoprolinuria), an inborn error in glutathione metabolism Pediatr. Res. 8:852.PubMedCrossRefGoogle Scholar
  43. Larsson, A., Zetterstrom, R., Hornell, H., and Porath, U., 1976, Erythrocytes glutathione synthetase in 5-oxoprolinuria: Kinetic studies of the mutant enzyme and detection of heterozygote, Clin. Chim. Acta 73:19.PubMedCrossRefGoogle Scholar
  44. Louvard, D., Maroux, S., Vannier, C., and Desnuelle, P., 1975, Topological studies on the hydrolases bound to the intestinal brush border membrane, Biochim. Biophys. Acta 375:236.CrossRefGoogle Scholar
  45. Marstein, S., Jellum, E., Halpern, B., Eldjarn, L., and Perry, T. L., 1976, Biochemical studies of erythrocytes in a patient with pyroglutamic acidemia (5-oxopro-linemia), N. Engl J. Med. 295:406.CrossRefGoogle Scholar
  46. McKerns, K. W., Bird, H. H., Kaleita, E., Coulomb, B. S., and DeRenzo, E. C., 1960, Effects of hypoglycin on certain aspects of glucose and fatty acid metabolism in the rat, Biochem. Pharmacol. 3:305.CrossRefGoogle Scholar
  47. Meister, A., 1973, On the enzvmology of amino acid transport, Science 180:33.PubMedCrossRefGoogle Scholar
  48. Meister, A., 1974, The y-glutamyl cycle: Diseases associated with specific enzyme deficiencies, Ann. Intern. Med. 81:247.PubMedGoogle Scholar
  49. Meister, A., and Tate, S. S., 1976, Glutathione and related y-glutamyl compounds: Biosynthesis and utilization, Annu. Rev. Biochem. 45:557.CrossRefGoogle Scholar
  50. Milstien, S., and Kaufman, S., 1975, Production of antibodies to sheep liver dihydropteridine reductase: Characterization and use to study the enzyme defect in a variant form of phenylketonuria, Biochem. Biophys. Res. Commun. 66:475.PubMedCrossRefGoogle Scholar
  51. Orlowski, M., and Meister, A., 1970, The y-glutamyl cycle: A possible transport system for amino acids, Proc. Natl. Acad. Sci. U.S.A. 67:1248.PubMedCrossRefGoogle Scholar
  52. Orlowski, M., and Wilk, S., 1975, Intermediate of the γ-glutamyl cycle in mouse tissues: Influence of administration of amino acids on pyrrolidone carboxylate and y-glutamyl amino acids, Eur. J. Biochem. 53:581.PubMedCrossRefGoogle Scholar
  53. Osmundsen, H., and Sherratt, H. S. A., 1975, A novel mechanism for inhibition of β-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of-hypoglycin, FEBS Lett. 55:38.PubMedCrossRefGoogle Scholar
  54. Palekar, A. G., Tate, S. S., and Meister, A., 1974, Formation of 5-oxoproline from glutathione in erythrocytes by the γ-glutamyltranspeptidase-cyclotransferase cycle, Proc. Natl. Acad. Sci. U.S.A. 71:293.PubMedCrossRefGoogle Scholar
  55. Pellefigue, F., Butler, J. D., Spielberg, P., Hollenberg, M. D., Goodman, S. I., and Schulman, J. D., 1976, Normal amino acid uptake by cultured human fibroblasts does not require gamma glutamyl cycle, Biochem. Biophys. Res. Commun. 73:997.PubMedCrossRefGoogle Scholar
  56. Perry, T. L., Hansen, S., Tischler, B., Richards, F. M., and Sokol, M., 1973, Unrecognized adult phenylketonuria, N. Engl. J. Med. 289:395.PubMedCrossRefGoogle Scholar
  57. Przyrembel, H., Wendel, U., Becker, K., Bremer, H. J., Bruinvis, L., Ketting, D., and Wadman, S. K., 1976, Glutaric aciduria Type II: Report on a previously undescribed metabolic disorder, Clin. Chim. Acta 66:227.PubMedCrossRefGoogle Scholar
  58. Richman, P. G., and Meister, A., 1975, Regulation of gamma-glutamyl-cysteine synthetase by nonallosterie feedback inhibition by glutathione, J. Biol. Chem. 250:1422.PubMedGoogle Scholar
  59. Ross, L. L., Barber, L., Tate, S. S., and Meister, A., 1973, Enzymes of the gamma-glutamyl cycle in the ciliary body and lens, Proc. Natl. Acad. Sci. U.S.A. 70:2211.PubMedCrossRefGoogle Scholar
  60. Schulman, J. D., Goodman, S. I., Mace, J. W., Patrick, A. D., Tietze, F., and Butler, E. J., 1975, Glutathionuria: Inborn error of metabolism due to tissue deficiency of gamma-glutamyl transpeptidase, Biochem: Biophys. Res. Commun. 65:68.CrossRefGoogle Scholar
  61. Scriver, C. R., and Rosenberg, L. E. (eds.)v 1973, Phenylalanine, in: Amino Acid Metabolism and Its Disorders, pp. 290–337, W. B. Sautiders, Philadelphia.Google Scholar
  62. Sekura, R., and Meister, A., 1974, Glutathione turnover in the kidney: Considerations relating to the γ-glutamyl cycle and the transport of amino acids, Proc. Natl. Acad. Sci. U.S.A. 71:2969.PubMedCrossRefGoogle Scholar
  63. Smith, I., Clayton, B. E., and Wolff, O. H., 1975, New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction, Lancet 1:1108.PubMedCrossRefGoogle Scholar
  64. Srivastava, S. K., Awasthi, Y. C., Miller, S. P., Yoshida, A., and Beutler, E., 1976, Studies on gamma-glutamyl transpeptidase in human and rabbit erythrocytes, Blood 47:645.PubMedGoogle Scholar
  65. Stokke, O., Goodman, S. I., Thompson, J. A., and Miles, B. S., 1975, Glutaric aciduria: Presence of glutaconic and beta-hydroxyglutaric acids in urine, Biochem. Med. 12:386.PubMedCrossRefGoogle Scholar
  66. Strömme, J. H., and Eldjarn, L., 1972, The metabolism of L-pyroglutamic acid in fibroblasts from a patient with pyroglutamic aciduria: The demonstration of an L-pyroglutamate hydrolase system, Scand. J. Clin. Lab. Invest. 29:335.PubMedCrossRefGoogle Scholar
  67. Tanaka, K., 1972, On the mode of action of hypoglycin A. III. Isolation and identification of cis-4-decene-l,10,-dioic, cis,cis-4,7-decadiene-l,10-dioic, cis-4-octene-l,8-dioic, glutaric and adipic acids, iV-(methylenecyclopropyl) acetyl-glycine, and N-isovalerylglycine from urine of hypoglycin A treated rats, J. Biol. Chem. 247:7465.PubMedGoogle Scholar
  68. Tanaka, K., 1975a, Disorders of organic acid metabolism, in Biology of Brain Dysfunction, Vol. 3 (G. E. Gaul, ed.) pp. 145–214, Plenum Press, New York.Google Scholar
  69. Tanaka, K., 1975b, Branched pentanoic acidemia and medium chain dicarboxylic aciduria induced by hypoglycin A: Inhibition of several short chain acyl CoA dehydrogenases, in: Hypoglycin (E. A. Kean, ed.), pp. 67–92, Academic Press, New York.Google Scholar
  70. Tanaka, K., and Kerley, R., 1975, Synergistic hypoglycemic effects of lysine and tryptophan with hypoglycin A: Interrelationship between the inhibition of glutaryl CoA dehydrogenase and gluconeogenesis, in: Hypoglycin (E. A. Kean, ed.), pp. 163–173, Academic Press, New York.Google Scholar
  71. Tanaka, K., and Yu, G., 1973, A method for the separate determination of isovalerate and α-methylbutyrate by use of GLC-mass spectrometer, Clin. Chim. Acta 43:151.CrossRefGoogle Scholar
  72. Tanaka, K., Miller, E. M., and Isselbacher, K.J., 1971, Hypoglycin A: A specific inhibitor of isovaleryl CoA dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 68:20.PubMedCrossRefGoogle Scholar
  73. Tanaka, K., Isselbacher, K. J., and Shih, V., 1972, Isovaleric acidemia and α-methylbutyric acidemias induced by hypoglycin A: Mechanism of Jamaican vomiting sickness, Science 175:69.PubMedCrossRefGoogle Scholar
  74. Tanaka, K., Kean, E. A., and Johnson, B., 1976a, Jamaican vomiting sickness: Biochemical investigation of two cases, N. Engl. J. Med. 295:461.PubMedCrossRefGoogle Scholar
  75. Tanaka, K., Mandell, R., and Shih, V., 1976b, Metabolism of [1–14C] and [2–14C]leucine in cultured skin fibroblasts from patients with isovaleric acidemia, J. Clin. Invest. 58:164.PubMedCrossRefGoogle Scholar
  76. Tanaka, K., Ramsdell, H. S., Baretz, B. H., Keefe, M. B., Johnson, B., and Kean, E. A., 1976c, Identification of ethylmalonic acid in urine of two patients with the vomiting sickness of Jamaica, Clin. Chim. Acta 69:105.PubMedCrossRefGoogle Scholar
  77. Tate, S. S., Dunn, M. W., and Meister, A., 1975, Localization of γ-glutamyl transpeptidase in the retinal pigment epithelium and visual receptor cell, Life Sci. 18:1145.CrossRefGoogle Scholar
  78. Van Der Werf, P., Orlowski, M., and Meister, A., 1971, Enzymic conversion of 5-oxoproline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the γ-glutamyl cycle, Proc. Natl. Acad. Sci. U.S.A. 68:2982.PubMedCrossRefGoogle Scholar
  79. Van Der Werf, P., Stephani, R. A., and Meister, A., 1974, Accumulation of 5-oxoproline in mouse tissues after inhibition of 5-oxoprolinase and administration of amino acids: Evidence for function of the gamma-glutamyl cycle, Proc. Natl. Acad. Sci. U.S.A. 71:1026.CrossRefGoogle Scholar
  80. Wellner, V. P., Sekura, R., Meister, R., and Larsson, A., 1974, Glutathione synthetase deficiency—an inborn error of metabolism involving the gamma-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria), Proc. Natl. Acad. Sci. U.S.A. 71:2505.PubMedCrossRefGoogle Scholar
  81. Williamson, J. R., Rostand, S. G., and Peterson, M. J., 1970, Control factors affecting gluconeogenesis in perfused rat liver. Effect of 4-pentenoic acid, J. Biol. Chem. 245:3242.PubMedGoogle Scholar
  82. Woolf, L. I., McBean, M. S., Woolf, F. M., and Cahalane, S. F., 1975, Phenylketonuria as a balanced polymorphism: The nature of the heterozygote advantage, Ann. Hum. Genet. 38:461.PubMedCrossRefGoogle Scholar
  83. Young, J. D., Ellroy, J. C., and Tucker, E. M., 1975a, Amino acid transport defect in glutathione-deficient sheep erythrocytes, Nature (London) 254:156.CrossRefGoogle Scholar
  84. Young, J. D., Ellroy, J. C., and Wright, P. C., 1975b, Evidence against the participation of the γ-glutamyltransferase-γ-glutamylcyclotransferase pathway in amino acid transport by rabbit erythrocytes, Biochem. J. 152:713.PubMedGoogle Scholar
  85. Young, J. D., Ellroy, J. C., and Tucker, E. M., 1976, Amino acid transport in normal and glutathione-deficient sheep erythrocytes, Biochem. J. 154:43.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Leon E. Rosenberg
    • 1
  • Kay Tanaka
    • 1
  1. 1.Department of Human GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations