Cyclic GMP in Metabolism: Interrelationship of Biogenic Amines, Hormones, and Other Agents

  • Ferid Murad
  • Gerald D. Aurbach


Many hormones, neurohormones, autacoids, drugs, and bacterial toxins produce their effects in various tissues by modifying the accumulation of cyclic AMP (cAMP) (Robison et al., 1971). While many agents enhance adenylate cyclase activity and cAMP synthesis, some agents can decrease its synthesis and accumulation or alter its degradation by cyclic nucleotide phosphodiesterase. Presumably, cAMP levels in tissue could also be modified by agents that alter its release into interstitial fluid and plasma. Hormone-receptor interactions, formation of cAMP, and processes regulated by this cyclic nucleotide were topics covered in the preceding volume of The Year in Metabolism (Aurbach, 1976). In this chapter, we wish to emphasize in particular interactions of cyclic GMP (cGMP), the other naturally occurring cyclic nucleotide. In addition, we have continued the review begun last year of clinical aspects of cyclic nucleotides in extracellular fluids. Future chapters of this continuing annual series will focus on these as well as other aspects of cyclic nucleotides and their roles in metabolism.


Lipase Adenoma Hydrocortisone Serotonin Caffeine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, J., Bhoola, K. D., Croker, M., Harvey, R. F., and Heap, R. F., 1976, Stimulation-secretion coupling in the pancreas: role of cyclic GMP in modulating enzyme secretion produced by acetylcholine and cholecystokinin-pancreozymin, J. Biol. 258:87.Google Scholar
  2. Anderson, N. H., and Ramwell, P. W., 1974, Biological aspects of prostaglandins, Arch. Intern. Med. 133:30.Google Scholar
  3. Appleman, M. M., and Terasaki, W. L., 1975, Regulation of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5:153.PubMedGoogle Scholar
  4. Appleman, M. M., Birnbaumer, L., and Torres, H. N., 1966, Factors affecting the activity of muscle glycogen synthetase. III. The reaction with adenosine triphosphate, Mg++, cyclic 3′,5′-adenosine monophosphate, Arch Biochem. Biophys. 116:39.PubMedGoogle Scholar
  5. Arnold, W. P., Katsuki, S., Mittal, C. K., and Murad, F., 1977a, Stimulation of guanylate cyclase by nitric oxide gas, in: Proceedings of the Third International Conference on Cyclic Nucleotides, Adv. Cyclic Nucleotide Res. 9: (in press).Google Scholar
  6. Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F., 1977b, Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. U.S.A. 74:3203.PubMedGoogle Scholar
  7. Ashman, D. F., Lipton, R., Melicow, M. M., and Price, T. D., 1963, Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine, Biochem. Biophys. Res. Commun. 11:330.PubMedGoogle Scholar
  8. Aurbach, G. D., 1976, Hormone receptors, cyclic nucleotides, and control of cell function, in: The Year in Metabolism 1975–1976 (N. Freinkel, ed.), pp. 1–43, Plenum Press, New York.Google Scholar
  9. Austen, K. F., 1974, Reaction mechanisms in the release of mediators of immediate hypersensitivity from human lung tissues, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:2256.Google Scholar
  10. Ball, J. H., Kaminsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W., and Liddle, G. W., 1972, Effects of catecholamines and adrenergic-blocking agents on plasma and urinary cyclic nucleotides in man, J. Clin. Invest. 51:2124.PubMedGoogle Scholar
  11. Beavo, J. A., Hardman, J. G., and Sutherland, E. W., 1971, Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate, J. Biol. Chem. 246:3841.PubMedGoogle Scholar
  12. Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1975, Mechanism of control for cyclic AMP dependent protein kinase from skeletal muscle, Adv. Cyclic Nucleotide Res. 5:241.PubMedGoogle Scholar
  13. Berridge, M. J., 1975, The interaction of cyclic nucleotides and calcium in the control of cellular activity, Adv. Cyclic Nucleotide Res. 6:1.PubMedGoogle Scholar
  14. Bitensky, M. W., Miki, N., Keims, J. J., Keirns, M., Barabon, J. M., Freeman, J., Wheeler, M. A., Lacy, J., and Marcus, F. R., 1975, Activation of photoreceptor disk membrane phosphodiesterase by light and ATP, Adv. Cyclic Nucleotide Res. 5:213.PubMedGoogle Scholar
  15. Bourne, H. R., Tompkins, G. M., and Dion, S., 1973, Regulation of phosphodiesterase synthesis: Requirement for cyclic adenosine monophosphate-dependent protein kinase, Science 181:952.PubMedGoogle Scholar
  16. Brasitus, T. A., Field, M., and Kimberg, D. V., 1976, Intestinal mucosal cyclic GMP: regulation and relation to ion transport, Amer. J. Physiol. 231:275.PubMedGoogle Scholar
  17. Broadus, A. E., Hardman, J. G., Kaminsky, N. I., Ball, J. H., Sutherland, E. W., and Liddle, G. W., 1971, Extracellular cyclic nucleotides, Ann. N.Y. Acad. Sci. 185:50.PubMedGoogle Scholar
  18. Brooker, G., Thomas, L. J., and Appleman, M. M., 1968, The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-monophosphate in biological materials by enzymatic radioisotopic displacement, Biochemistry 7:4177.PubMedGoogle Scholar
  19. Butcher, F. R., 1975, The role of calcium and cylcic nucleotides in α-amylase release from slices of rat parotid: Studies with the divalent cation ionophore A-23187, Metabolism 24:409.PubMedGoogle Scholar
  20. Butcher, R. W., and Sutherland, E. W., 1962. Adenosine 3′,5′-phosphate in biological materials. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine, J. Biol. Chem. 237:1244.PubMedGoogle Scholar
  21. Butcher, R. W., and Baird, C. E., 1968, Effects of prostaglandins on adenosine 3′,5′-monophosphate levels in fat and other tissues,J. Biol. Chem. 243:1713.PubMedGoogle Scholar
  22. Casnellie, J. E., and Greengard, P., 1974, Guanosine 3′,5′-monophosphate dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 71:1891.PubMedGoogle Scholar
  23. Chase, L. R., and Aurbach, G. D., 1967, Parathyroid function and the renal excretion of 3′,5′-adenylic acid, Proc. Natl. Acad. Sci. U.S.A. 58:518.PubMedGoogle Scholar
  24. Chase, L. R., Melson, G. L., and Aurbach, G. D., 1969, Pseudohypoparathyroidism: Defective excretion of 3′,5′-AMP in response to parathyroid hormone, J. Clin. Invest. 48:1832.PubMedGoogle Scholar
  25. Cheung, W. Y., 1971, Cyclic 3′,5′-nucleotide phosphodiesterase. Evidence for and properties of a protein activator, J. Biol. Chem. 246:2859.PubMedGoogle Scholar
  26. Chlapowski, F. J., Kelly, L. A., and Butcher, R. W., 1975, Cyclic nucleotides in cultured cells, Adv. Cyclic Nucleotide Res. 6:245.PubMedGoogle Scholar
  27. Chrisman, T. D., Garbers, D. L., Parks, M. A., and Hardman, J. G., 1975, Characterization of particulate and soluble guanylate cyclases from rat lung, J. Biol. Chem. 250:374.PubMedGoogle Scholar
  28. Christophe, J. P., Frandsen, E. K., Conlon, T. P., Krishna, G., and Gardner, J. D., 1976, Action of cholecystokinin, cholinergic agents and A-23187 on accumulation of guanosine 3′,5′-monophosphate in dispersed guinea pig pancreatic acinar cells, J. Biol. Chem. 251:4640.PubMedGoogle Scholar
  29. Clyman, R. I., Blacksin, A. S., Sandler, J. A., Manganiello, V. C., and Vaughan, M., 1975, The role of calcium in regulation of cyclic nucleotide content in human umbilical artery, J. Biol. Chem. 250:4718.PubMedGoogle Scholar
  30. Corbin, J. D., Keely, S. L., Soderling, T. R., and Park, C. R., 1975, Hormonal regulation of adenosine 3′,5′-monophosphate-dependent protein kinase, Adv. Cyclic Nucleotide Res. 5:265.PubMedGoogle Scholar
  31. Criss, W. E., and Murad, F., 1976, Urinary excretion of cyclic guanosine 3′,5′-monophosphate and cyclic adenosine 3′,5′-monophosphate in rats bearing transplantable liver and kidney tumors, Cancer Res. 36:1714.PubMedGoogle Scholar
  32. Criss, W. E., Murad, F., Kimura, H., and Morris, H. P., 1976, Properties of guanylate cyclase in adult rat liver and several Morris hepatomas, Biochem. Biophys. Acta 445:500.PubMedGoogle Scholar
  33. Davies, T., Davidson, M. M., McClenaghan, M. D., Say, A., and Haslam, R. J., 1976, Factors affecting platelet cyclic GMP levels during aggregation induced by collagen and by arachidonic acid, Thromb. Res. 9:387.PubMedGoogle Scholar
  34. Davoren, P., and Sutherland, E. W., 1963, The effects of L-epinephrine and other agents on the synthesis and release of adenosine 3′,5′-phosphate of whole pigeon erythrocytes, J. Biol. Chem. 238:3009.PubMedGoogle Scholar
  35. DeRubertis, F. R., and Craven, P. A., 1976, Calcium-independent modulation of cyclic GMP and activation of guanylate cyclase by nitrosamines, Science 193:897.PubMedGoogle Scholar
  36. DeRubertis, F. R., Chayoth, R., and Field, J. B., 1976, The content and metabolism of cyclic adenosine 3′,5′-monophosphate and cyclic guanosine 3′,5′-monophosphate in adenocarcinoma of the human colon. J. Clin. Invest. 57:641.PubMedGoogle Scholar
  37. Diamond, J., and Blisard, K. S., 1976, Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery, Mol. Pharmacol. 12:668.PubMedGoogle Scholar
  38. Diamond, J., and Holmes, T. G., 1975, Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium, Can. J. Physiol. Pharmacol. 53:1099.PubMedGoogle Scholar
  39. Dohan, P. H., Yamashita, K., Larsen, P. R., Davis, B., Deftos, L., and Field, J. B., 1972, Evaluation of urinary cyclic 3′,5′-adenosine monophosphate excretion in the differential diagnosis of hypercalcemia, J. Clin. Endocrinol. Metab. 35:775.PubMedGoogle Scholar
  40. Dunham, E. W., Haddox, M. K., and Goldberg, N. D., 1974, Alteration of vein cyclic 3′,5′-nucleotide concentrations during changes in contractility, Proc. Natl. Acad. Sci. U.S.A. 71:815.PubMedGoogle Scholar
  41. Durham, J. P., and Butcher, F. R., 1974, The effect of catecholamine analogues upon amylase secretion from the mouse parotid gland in vivo: Relationship to changes in cyclic AMP and cyclic GMP levels, FEBS Lett. 47:218.PubMedGoogle Scholar
  42. Earp, H. S., Smith, P., Ong, S. H., and Steiner, A. L., 1977, Regulation of hepatic nuclear guanylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 74:946.PubMedGoogle Scholar
  43. Entman, M. L., Levey, G. S., and Epstein, S. E., 1969, Demonstration of adenyl cyclase activity in canine cardiac sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 35:728.PubMedGoogle Scholar
  44. Ferrendelli, J. A., Kinscherf, D. A., and Kipnis, D. M., 1972, Effects of amphetamine, chlorpromazine, and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum, Biochem. Biophys. Res. Commun. 46:2114.PubMedGoogle Scholar
  45. Flandroy, L., and Galand, P., 1975, Oestrogen-related changes in uterine and vaginal cAMP and cGMP, Arch. Int. Physiol. Biochim. 83:965.PubMedGoogle Scholar
  46. Friedman, D. L., 1976, Role of cyclic nucleotides in cell growth and differentiation, Physiol. Rev. 56:652.PubMedGoogle Scholar
  47. Garbers, D. L., 1976, Sea urchin sperm guanylate cyclase, purification and loss of cooperativity, J. Biol. Chem. 251:4071.PubMedGoogle Scholar
  48. George, W.J., Poison, J. B., O’Toole, A. G., and Goldberg, N. D., 1970, Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine, Proc. Natl. Acad. Sci. U.S.A. 66:398.PubMedGoogle Scholar
  49. George, W. J., Ignarro, L. J., and White, L. E., 1975, Muscarinic stimulation of cardiac guanylate cyclase, Recent Adv. Stud. Cardiac Struct. Metab. 7:381.PubMedGoogle Scholar
  50. Giu, G., Holdy, K. E., Walton, G. M., and Kanstein, C. B., 1976, Purification and characterization of 3′,5′-cyclic GMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 73:3918.Google Scholar
  51. Goldberg, N. D., Dietz, S. B., and O’Toole, A. G., 1969, Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine, J. Biol. Chem. 244:4458.PubMedGoogle Scholar
  52. Goldberg, N. D., O’Dea, R. F., and Haddox, M. F., 1973, Cyclic GMP, Adv. Cyclic Nucleotide Res. 3:155.PubMedGoogle Scholar
  53. Goridis, C., and Reutter, W., 1975, Plasma membrane-associated increase in guanylate cyclase activity in regenerating rat liver, Nature (London) 257:698.Google Scholar
  54. Greengard, P., 1971, On the reactivity and mechanism of action of cyclic nucleotides, Ann. NY. Acad. Sci. 185:18.PubMedGoogle Scholar
  55. Hadden, J. W., 1975, Cyclic nucleotides in lymphocyte function, Ann. N.Y. Acad. Sci. 256:352.PubMedGoogle Scholar
  56. Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. D., 1972, Guanosine 3′,5′-cyclic monophosphate: A possible intracellular mediator of mitogenic influences in lymphocytes, Proc. Nat. Acad. Sci. U.S.A. 69:3024.Google Scholar
  57. Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Natl. Acad. Sci. U.S.A. 72:2994.PubMedGoogle Scholar
  58. Hardman, J. G., and Sutherland, E. W., 1969, Guanyl cyclase an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate, J. Biol. Chem. 244:6363.PubMedGoogle Scholar
  59. Hardman, J. G., Davis, J. W., and Sutherland, E. W., 1969, Effects of some hormonal and other factors on the excretion of guanosine 3′,5′-monophosphate and adenosine 3′,5′-monophosphate in rat urine, J. Biol. Chem. 244:6354.PubMedGoogle Scholar
  60. Hardman, J. G., Chrisman, T. D., Gray, J. P., Suddath, J. L., and Sutherland, E. W., 1973, Guanylate cyclase: Alteration of apparent subcellular distribution and activity of detergents and cations, in: Pharmacology and the Future of Man, Vol. 5, pp. 134–145, Karger, Basel.Google Scholar
  61. Hardman, J. G., Garbers, D. L., Wells, J. N., and Chrisman, T. D., 1975, The biosynthesis and degradation of cyclic GMP in smooth muscle and other tissues, in: Smooth Muscle Pharmacology and Physiology (M. Worcel and G. Vassort, eds.), pp. 73–82, Inserm, Paris.Google Scholar
  62. Haslam, R. J., 1975, Roles of cyclic nucleotides in platelet function, Ciba Found. Symp. 35:121.PubMedGoogle Scholar
  63. Ho, R. J., and Sutherland, E. W., 1975, cAMP-mediated feedback regulation in target cells, Adv. Cyclic Nucleotide Res. 5:533.Google Scholar
  64. Ichihara, K., Larner, J., Kimura, H., and Murad, F., 1977, Activation of liver guanylate cyclase of bile salts and contaminants in crude secretion and pancreozymine preparations, Biochim. Biophys. Acta 481:734.PubMedGoogle Scholar
  65. Ignarro, L. J., and Cech, S. Y., 1975, Lysosomal enzyme secretion from human neutrophils mediated by cyclic GMP: Inhibition of cyclic GMP accumulation and neutrophil function by glucocorticoids, J. Cyclic Nucleotide Res. 1:283.PubMedGoogle Scholar
  66. Illiano, G., Tell, G. P., Siegel, M. I., and Cuatrecasas, P., 1973, Guanosine 3′,5′-cyclic monophosphate and the action of insulin and acetylcholine, Proc. Natl. Acad. Sci. U.S.A. 70:2443.PubMedGoogle Scholar
  67. Ishikawa, E., Ishikawa, S., Davis, J. W., and Sutherland, E. W., 1969, Determination of guanosine 3′,5′-monophosphate in tissues and of guanyl cyclase in rat intestine, J. Biol. Chem. 244:6371.PubMedGoogle Scholar
  68. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., and Miyamoto, E., 1975, Ca2+/Mg2+-dependent cyclic nucleotide phosphodiesterase and its activator protein, Adv. Cyclic Nucleotide Res. 5:163.PubMedGoogle Scholar
  69. Kaliner, M., Orange, R. P., and Austen, K. F., 1972, Immunologic release of histamine and slow reacting substance of anaphylaxis from human lung. IV. Enhancement of cholinergic and alpha adrenergic stimulation, J. Exp. Med. 136:556.PubMedGoogle Scholar
  70. Kaminsky, N. I., Ball, J. H., Broadus, A. E., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970a, Hormonal effects on extracellular cyclic nucleotides in man, Trans. Assoc. Amer. Phys. 83:235.Google Scholar
  71. Kaminsky, N. I., Broadus, A. E., Hardman, J. G., Jones, D. J., Ball, J. H., Sutherland, E. W., and Liddle, G. W., 1970b, Effects of parathyroid hormone on plasma and urinary adenosine 3′,5′-monophosphate in man,J.Clin. Invest. 49:2387.PubMedGoogle Scholar
  72. Katsuki, S., and Murad, F., 1977, Regulation of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate levels and contractility in bovine tracheal smooth muscle, Mol. Pharmacol. 13:330.PubMedGoogle Scholar
  73. Katsuki, S., Arnold, A. P., Mittal, C. K., and Murad, F., 1977, Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nucleotide Res. 3:23.PubMedGoogle Scholar
  74. Katz, A. M., Tada, M., Repke, D. I., Iorio, J. M., and Kirchberger, M. A., 1974, Adenylate cyclase: Its probable localization in sarcoplasmic reticulum as well as sarcolemma of the canine heart, J. Mol. Cell. Cardiol. 6:73.PubMedGoogle Scholar
  75. Kimura, H., and Murad, F., 1974a, Nonenzymatic formation of guanosine 3′,5′-monophosphate from guanosine triphosphate, J. Biol. Chem. 249:329.PubMedGoogle Scholar
  76. Kimura, H., and Murad, F., 1974b, Evidence for two different forms of guanylate cyclase in rat heart, J. Biol. Chem. 249:6910.PubMedGoogle Scholar
  77. Kimura, H., and Murad, F., 1975a, Localization of particulate guanylate cyclase in plasma membranes and microsomes of rat liver, J. Biol. Chem. 250:4810.PubMedGoogle Scholar
  78. Kimura, H., and Murad, F., 1975b, Two forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation, Metabolism 24:439.PubMedGoogle Scholar
  79. Kimura, H., and Murad, F., 1975c, Subcellular localization of guanylate cyclase, Life Sci. 17:837.PubMedGoogle Scholar
  80. Kimura, H., and Murad, F., 1975d, Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma, Proc. Natl. Acad. Sci. U.S.A. 72:1965.PubMedGoogle Scholar
  81. Kimura, H., Thomas, E., and Murad, F., 1974, Effects of decapitation, ether and pentobarbital on guanosine 3′,5′-phosphate and adenosine 3′,5′-phosphate levels in rat tissues, Biochim. Biophys. Acta 343:519.PubMedGoogle Scholar
  82. Kimura, H., Mittal, C. K., and Murad, F., 1975a, Activation of guanylate cyclase from rat liver and other tissues by sodium azide, J. Biol. Chem. 250:8016.PubMedGoogle Scholar
  83. Kimura, H., Mittal, C. K., and Murad, F., 1975b, Increases in cyclic GMP levels in brain and liver with sodium azide, an activator of guanylate cyclase, Nature (London) 257:700.Google Scholar
  84. Kimura, H., Mittal, C. K., and Murad, F., 1976, Appearance of magnesium guanylate cyclase activity in rat liver with sodium azide activation, J. Biol Chem. 251:7769.PubMedGoogle Scholar
  85. Kolata, G. B., 1975, Thromboxanes: The power behind the prostaglandins, Science 190:770.Google Scholar
  86. Kuehl, F. A., Ham, E. A., Zanetti, M. E., Sanford, C. H., Nicol, S. E., and Goldberg, N. D., 1974, Estrogen-related increases in uterine guanosine 3′,5′-cyclic monophosphate levels, Proc. Natl. Acad. Sci. U.S.A. 71:1866.PubMedGoogle Scholar
  87. Kuo, J. F., Wyatt, G. R., and Greengard, P., 1971, Cyclic nucleotide-dependent protein kinases. IX. Partial purification and some properties of guanosine 3′,5′-monophosphate dependent and adenosine 3′,5′-monophosp hate-dependent protein kinases from various tissues and species of Arthropoda, J. Biol. Chem. 246:7159.PubMedGoogle Scholar
  88. Kuo, J. F., Patrick, J. G., and Seery, V. L., 1976, Subunit structure of cyclic GMP-dependent protein kinase from guinea pig fetal lung: Dissociation of holoenzyme by cyclic GMP and histone, Biochem. Biophys. Res. Commun. 72:996.PubMedGoogle Scholar
  89. Kuo, W. N., Shoji, M., and Kuo, J. F., 1976, Stimulatory modulator of guanosine-3′,5′-monophosphate-dependent protein kinase from mammalian tissues, Biochim. Biophys. Acta 437:142.PubMedGoogle Scholar
  90. Lee, T. P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′-cyclic monophosphate content in mammaliam brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 69:3287.PubMedGoogle Scholar
  91. Lichtenstein, M., and Margolis, S., 1968, Histamine release in vitro: Inhibition of catecholamines and methylxanthines, Science 161:902.PubMedGoogle Scholar
  92. Lincoln, T. M., Hall, C. L., Park, C. R., and Corbin, J. D., 1976, Guanosine 3′,5′-cyclic monophosphate binding proteins in rat tissues, Proc. Natl. Acad. Sci. U.S.A. 73:2559.PubMedGoogle Scholar
  93. Loten, E. G., and Sneyd, J. G. T., 1970, An effect of insulin on adipose tissue adenosine 3′,5′-cyclic nucleotide phosphodiesterase, Biochem. J. 120:187.PubMedGoogle Scholar
  94. Macchia, V., Varrone, S., Weissbach, H., Miller, D. L., and Pastan, I., 1975, Guanylate cyclase in Escherichia coli: Purification and properties, J. Biol. Chem. 250:6214.PubMedGoogle Scholar
  95. Manganiello, V., and Vaughan, M., 1972a, Prostaglandin E1 effects on adenosine 3′,5′-cyclic monophosphate concentration and phosphodiesterase activity in fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 69:269.Google Scholar
  96. Manganiello, V., and Vaughan, M., 1972b, An effect of dexamethasone on adenosine 3′,5′-monophosphate content and adenosine 3′,5′-monophosphate phosphodiesterase activity of cultured hepatoma cells, J. Clin. Invest. 51:2763.PubMedGoogle Scholar
  97. Manganiello, V. C., Murad, F., and Vaughan, M., 1971, Effects of lipolytic and antilipolytic agents on cyclic 3′,5′-adenosine monophosphate in fat cells, J. Biol. Chem. 246:2195.PubMedGoogle Scholar
  98. McKeel, D. W., and Jarrett, L., 1974, The enrichment of adenylate cyclase in the plasma membrane and Golgi subcellular fractions of porcine adenohypophysis, J.Cell Biol. 62:231.Google Scholar
  99. Miller, O. V., and Gorman, R. R., 1976, Modulation of platelet cyclic nucleotide content by PGE1 and the prostaglandin endoperoxide PGG2, J. Cyclic Nucleotide Res. 2:79.PubMedGoogle Scholar
  100. Mittal, C. K., and Murad, F., 1977, Formation of adenosine 3′,5′-monophosphate by preparations of guanylate cyclase from rat liver and other tissues, J. Biol. Chem. 252:3136.PubMedGoogle Scholar
  101. Mittal, C. K., Kimura, H., and Murad, F., 1975, Requirement for a macromolecular factor for sodium azide activation of guanylate cyclase, J. Cyclic Nucleotide Res. 1:261.PubMedGoogle Scholar
  102. Mittal, C. K., Kimura, H. K., and Murad, F., 1977, Purification and properties of a protein required for sodium azide activation of guanylate cyclase, J. Biol. Chem. 252:4384.PubMedGoogle Scholar
  103. Mukherjee, C., Caron, M. G., and Lefkowitz, R.J., 1975, Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of β-adrenergic receptor binding sites, Proc. Natl. Acad. Sci. U.S.A. 72:1945.PubMedGoogle Scholar
  104. Murad, F., 1973, Clinical studies and application of cyclic nucleotides, Adv. Cyclic Nucleotide Res. 3:355.PubMedGoogle Scholar
  105. Murad, F., 1976, Cyclic GMP metabolism in transplantable tumors, in: Cyclic Nucleotides and the Regulation of Cell Growth (M. Abou-Sabe’, ed.) Dowden, Hutchinson and Ross, Stroudsburg, Pa., pp. 191–206.Google Scholar
  106. Murad, F., and Kimura, H., 1974, Cyclic nucleotide levels in incubations of guinea pig trachea, Biochim. Biophys. Acta 343:275.PubMedGoogle Scholar
  107. Murad, F., and Pak, C. Y., 1972, Urinary excretion of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate, N. Engl. J. Med. 286:1382.PubMedGoogle Scholar
  108. Murad, F., Chi, Y. M., Rall, T. W., and Sutherland, E. W., 1962, Adenyl cyclase III. The effects of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver, J.Biol. Chem. 237:1233.Google Scholar
  109. Murad, F., Manganiello, V., and Vaughan, M., 1970, Effects of guanosine 3′,5′-monophosphate on glycerol production and accumulation of adenosine 3′,5′-monophosphate by fat cells, J. Biol. Chem. 245:3352.PubMedGoogle Scholar
  110. Murad, F., Kimura, H., Hopkins, H. A., Looney, W. B., and Kovacs, C. J., 1975a, Increased urinary excretion of cyclic guanosine monophosphate in rats bearing Morris hepatoma 3924a, Science 190:58.PubMedGoogle Scholar
  111. Murad, F., Moss, W. W., Johanson, A. J., and Seiden, R. F., 1975b, Urinary excretion of adenosine 3′,5′-monophosphate and guanosine 3′,5′monophosphate in normal children and those with cystic fibrosis,J. Clin. Endocrinol. Metab. 40:552.PubMedGoogle Scholar
  112. Murad, F., Kimura, H., Mittal, C. K., and Arnold, W. P., 1976, Guanylate cyclase: Properties and regulation, in: Proceedings of the Vth International Congress of Endocrinology, Excerpta Medica, Amsterdam.Google Scholar
  113. Neer, E. J., 1976, The size of adenylate cyclase and guanylate cyclase from the rat renal medulla,J. Supramol. Struct. 4:51.PubMedGoogle Scholar
  114. Neethling, A. C., and Shanley, B. C., 1976, Cyclic GMP excretion and hepatoma, Lancet 2:578.PubMedGoogle Scholar
  115. Pastan, I., and Perlman, R. L., 1972, Regulation of gene transcription in E. coli of cyclic AMP, Adv. Cyclic Nucleotide Res. 1:11.PubMedGoogle Scholar
  116. Pastan, I. H., Johnson, G. S., and Anderson, W. B., 1975, Role of cyclic nucleotides in growth control, Annu. Rev. Biochem. 44:491.PubMedGoogle Scholar
  117. Pointer, R. H., Butcher, F. R., and Fain, J. N., 1976, Studies on the role of cyclic guanosine 3′,5′-monophosphate and extracellular Ca2+ in the regulation of glycogenosis in rat liver cells,J. Biol. Chem. 251:2987.PubMedGoogle Scholar
  118. Rall, T. W., and Sutherland, E. W., 1962, Adenyl cyclase II. The enzymatically catalyzed formation of adenosine 3′,5′-phosphate and inorganic pyrophos-phate from adenosine triphosphate, J. Biol. Chem. 237:1228.PubMedGoogle Scholar
  119. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1967, Adenyl cyclase as an adrenergic receptor, Ann. N.Y. Acad. Sci. 139:703.PubMedGoogle Scholar
  120. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York, 531 pp.Google Scholar
  121. Rodgers, G. M., Fisher, J. W., and George, W. J., 1976, Elevated cyclic GMP concentrations in rabbit bone marrow culture and mouse spleen following erythropoietic stimulation, Biochem. Biophys. Res. Commun. 70:287.PubMedGoogle Scholar
  122. Rosen, O. M., Erlichman, J., and Rubin, C. S., 1975, Molecular structure and characterization of bovine heart protein kinase, Adv. Cyclic Nucleotide Res. 5:253.PubMedGoogle Scholar
  123. Rosman, P. M., Agrawal, R., Goodman, A. D., and Steiner, A. L., 1976, Effect of angiotensin II on cyclic guanosine monophosphate and cyclic adenosine monophosphate in human plasma,J. Clin. Endocrinol. Metab. 42:531.PubMedGoogle Scholar
  124. Rudland, P. S., Gospodarowicz, D., and Seifert, W., 1974, Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor, Nature (London) 250:741.Google Scholar
  125. Rudolph, S. A., and Greengard, P., 1974, Regulation of protein phosphorylation and membrane permeability of β-adrenergic agents and cyclic adenosine 3′,5′-monophosphate in the avian erythrocyte,J. Biol. Chem. 249:5684.PubMedGoogle Scholar
  126. Sandler, J. A., Gallin, J. I., and Vaughan, M., 1975, Effects of serotonin, carbamylcholine, and ascorbic acid on leukocyte cyclic GMP and Chemotaxis, J. Cell. Biol. 67:480.PubMedGoogle Scholar
  127. Schultz, G., Böhme, E., and Munske, K., 1969, Guanyl cyclase: Determination of enzyme activity, Life Sci. Part II Biochem. Gen. Mol. Biol. 8:1323.Google Scholar
  128. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., and Sutherland, E. W., 1973, The importance of calcium ions for the regulation of guanosine 3′,5′-cyclic monophosphate levels, Proc. Natl. Acad. Sci. U.S.A. 70:3889.PubMedGoogle Scholar
  129. Schwartz, J. P., 1976, Catecholamine-mediated elevation of cyclic GMP in the rat C-6 glioma cell line, J. Cyclic Nucleotide Res. 2:287.PubMedGoogle Scholar
  130. Shaw, J. W., Oldham, S. B., Rosoff, L., Bethune, J. E., and Fichman, M. P., 1977, Urinary cyclic AMP analyzed as a function of the serum calcium and parathyroid hormone in the differential diagnosis of hypercalcemia, J. Clin. Invest. 59:14.PubMedGoogle Scholar
  131. Siegel, M. I., Puca, G. A., and Cuatrecasas, P., 1976, Guanylate cyclase: Existence of different forms and their regulation of nucleotides in calf uterus, Biochem. Biophys.Acta 438:310.PubMedGoogle Scholar
  132. Steiner, A. L., Pagliara, A. S., Chase, L. R., and Kipnis, D. M., 1972, Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids, J. Biol. Chem. 247:1114.PubMedGoogle Scholar
  133. Steiner, A. L., Ong, S., and Wedner, H. J., 1976, Cyclic nucleotide immunocyto-chemistry, Adv. Cyclic Nucleotide Res. 7:115.PubMedGoogle Scholar
  134. Stoner, J. S., Manganiello, V., and Vaughan, M., 1974, Guanosine cyclic 3′,5′-monophosphate and guanylate cyclase activity in guinea pig lung: Effects of acetylcholine and Cholinesterase inhibitors, Mol. Pharmacol. 10:155.PubMedGoogle Scholar
  135. Sutherland, E. W., and Rall, T. W., 1958, Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem. 232:1077.PubMedGoogle Scholar
  136. Takai, Y., Nakaya, S., Inoue, M., Kishimoto, A., Nishiyama, K., Yamamura, H., and Nishizuka, Y., 1976, Comparison of mode of activation of guanosine 3′:5′-monophosphate-dependent and adenosine 3′:5′-monophosphate-dependent protein kinases from silkworm,J. Biol. Chem. 251:1481.PubMedGoogle Scholar
  137. Terasaki, W. L., and Brooker, G., 1977, Cardiac adenosine 3′,5′-monophosphate: Free and bound forms in the isolated rat atrium,J. Biol. Chem. 252:1041.PubMedGoogle Scholar
  138. Thiers, R. E., and Vallee, B. L., 1957, Distribution of metals in subcellular fractions of rat liver,J. Biol. Chem. 226:911.PubMedGoogle Scholar
  139. Thomas, E. W., Murad, F., Looney, W. P., and Morris, H. P., 1973, Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate concentrations in Morris hepatomas of different growth rates, Biochim. Biophys. Acta 297:564.PubMedGoogle Scholar
  140. Thompson, W. J., and Williams, R. H., 1974, Effect of adrenalectomy on cyclic 3′,5′-guanosine monophosphate metabolism of rat liver and other tissues, Arch. Biochem. Biophys. 165:468.PubMedGoogle Scholar
  141. Thompson, W. J., Williams, R. H., and Little, S. A., 1973, Activation of guanyl cyclase and adenyl cyclase by secretin, Biochim. Biophys. Acta 302:329.PubMedGoogle Scholar
  142. Tomlinson, S., Hendy, G. N., and O’Riordan, J. L. H., 1976, A simplified assessment of response to parathyroid hormone in hypoparathyroid patients, Lancet 1:62.PubMedGoogle Scholar
  143. Voorhees, J. J., Duell, E. A., Creehan, P., Staiviski, M., and Harrell, E. R., 1976, Cyclic AMP and cyclic GMP in epidermal physiology and pathophysiology, Curr. Prob. Dermatol. 6:107.Google Scholar
  144. Wallach, D., and Pastan, I., 1976, Stimulation of guanylate cyclase of fibroblasts by free fatty acids,J. Biol. Chem. 251:5802.PubMedGoogle Scholar
  145. Wang, J. H., Teo, T. S., Ho, H. C., and Stevens, F. C., 1975, Bovine heart protein activator of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5:179.PubMedGoogle Scholar
  146. Weight, F. F., Petzold, G., and Greengard, P., 1974, Guanosine 3′,4′-monophosphate in sympathetic ganglia: Increase associated with synaptic transmission, Science 186:942.PubMedGoogle Scholar
  147. Weinstein, Y., Segal, S., and Melmon, K. L., 1975, Specific mitogenic activity of 8-Br-guanosine 3′,5-monophosphate on B lymphocytes,J. Immunol. 115:112.PubMedGoogle Scholar
  148. White, A. A., 1975, Guanylate cyclase activity in heart and lung, Adv. Cyclic Nucleotide Res. 5:353.PubMedGoogle Scholar
  149. White, A. A., and Aurbach, G. D., 1969, Detection of guanyl cyclase in mammalian tissues, Biochim. Biophys. Acta 191:686.PubMedGoogle Scholar
  150. Wojcik, J. D., Grand, R. J., and Kimberg, D. V., 1975, Amylase secretion by rabbit parotid gland. Role of cyclic AMP and cyclic GMP, Biochim. Biophys. Acta 411:250.PubMedGoogle Scholar
  151. Wray, H. L., Corrigan, D. F., Burton, J., Schaaf, M., and Earle, J. M., 1975, Elevated urinary cyclic GMP in patients with Cushing’s syndrome, in: Proceedings of the 57th Annual Meeting of the Endocrine Society, p. 362.Google Scholar
  152. Yamashita, K., and Field, J. B., 1972, Elevation of cyclic guanosine 3′,5′-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride,J. Biol. Chem. 247:7062.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Ferid Murad
    • 1
  • Gerald D. Aurbach
    • 2
  1. 1.Division of Clinical Pharmacology, Clinical Research CenterUniversity of VirginiaCharlottesvilleUSA
  2. 2.Metabolic Diseases Branch, National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations