Long-Range Radiationless Energy Transfer in Condensed Media

  • John O’M. Bockris
  • Shahed U. M. Khan


One of the ideas introduced into electrode kinetics in recent years is the concept of the Russian school led at the time (1970) by Levich that activation energy in electrochemical reactions is not due to momentum transfer in collisions nor to electrostatic interactions with its nearest neighbors, but to the transfer of energy in the form of polarons over long distances, e. g., 103 Å.1 It is important, therefore, to know the mechanism by which energy may be transferred over long distances, so that we may understand at a better level the concept of long-distance activation used by Levich,1 Dogonadze,2 and others.3–6


Energy Transfer Frenkel Exciton Electronic Energy Transfer Nonradiative Transfer Radiationless Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Levich, Physical Chemistry, An Advanced Treatise (H. Eyring, D. Henderson, and Y. Jost, eds.), Volume IX, p. 985, Academic Press, New York (1971).Google Scholar
  2. 2.
    R. D. Dogonadze, Reactions of Molecules at Electrodes (N. S. Hush, ed.), Wiley-Inter-science, New York (1971).Google Scholar
  3. 3.
    R. A. Marcus, J. Chem. Phys. 43, 679 (1965).CrossRefGoogle Scholar
  4. 4.
    P. P. Schmidt, J. Chem. Phys. 58, 4290 (1973).CrossRefGoogle Scholar
  5. 5.
    W. Schmickler and W. Vielstich, Electrochim. Acta 18, 883 (1973).CrossRefGoogle Scholar
  6. 6.
    Yu. I. Kharkats and J. Ulstrup, J. Electroanal. Chem. 65, 555 (1975).CrossRefGoogle Scholar
  7. 7.
    G. Cario and J. Frank, J. Physik. 17, 202 (1923).CrossRefGoogle Scholar
  8. 8a.
    F. Perrin, Ann. Phys. 17, 20 (1932).Google Scholar
  9. 8b.
    J. Perrin, Deuxième Conseil de Chimie Solvay, Bruxelles (1924).Google Scholar
  10. 8c.
    H. Kollemann and F. London, Phys. Chem. 132, 207 (1929).Google Scholar
  11. 9.
    T. Forster, Ann. Physik 2, 55 (1948).CrossRefGoogle Scholar
  12. 10.
    E. J. Bowen and R. Livingston, J. Amer. Chem. Soc. 76, 6300 (1954).CrossRefGoogle Scholar
  13. 11.
    J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).CrossRefGoogle Scholar
  14. 12.
    E. J. Bowen, J. Chem. Phys. 13, 306 (1945).CrossRefGoogle Scholar
  15. 13.
    H. Kühn, Naturwiss. 54, 429 (1967).CrossRefGoogle Scholar
  16. 14.
    N. Mataga, H. Obashi, and T. Okada, J. Phys. Chem. 73, 370 (1969).CrossRefGoogle Scholar
  17. 15.
    H. K. Hong and G. W. Robinson, J. Chem. Phys. 54, 1369 (1971).CrossRefGoogle Scholar
  18. 16.
    V. L. Broude, A. V. Leidermann, and T. D. Tratas, Sov. Phys. Solid State 13, 3058 (1972).Google Scholar
  19. 17.
    H. Port, D. Vogel, and H. C. Wolf, Chem. Phys. Lett. 34, 23 (1975).CrossRefGoogle Scholar
  20. 18.
    O. Simpson, Proc. Roy. Soc. (London) A238, 6102 (1957).Google Scholar
  21. 19.
    G. Vaubel and H. Baessler, Mol. Cryst. 12, 47 (1970).CrossRefGoogle Scholar
  22. 20.
    W. Klopffer, J. Chem. Phys. 50, 1689 (1969).CrossRefGoogle Scholar
  23. 21.
    J. B. Birks and M. S. S. C. P. Leite, J. Phys. B3, 513 (1970).Google Scholar
  24. 22.
    E. Pantos, S. S. Hasnain, and I. T. Steinberger, Chem. Phys. Lett. 46, 395 (1977).CrossRefGoogle Scholar
  25. 23.
    J. Jortner, Vacuum Ultraviolet Radiation Physics (E. E. Koch, R. Haensel, and C. Kunz, eds.), P-263, Pergamon/Vieweg, London/Braunschweig (1974).Google Scholar
  26. 24.
    Z. Ophir, N. Schwentner, B. Raz, M. Skibowski, and J. Jortner, J. Chem. Phys. 63, 1972 (1975).CrossRefGoogle Scholar
  27. 25.
    D. Pudewill, F. J. Himpsel, V. Saile, N. Schwentner, M. Skibowski, E. E. Koch, and J. Jortner, DESY Report, DESY SR-75/17 (1975).Google Scholar
  28. 26.
    O. Chesnovsky, B. Raz, and J. Jortner, J. Chem. Phys. 59, 5554 (1973).CrossRefGoogle Scholar
  29. 27.
    N. Schwentner and E. E. Koch, DESY Report, DESY SR-76/01 (1976).Google Scholar
  30. 28.
    U. Fano and L. Fano, Physics of Atoms and Molecules, University of Chicago Press, Chicago (1970).Google Scholar
  31. 29.
    R. Kubo and T. Nagamiya (eds.), Solid State Physics, McGraw-Hill, New York (1969).Google Scholar
  32. 30.
    T. Forster, Ann. Physik 2, 58 (1948).Google Scholar
  33. 31.
    T. Forster, Radiat. Res. Suppl. 2, 326 (1960).CrossRefGoogle Scholar
  34. 32a.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
  35. 32b.
    R. G. Bennett, J. Chem. Phys. 41, 3037 (1964).CrossRefGoogle Scholar
  36. 32c.
    U. K. A. Klein, R. Frey, M. Hauser, and U. Goselle, Chem. Phys. Lett. 41, 139 (1976).CrossRefGoogle Scholar
  37. 33.
    J. Frenkel, Phys. Rev. 37, 17 (1931).CrossRefGoogle Scholar
  38. 34.
    G. H. Wannier, Phys. Rev. 52, 191 (1937).CrossRefGoogle Scholar
  39. 35.
    D. L. Dexter and R. S. Knox, Excitons, Wiley-Interscience, New York (1965).Google Scholar
  40. 36.
    A. S. Davydov, Theory of Molecular Excitons, Plenum Press, New York (1970).Google Scholar
  41. 37.
    M. Gover and R. Silbey, J. Chem. Phys. 52, 2099 (1970); 54, 4893 (1971); see alsoCrossRefGoogle Scholar
  42. U. Göselle, Chem. Phys. Lett. 43, 1 (1976).CrossRefGoogle Scholar
  43. 38.
    V. Ern, A. Suna, Y. Tomkiewicz, P. Avakian, and R. P. Groff, Phys. Rev. B5, 3222 (1972); see alsoGoogle Scholar
  44. A. I. Burshstein, Sov. JETPP hys. 35, 882 (1972).Google Scholar
  45. 39.
    I.I. Abram and R. Silbey, J. Chem. Phys. 63, 2317 (1975).CrossRefGoogle Scholar
  46. 40.
    D. Emin, Advan. Phys. 22, 57 (1973).CrossRefGoogle Scholar
  47. 41.
    A. Nakamura, J. Chem. Phys. 64, 185 (1976)CrossRefGoogle Scholar
  48. R. G. De Losh and W. J. C. Grant, Phys. Rev. 1, 1754 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • John O’M. Bockris
    • 1
  • Shahed U. M. Khan
    • 2
  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.University of BonnBonnWest Germany

Personalised recommendations