Time-Dependent Perturbation Theory

  • John O’M. Bockris
  • Shahed U. M. Khan


The part of science that deals with the rate of change of concentration in reactions (chemical kinetics) was based initially upon a primitive phenomenological viewpoint. Thus, the concept that transitions between one compound or atom and another (e. g., H2 + I2⇄HI) is connected with encounters between molecules in the gas phase was current in the nineteenth century.1 The first quantitative theory of the speed at which molecular change occurred arose from the kinetic theory of gases. In these early thoughts, the gas phase only was considered; no attention was paid to happenings on the surfaces nor to those in condensed phases.


Electromagnetic Radiation Uncertainty Principle Schrodinger Equation Perturbation Energy Summation Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bodenstein, Z Phys. Chem. 13, 56 (1894); 22, 1 (1897); 29, 295 (1899).Google Scholar
  2. 2.
    C. N. Hinsheiwood, Kinetics of Chemical Change in Gaseous Systems, Oxford University Press, Oxford, (1976).Google Scholar
  3. 3.
    S. Arrhenius, Z Phys. Chem. 7, 226 (1889).Google Scholar
  4. 4.
    J. C. Maxwell, Phil. Mag. 19, 31 (1860).Google Scholar
  5. 5.
    H. Eyring, J. Chem. Phys. 3, 107 (1935).CrossRefGoogle Scholar
  6. 6.
    M. L. Evan and M. Polanyi, Trans. Faraday Soc. 31, 775 (1935).Google Scholar
  7. 7.
    K. J. Laidler, Theories of Absolute Reaction Rate, McGraw-Hill, New York (1969).Google Scholar
  8. 8.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  9. 9.
    S. Gasiorowicz, Quantum Physics, John Wiley and Sons, New York (1974).Google Scholar
  10. 10.
    E. Marzbacher, Quantum Mechanics, John Wiley and Sons, New York (1970).Google Scholar
  11. 11.
    R. W. Gurney, Proc. Roy. Soc. A134, 166 (1931).Google Scholar
  12. 12.
    M. S. Waite and A. Vecht, J. Electrochem. Soc. 121, 109 (1974).CrossRefGoogle Scholar
  13. 13.
    R. M. Eisberg, Fundamentals of Modern Physics, John Wiley and Sons, New York (1967).Google Scholar
  14. 14.
    H. L. Strauss, Quantum Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey (1968).Google Scholar
  15. 15.
    J. O’M. Bockris and R. K. Sen, Chem. Phys. Lett. 18, 166 (1972).Google Scholar
  16. 16.
    C. R. Gatz, in Introduction to Quantum Chemistry (T. L. Brown, ed.), Merril Physical and Inorganic Chemistry Series, Bell and Howell Company, Columbus, Ohio (1971).Google Scholar
  17. 17.
    J. O’M. Bockris and A. K. Reddy, Modern Electrochemistry, Plenum Press, New York (1973).CrossRefGoogle Scholar
  18. 18.
    J. O’M. Bockris and S. U. M. Khan, J. Res. Inst. Catal. Hokkaido Univ. 25, 63 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • John O’M. Bockris
    • 1
  • Shahed U. M. Khan
    • 2
  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.University of BonnBonnWest Germany

Personalised recommendations