Advertisement

The Hydrated Electron

  • John O’M. Bockris
  • Shahed U. M. Khan

Abstract

Solvation of electrons in polar liquids is a well-investigated phenomenon. Advanced and elegant observations upon the properties of such species have become abundant.1–4 But there is as yet no single model in terms of which the observations may be rationalized and fresh phenomena predicted. Solvated electrons have been observed in various solvent systems; we will deal in this chapter only with the hydrated electron, because it is this that has the greatest relevance to electrochemists interested in discussions of quantal treatments.

Keywords

Wave Function Electron Transfer Reaction Solvation Shell Hydration Energy Cavity Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Hart (ed.), Advances in Chemistry Series, Vol. 50, American Chemical Society, New York (19657).Google Scholar
  2. 2.
    E. J. Hart and M. Anbar, The Hydrated Electron, John Wiley and Sons, New York (1970).Google Scholar
  3. 3.
    G. Scholes, Ann. Repts. Chem. Soc. 67A, 169 (1970).Google Scholar
  4. 4.
    L. Kevan, Advances in Radiation Chemistry (M. Burton and J. L. Magee, eds.), John Wiley and Sons, New York (1974).Google Scholar
  5. 5.
    E. J. Hart and J. W. Boag, J. Amer. Chem. Soc. 89, 4090 (1962).CrossRefGoogle Scholar
  6. 6.
    J. W. Boag and E. J. Hart, Nature 197, 45 (1963).CrossRefGoogle Scholar
  7. 7.
    D. C. Walker, Anal. Chem. 39, 896 (1967).CrossRefGoogle Scholar
  8. 8.
    T. Pyle and C. Roberts, J. Electroanal. Chem. 115, 247 (1968).CrossRefGoogle Scholar
  9. 9.
    I. A. Kennedy and D. C. Walker, Electroanalytical Chemistry (A. J. Bard, ed.), Vol. 5, Marcel Dekker, New York (1971).Google Scholar
  10. 10.
    L. I. Antropov and I. Nauki, Elektrokhim. 6, 5 (1971).Google Scholar
  11. 11.
    L. I. Krishtalik, Electrochem. Acta 21, 693 (1976).CrossRefGoogle Scholar
  12. 12.
    B. E. Conway, Modern Aspects of Electrochemistry (B. E. Conway and J. O’M. Bockris, eds.), Vol. 7, Chapter 2, Plenum Press, New York (1972).Google Scholar
  13. 13.
    G. C. Barker, A. W. Gardner, and D. C. Sammon, J. Electrochem. Soc. 113, 1183 (1966).CrossRefGoogle Scholar
  14. 14.
    G. C. Barker, Trans. Faraday Soc. 66, 1498, 1509 (1970).CrossRefGoogle Scholar
  15. 15.
    G. C. Barker and V. Concialini, J. Electroanal. Chem. 45, 320 (1973).CrossRefGoogle Scholar
  16. 16.
    G. C. Barker, B. Stringer, and M. J. Williams, J. Electroanal. Chem. 51, 305 (1974).CrossRefGoogle Scholar
  17. 17.
    P. Delahay and V. S. Srinivasan, J. Phys. Chem. 20, 520 (1966).Google Scholar
  18. 18.
    R. de Levie and J. E. Krenser, J. Electroanal. Chem. 21, 221 (1969).CrossRefGoogle Scholar
  19. 19.
    J. Jortner, J. Chem. Phys. 30, 834 (1959).Google Scholar
  20. 20.
    J. Jortner, Molec. Phys. 5, 257 (1962).CrossRefGoogle Scholar
  21. 21.
    J. Jortner, Radiation Res. Suppl. 4, 24 (1964).CrossRefGoogle Scholar
  22. 21a.
    M. Tachiya and H. Watanabe, J. Chem. Phys. 66, 3056 (1977).CrossRefGoogle Scholar
  23. 22.
    M. Tachiya, Y. Tabata, and K. Oshima, J. Phys. Chem. 77, 263 (1973).CrossRefGoogle Scholar
  24. 23.
    M. Tachiya and A. Mozumder, J. Chem. Phys. 60, 3037 (1974); 63, 1959 (1975).CrossRefGoogle Scholar
  25. 24.
    M. Tachiya and H. Watanabe, J. Chem. Phys. 66, 3056 (1977).CrossRefGoogle Scholar
  26. 25.
    K. Iguchi, J. Chem. Phys. 48, 1735 (1968).CrossRefGoogle Scholar
  27. 26.
    J. H. Baxendale, Radiation Res. Suppl. 4, 139 (1964).CrossRefGoogle Scholar
  28. 27.
    W. C. Gottschal and E. J. Hart, J. Phys. Chem. 71, 2102 (1967).CrossRefGoogle Scholar
  29. 28.
    K. Fueki, D. F. Feng, and L. Kevan, J. Phys. Chem. 74, 1976 (1970).CrossRefGoogle Scholar
  30. 29.
    K. Fueki, D. F. Feng, L. Kevan, and R. E. Christoffersen, J. Phys. Chem. 75, 2297 (1971).CrossRefGoogle Scholar
  31. 30.
    K. Fueki, D. F. Feng, and L. Kevan, J. Amer. Chem. Soc. 95, 1398 (1973).CrossRefGoogle Scholar
  32. 31.
    K. Fueki, D. F. Feng, and L. Kevan, J. Phys. Chem. 80, 1381 (1976).CrossRefGoogle Scholar
  33. 32.
    D. F. Feng, D. Ebbing, and L. Kevan, J. Chem. Phys. 61, 249 (1974).CrossRefGoogle Scholar
  34. 33.
    J. O’M. Bockris, S. U. M. Khan, and D. B. Matthews, J. Res. Inst. Catal. Hokkaido Univ. 22, 1 (1974).Google Scholar
  35. 34.
    S. Schlick, P. A. Narayana, and L. Kevan, J. Chem. Phys. 64, 3153 (1976).CrossRefGoogle Scholar
  36. 35.
    M. Natori and T. Watanabe, J. Phys. Soc. Japan 21, 1573 (1966).CrossRefGoogle Scholar
  37. 36.
    J. Moorse, L. A. Young, and E. S. Huurwitz, Phys. Rev. 48, 948 (1935).CrossRefGoogle Scholar
  38. 37.
    M. Natori, J. Phys. Soc. Japan 24, 1735 (1968); 27, 1309 (1969).Google Scholar
  39. 38.
    M. Weissmann and N. V. Cohan, Chem. Phys. Lett. 7, 445 (1970).CrossRefGoogle Scholar
  40. 39.
    M. Weissmann and N. V. Cohan, J. Chem. Phys. 59, 1385 (1973).CrossRefGoogle Scholar
  41. 40.
    G. Howat and B. C. Webster, J. Phys. Chem. 76, 3714 (1972).CrossRefGoogle Scholar
  42. 41.
    S. Ray, Chem. Phys. Lett. 11, 573 (1971).CrossRefGoogle Scholar
  43. 42.
    L. Onsager and M. Dupuis, Electrolytes (B. Pasco, ed.), Pergamon Press, London (1972).Google Scholar
  44. 43.
    C. R. Gatz, Introduction to Quantum Chemistry, Charles E. Morrill, Columbus, Ohio (1971).Google Scholar
  45. 44.
    S. Ishimaru, H. Kato, T. Yamabe, and K. Fukui, J. Phys. Chem. 77, 1450 (1973).CrossRefGoogle Scholar
  46. 45.
    G. Nilson, J. Chem. Phys. 56, 3427 (1972).CrossRefGoogle Scholar
  47. 46a.
    R. A. Marcus, J. Chem. Phys. 43, 3477 (1965).CrossRefGoogle Scholar
  48. 46b.
    P. George and J. S. Griffith, The Enzymes, Vol. 1, Chapter 8, p. 347 (P. D. Boyer, H. Lardy, and K. Myrberg, eds.), Academic Press, New York (1959).Google Scholar
  49. 47.
    R. A. Marcus, Advan. Chem. Ser. 50, 138 (1965).CrossRefGoogle Scholar
  50. 48.
    R. A. Marcus, J. Chem. Phys. 24, 966 (1956).CrossRefGoogle Scholar
  51. 49.
    R. A. Marcus, Ann. Rev. Phys. Chem. 15, 155 (1964).CrossRefGoogle Scholar
  52. 50.
    S. I. Pekar, Untersuchungen über die Elecktronentheorie der Kristalle, Academische Verlag, Berlin (1954).Google Scholar
  53. 51.
    K. Kohru and S. Annaka, J. Cryst. Soc. Japan 7, 21 (1965).Google Scholar
  54. 52.
    D. C. Walker, Can. J. Chem. 44, 2226 (1966).CrossRefGoogle Scholar
  55. 53.
    D. C. Walker, Can. J. Chem. 45, 807 (1967).CrossRefGoogle Scholar
  56. 54.
    D. C. Walker, Quart. Rev. 21, 79 (1967).CrossRefGoogle Scholar
  57. 55.
    M. Heyrovsky, Proc. Roy. Soc. (London) A301, 411 (1967).Google Scholar
  58. 56.
    S. Argade and J. O’M. Bockris, J. Chem. Phys. 49, 5133 (1968).CrossRefGoogle Scholar
  59. 57.
    S. Trasatti, J. Electro-analyt. Chem. 33, 351 (1971).CrossRefGoogle Scholar
  60. 58.
    J. O’M. Bockris and M. A. Habib, J. Electro-analyt. Chem. 68, 367 (1976).CrossRefGoogle Scholar
  61. 59.
    P. Schindelwoff, quoted by B. E. Conway.12 Google Scholar
  62. 60.
    A. C. Wahl, R. H. Land, and F. T. Janis, KRAG (A Computing System for Polyatomic Molecules), Argonne National Laboratory (1971).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • John O’M. Bockris
    • 1
  • Shahed U. M. Khan
    • 2
  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.University of BonnBonnWest Germany

Personalised recommendations