Advertisement

The Relevance of Endocasts for Studying Primate Brain Evolution

  • Ralph L. Holloway
Part of the Advances in Primatology book series (AIPR)

Abstract

The most proximal evidence for brain evolution within any taxonomic group of animals is from paleoneurology, the study of brain endocasts. The higher primates, however, i.e., pongids and hominids, have a notorious reputation for not being too faithful in leaving solid, interpretable evidence on the surface of their endocasts. Whether this is because they are relatively large-brained creatures or simply phyletically perverse and spiteful in character, preferring that their brain phylogeny remain unknown because of meningeal tissues’ conspiring to eradicate all decent gyral and sulcal configurations, is unknown at present. Certainly the first factor, large brain size, is in all likelihood paramount. In any event, except for a very few exceptional cases in both chimpanzees and humans, the cortical gyri and sulci are covered by thick meninges and usually do not imprint their forms on the internal table of bone of the cranium.

Keywords

Brain Evolution Brain Size Fossil Hominid Occipital Polis Cortical Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, W. E. Le Gros, 1947. Observations on the anatomy of the fossil Australopithecinae. J. Anat. 81:300.PubMedGoogle Scholar
  2. Dart, R. A. 1956. The relationship of brain size and brain pattern to human status. S. Afr.J. Med. Sci. 21:23.PubMedGoogle Scholar
  3. Dewson, J. H. 1976. Preliminary evidence of hemispheric asymmetry of auditory functions in monkeys. In S. Hamad et al. (ed.). Lateralization in the Nervous System. Academic Press, New York. Pp. 63–74.Google Scholar
  4. Dimond, S. J., and Beaumont, J. G. (eds.). 1974. Hemisphere Function in the Human Brain. Paul Elek, London.Google Scholar
  5. Falk, D. D. 1976. External neuroanatomy of the Cercopithecoidea. Ph.D. Thesis, University of Michigan, Ann Arbor.Google Scholar
  6. Holloway, R. L. 1964. Some aspects of quantitative relations in the primate brain. Unpublished Ph.D. Dissertation. University of California, Berkeley.Google Scholar
  7. Holloway, R. L. 1968. The evolution of the primate brain: Some aspects of quantitative relations. Brain Res. 7:121–172.PubMedCrossRefGoogle Scholar
  8. Holloway, R. L. 1970a. New endocranial values for the australopithecines. Nature 227:199–200.PubMedCrossRefGoogle Scholar
  9. Holloway, R. L. 1970b. Australopithecine endocast (Taung specimen, 1924): A new volume determination. Science 168:966–968.PubMedCrossRefGoogle Scholar
  10. Holloway, R. L. 1972a. Australopithecine endocasts, brain evolution in the Hominoidea and a model of hominid evolution. In R. H. Tuttle (ed.). The Functional and Evolutionary Biology of Primates. Aldine Press, Chicago. Pp. 185–204.Google Scholar
  11. Holloway, R. L. 1972b. New australopithecine endocast, SKI585, from Swartkrans, S. Africa. Am. J. Phys. Anthropol. 37:173–186.CrossRefGoogle Scholar
  12. Holloway, R. L. 1973a. New endocranial values for the East African early hominids. Nature 243:97–99.PubMedCrossRefGoogle Scholar
  13. Holloway, R. L. 1973b. Endocranial capacities of the early African hominids and the role of the brain in human mosaic evolution. J. Hum. Evol. (Dart Memorial Volume) 2:449–450.Google Scholar
  14. Holloway, R. L. 1974. The casts of fossil hominid brains. Sci. Am. 231(1):6–115.CrossRefGoogle Scholar
  15. Holloway, R. L. 1975a. 43rd James Arthur Lecture at the American Museum of Natural History, on the Evolution of the Human Brain, The role of human social behavior in the evolution of the brain, 1973. American Museum of Natural History.Google Scholar
  16. Holloway, R. L. 1975b. Early hominid endocasts: Volumes, morphology, and significance. In R. H. Tuttle (ed.). Primate Functional Morphology and Evolution. Mouton Press, Hague. Pp. 393–416.CrossRefGoogle Scholar
  17. Holloway, R. L. 1976. Paleoneurological evidence for language origins. In S. R. Harnad, H. D. Steklis, and J. Lancaster (eds.). Origins and Evolution of Language and Speech. Ann. N.Y. Acad. Sci. 280:330–348.Google Scholar
  18. Holloway, R. L. 1978. Some problems of hominid brain endocast reconstruction, allometry, and neural reorganization, to appear in Colloquium VI of the IX Congress of U.I.S.S.P.P., Nice, 1976 Congress. In press.Google Scholar
  19. Jerison, H. 1973. Evolution of the Brain and Intelligence. Academic Press, New York.Google Scholar
  20. Le Gros Clark, see Clark.Google Scholar
  21. LeMay, M. 1975. The language capability of Neanderthal man. Am. J. Phys. Anthropol. 42:9–14.CrossRefGoogle Scholar
  22. LeMay, M. 1976. Morphological cerebral asymmetries of modern man, fossil man, and non-human primate. In S. R. Harnad, H. D. Steklis, J. Lancaster (eds.). Origins and Evolution of Language and Speech, Ann. N. Y. Acad. Sci. 280:349–360.Google Scholar
  23. LeMay, M. 1977. Asymmetries of the skull and handedness. J. Neurol. Sci. 32:243–253.PubMedCrossRefGoogle Scholar
  24. LeMay, M., and Culebras, A. 1972. Human brain-morphological differences in the hemispheres demonstrable by carotid arteriography. N. Eng. J. Med. 287:168–170.CrossRefGoogle Scholar
  25. LeMay, M., and Geschwind, N. 1978. Asymmetries of the human cerebral hemispheres. In A. Carmazza and E. Zurif (eds.). The Acquisition and Breakdown of Language Parallels and Divergences. Johns Hopkins Press, Baltimore. In press.Google Scholar
  26. Murrill, R. I., and Wallace, D. T. 1971. A method of making an endocranial cast through the foramen magnum of an intact skull. Am. J. Phys. Anthropoi. 34:441–446.CrossRefGoogle Scholar
  27. Oyen, O. J., and Walker, A. 1977. Stereometric craniometry. Am. J. Phys. Anthropol. 46:177–182.PubMedCrossRefGoogle Scholar
  28. Radinsky, L. 1968. Evolution of somatic sensory specialization in otter brains. J. Comp. Neurol. 134:495–506.PubMedCrossRefGoogle Scholar
  29. Radinsky, L. 1970. The fossil evidence of prosimian brain evolution. In C. R. Noback, and W. Montagna (eds.). The Primate Brain. Appleton-Century-Croft, New York. Pp. 209–224.Google Scholar
  30. Radinsky, L. 1971. An example of parallelism in carnivore brain evolution. Evolution 25, 518–522.CrossRefGoogle Scholar
  31. Radinsky, L. 1972. Endocasts and studies of primate brain evolution. In R. H. Tuttle (ed.). Functional and Evolutionary Biology of Primates. Aiding-Atherton, Chicago. Pp.175–184.Google Scholar
  32. Radinsky, L. 1974a. Prosimian brain morphology: Functional and phylogenetic implications. In R. D. Martin, G. A. Doyle, and A. C. Walker (eds.). Prosimian Biology. Duckworth, London. Pp. 781–798.Google Scholar
  33. Radinsky, L. 1974b. The fossil evidence of anthropoid brain evolution. Am. J. Phys. Anthropol. 41:15–28.CrossRefGoogle Scholar
  34. Radinsky, L. 1975a. Evolution of the felid brain. Brain Behav. Evol. 11:214–254.PubMedCrossRefGoogle Scholar
  35. Radinsky, L. 1975b. Viverrid neuroanatomy: Phylogenetic and behavioral implications. J. Mammal. 56:130–150.PubMedCrossRefGoogle Scholar
  36. Radinsky, L. 1975c. Primate brain evolution. Am. Sci. 63.656–663.PubMedGoogle Scholar
  37. Radinsky, L. 1977. Early primate brains: Facts and fiction. J. Hum. Evol. 6:79–86.CrossRefGoogle Scholar
  38. Saban, R. 1976. A Propos des Traces Vasculaires Endocraniennes chez l’Homme de Rabat. IX Congres USIPP, Nice, Coll. 6. Les Plus Anciens Hominides. Pretirage. Pp. 430–444.Google Scholar
  39. Saban, R. 1977. The place of Rabat man (Kebibat, Morocco) in human evolution. Curr. Anthropol. 18(3):518–524.CrossRefGoogle Scholar
  40. Sacher, G. 1970. Allometric and factorial analysis of brain structure in insectivores and primates. In C. R. Noback, and W. Montagna (eds.). The Primate Brain. Appleton-Century-Crofts, New York. Pp. 245–287.Google Scholar
  41. Schepers, G. W. H. 1946. Part II in the South African Fossil Ape-Man by R. Broom. Transvaal Mus. Mem. 2.Google Scholar
  42. Schepers, G. W. H. 1950. Part II in Broom, R. Robinson, J. T. and Schepers, G. W. H. Sterkfontein Ape-man Pleisianthropus.Transvaal Mus. Mem. 4.Google Scholar
  43. Schepers, G. W. H. 1952. Part II. The braincasts in ape-man of Swartkrans.Transvaal Mus. Mem. 6.Google Scholar
  44. Shellshear, V. L., and Smith, G. E. 1934. A comparative study of the endocranial cast of Sinanthropus. Philos. Trans. R. Soc. London Ser. B 223:469.CrossRefGoogle Scholar
  45. Teszer, D., Tzauaras, A., Gruner, J., and Hecaen, H. 1972. L’asymétrie droite-gauche du planum temporale. A propos de l’étude anatomique de 100 cerveaux. Rev. Neurol. 126:444–449.Google Scholar
  46. von Bonin, G. 1963. The Evolution of the Human Brain. University of Chicago Press, Chicago.Google Scholar
  47. Tobias, P. V. 1971. The Brain in Hominid Evolution. Columbia University Press, New York.CrossRefGoogle Scholar
  48. Welker, W. I., and Campos, G. B. 1963. Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. J. Comp. Neurol. 120:19–36.PubMedCrossRefGoogle Scholar
  49. Yeni-Komshian, G. H., and Benson, D. A. 1976. Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys. Science 192:387–389.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Ralph L. Holloway
    • 1
  1. 1.Department of AnthropologyColumbia UniversityNew YorkUSA

Personalised recommendations