The Organization of Visual Cortex in Primates

  • Jon H. Kaas
Part of the Advances in Primatology book series (AIPR)


The purpose of this chapter is to consider how visual cortex is subdivided and interconnected in primates. Subdividing neocortex has long been a problem for neuroscientists. It has been clear that for each sensory system the cortex contains a number of interrelated parts or areas, but it has been difficult to determine the exact number, location, and interconnections of the cortical areas of a system in any mammal. Differences in histological structure were first used to subdivide neocortex, but it was difficult or impossible to determine the significance of most of the areas so demarcated. Thus, Campbell (1905) parceled the neocortex of man into 20 distinct zones; Brodmann (1909) followed with 47, and C. and O. Vogt (1919) distinguished 200 fields. Later investigators postulated various numbers, with Lashley and Clark (1946) taking an extreme position and arguing that the cortex of man (or rat for that matter) contained no more than 7–10 subdivisions of functional significance. Later, considerable progress was made when the electrophysiological investigations of Woolsey, Adrian, and others established the primary and secondary sensory areas as detailed representations of sensory surfaces. More recently, microelectrode recordings have been used to determine the extent and boundaries of such sensory representations accurately and to relate these areas precisely to histological subdivisions of neocortex. In the more advanced brains, the sensory and motor areas, so clearly delimited by electrophysiological means, were found to constitute only a fraction of the total cortical surface. Much of the cortex, the so-called association cortex, was “silent” during recording and further subdivision was not possible. This condition has proven to be largely an artifact of the anesthetics popular at the time, and it is now clear that most of the cortex of higher primates responds to at least one modality. Furthermore, microelectrode recordings indicate that much of “association cortex” is subdivided into a number of separate areas, each of which contains a detailed map of a sensory surface such as the retina, skin, or cochlear partition.


Visual Cortex Visual Area World Monkey Lateral Geniculate Nucleus Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J. M., and Kaas, J. H. 1971a. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31:85–105.PubMedCrossRefGoogle Scholar
  2. Allman, J. M., and Kaas, J. H. 1971b. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus).Brain Res. 35:89–106.PubMedCrossRefGoogle Scholar
  3. Allman, J. M., and Kaas, J. H. 1974a. The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield. Brain Res. 76:247–265.PubMedCrossRefGoogle Scholar
  4. Allman, J. M., and Kaas, J. H. 1974b. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus).Brain Res. 81:199–213.PubMedCrossRefGoogle Scholar
  5. Allman, J. M., and Kaas, J. H. 1975. The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus).Brain Res. 100:473–487.PubMedCrossRefGoogle Scholar
  6. Allman, J. M., and Kaas, J. H. 1976. Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science 191:572–575.PubMedCrossRefGoogle Scholar
  7. Allman, J. M., Kaas, J. H., and Lane, R. H. 1973. The middle temporal visual area (MT) in the bush baby, Galago senegalensis.Brain Res. 57:197–202.PubMedCrossRefGoogle Scholar
  8. Brodmann, K. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde. V. A. Barth, Leipzig. Pp. 1–324.Google Scholar
  9. Campbell, A. W. 1905. Histological Studies on the Localization of Cerebral function. Cambridge University Press, Cambridge. 360 pp.Google Scholar
  10. Campos-Ortega, J. A., and Hayhow, W. R. 1972. On the organization of the visual cortical projection to the pulvinar in Macaca mulatta.Brain Behav. Evol. 6:394–423.PubMedCrossRefGoogle Scholar
  11. Casagrande, V. A., and Harting, J. K. 1976. Transneuronal transport of 3H fucose and proline in the visual pathways of tree shrew, Tupaiaglis. Brain Res. 96:367–372.CrossRefGoogle Scholar
  12. Clark, W. E. Le Gros 1931. The brain of Microcebus murinus.Proc. Zool. Soc. London 101:463–485.CrossRefGoogle Scholar
  13. Clark, W. E. Le Gros 1959. The Antecedents of Man. An Introduction to the Evolution of the Primates. Edinburgh University Press, Edinburgh. 374 pp.Google Scholar
  14. Cowey, A. 1964. Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimiri sciureus.J. Neurophysiol. 27:366–396.PubMedGoogle Scholar
  15. Cragg, B. G. 1969. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9:733–747.PubMedCrossRefGoogle Scholar
  16. Daniel, P. M., and Whitteridge, D. 1961. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (London)159:203–221.Google Scholar
  17. Glickstein, M., and Whitteridge, D. 1976. Degeneration of layer III pyramidal cells in area 18 following destruction of callosal input. Brain Res. 104:148–151.PubMedCrossRefGoogle Scholar
  18. Gross, C. G. 1973. Visual functions of inferotemporal cortex. In R. Jung (ed.). Handbook of Sensory Physiology. Springer, Berlin. Pp. 451–482.Google Scholar
  19. Guillery, R. W., and Kaas, J. H. 1971. A study of normal and congenitally abnormal retinogeniculate terminations in cats. J. Comp. Neurol. 143:71–100.CrossRefGoogle Scholar
  20. Holländer, H. 1974. Projections from the striate cortex to the diencephalon in the squirrel monkey (Saimiri sciureus). A light microscopic radioautographic study following intracortical injection of H3 leucine. J. Comp. Neurol. 155:425–440.PubMedCrossRefGoogle Scholar
  21. Holmes, G. 1962. Disturbances of vision by cerebral lesions. J. Physiol. (London) 160:106–154.Google Scholar
  22. Hubel, D. H. 1975. An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis)Brain Res. 96:41–50.PubMedCrossRefGoogle Scholar
  23. Hubel, D. H., and Wiesel, T. N. 1970. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature (London)225:41–42.CrossRefGoogle Scholar
  24. Hubel, D. H., and Wiesel, T. N. 1972. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–450.PubMedCrossRefGoogle Scholar
  25. Hyvärinen, J., and Poranen, A. 1974. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692.PubMedCrossRefGoogle Scholar
  26. Jones, E. G., and Powell, T. P. S. 1970. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820.PubMedCrossRefGoogle Scholar
  27. Kaas, J. H., and Guillery, R. W. 1973. The transfer of abnormal visual field representation from the dorsal lateral geniculate nucleus to the visual cortex in Siamese cats. Brain Res. 59:61–95.PubMedCrossRefGoogle Scholar
  28. Kaas, J. H., and Lin, C. S. 1977. Cortical projections of area 18 in owl monkeys. Vision Res. 16:739–741.CrossRefGoogle Scholar
  29. Kaas, J. H., Lin, C. S., and Casagrande, V. A. 1976. The relay of ipsilation and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey. A transneuronal study. Brain Res. 106:371–378.PubMedCrossRefGoogle Scholar
  30. Kaas, J. H., Lin, C. S., and Wagor, E. 1977. Cortical projections of posterior parietal cortex in owl monkeys. J. Comp. Neurol. 171:387–408.CrossRefGoogle Scholar
  31. Klüver, H., and Bucy, P. C. 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiat. 42:979–1000.Google Scholar
  32. Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E. 1965. Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11:245–262.PubMedCrossRefGoogle Scholar
  33. Lashley, K. S., and Clark, G. 1946. The cytoarchitecture of the cerebral cortex of Ateles: A critical examination of architectonic studies. J. Comp. Neurol. 85:223–247.PubMedCrossRefGoogle Scholar
  34. Le Gros Clark, see Clark.Google Scholar
  35. LeVay, S., Hubel, D. H., and Wiesel, T. N. 1975. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159:559–576.CrossRefGoogle Scholar
  36. Lin, C. S., and Kaas, J. H. 1975. Some efferent and afferent connections of a medial division of the inferior pulvinar nucleus in the owl monkey (Aotus trivirgatus). Neurosci. Abstr. 1:44.Google Scholar
  37. Lin, C. S., and Kaas, J. H. 1977. Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. J. Comp. Neurol. 173:457–474.PubMedCrossRefGoogle Scholar
  38. Lund, J. S., and Booth, R. G. 1975. Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J. Comp. Neurol. 159:305–334.CrossRefGoogle Scholar
  39. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F. 1975. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164:287–303.PubMedCrossRefGoogle Scholar
  40. Martinez-Millán, M., and Holländer, H. 1975. Cortico-cortical projections for striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Res. 83:405–417.PubMedCrossRefGoogle Scholar
  41. Mishkin, M. 1972. Cortical visual areas and their interactions. In A. G. Karczmar and J. C. Eccles (eds.). The Brain and Human Behavior. Springer, Berlin. Pp. 187–208.CrossRefGoogle Scholar
  42. Mountcastle, V. B. 1975. The view from within: Pathways to the study of perception. Johns Hopkins Med. J. 136:109–131.PubMedGoogle Scholar
  43. Myers, R. E. 1965. Commissural connections between occipital lobes of the monkey. J. Comp. Neurol. 718:1–16.Google Scholar
  44. Norden, J. J., Lin, C. S., and Kaas, J. H. 1978. Subcortical projections of the dorsomedial visual area (DM) of visual association cortex in the owl monkey, Aotus trivirgatus.Exp. Brain Res. 32:1–14.CrossRefGoogle Scholar
  45. Polyak, S. 1957. The Vertebrate Visual System. University of Chicago Press, Chicago. 1390 pp.Google Scholar
  46. Shoumura, K., Tasashi, A., and Kazuo, K. 1975. Structural organization of “Callosal” OBg in human corpus callosum agenesis. Brain Res. 93:241–252.PubMedCrossRefGoogle Scholar
  47. Smith, G. Elliot. 1907. New studies on the folding of the visual cortex and the significance of the occipital sulci in the human brain. J. Anat. (London) 41:198–207.Google Scholar
  48. Solnitzky, O., and Harman, P. J. 1946. The regio occipitalis of the lorisiform lemuroid Galago demidovii.J. Comp. Neurol. 84:339–384.PubMedCrossRefGoogle Scholar
  49. Spatz, W. B. 1975. An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset, Callithrix. Brain Res. 92:450–455.CrossRefGoogle Scholar
  50. Spatz, W. B. 1977. Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in marmoset Callithrix jacchus Exp. Brain Res. 27:559–572.Google Scholar
  51. Spatz, W. B., and Erdmann, G. 1974. Striate cortex projections to the lateral geniculate and other thalamic nuclei; a study using degeneration and autoradiographic tracing methods in the marmoset, Callithrix. Brain Res. 82:91–108.CrossRefGoogle Scholar
  52. Spatz, W. B., and Tigges, J. 1972. Experimental-anatomical studies on the “Middle Temporal Visual Area (MT)” in primates. I. Efferent corticocortical connections in the marmoset (Callithrix jacchus).J. Comp. Neurol. 146:451–464.PubMedCrossRefGoogle Scholar
  53. Spatz, W. B., and Tigges, J. 1973. Studies on the visual area MT in primates. II. Projection fibers to subcortical structures. Brain Res. 61:374–387.PubMedCrossRefGoogle Scholar
  54. Spatz, W. B., Tigges, J., and Tigges, M. 1970. Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri).J. Comp. Neurol. 140:155–174.PubMedCrossRefGoogle Scholar
  55. Talbot, S. A. 1941. A lateral localization in cat’s visual cortex, Fed. Proc. 1:84.Google Scholar
  56. Talbot, S. A., and Marshall, W. H. 1941. Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthalmol 24:1255–1263.Google Scholar
  57. Tigges, J., Spatz, W. B., and Tigges, M. 1973a. Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey (Saimiri).J. Comp. Neurol. 148:481–490.PubMedCrossRefGoogle Scholar
  58. Tigges, J., Tigges, M., and Kalaha, C. 1973b. Efferent connections of area 17 in Galago. Am. J. Phys. Anthropol. 38:393–398.PubMedCrossRefGoogle Scholar
  59. Tigges, J., Spatz, W. B., and Tigges M. 1974. Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri).J. Comp. Neurol. 158:219–236.PubMedCrossRefGoogle Scholar
  60. Vogt, C., and Vogt, O. 1919. Allgemeine Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25:279–462.Google Scholar
  61. Wagor, E., Lin, C. S., and Kaas, J. H. 1975. Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 163:227–250.PubMedCrossRefGoogle Scholar
  62. Whitteridge, D. 1973. Projection of optic pathways to visual cortex. In R. Jung (ed.). Handbook of Sensory Physiology, Vol. VII/3, Central Processing of Visual Information, Part B. Visual Centers in the Brain. Springer, Berlin. Pp. 247–268.Google Scholar
  63. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K. 1974. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 79:273–279.PubMedCrossRefGoogle Scholar
  64. Wong-Riley, M. T. T. 1974. Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 79:267–272.PubMedCrossRefGoogle Scholar
  65. Woolsey, C. N., and Fairman, D. 1946. Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery 19:684–702.PubMedGoogle Scholar
  66. Zeki, S. M. 1969. Representation of central visual field in prestriate cortex of monkey. Brain Res. 14:271–291.PubMedCrossRefGoogle Scholar
  67. Zeki, S. M. 1970. Interhemispheric connections of prestriate cortex in monkey. Brain Res. 19:63–75.PubMedCrossRefGoogle Scholar
  68. Zeki, S. M. 1971. Cortical projections from two prestriate areas in the monkey. Brain Res. 34:19–35.PubMedCrossRefGoogle Scholar
  69. Zeki, S. M. 1973. Color coding in rhesus monkey prestriate cortex. Brain Res. 53:422–427.PubMedCrossRefGoogle Scholar
  70. Zeki, S. M. 1974. The mosaic organization of the visual cortex in the monkey. In R. Bellairs and E. G. Gray (eds.). Essays on the Nervous System—A Festschrift for Professor J. Z. Young. Clarendon Press, Oxford. Pp. 327–343.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Jon H. Kaas
    • 1
  1. 1.Department of PsychologyVanderbilt UniversityNashvilleUSA

Personalised recommendations