Skip to main content

The Organization of Visual Cortex in Primates

  • Chapter
Sensory Systems of Primates

Part of the book series: Advances in Primatology ((AIPR))

Abstract

The purpose of this chapter is to consider how visual cortex is subdivided and interconnected in primates. Subdividing neocortex has long been a problem for neuroscientists. It has been clear that for each sensory system the cortex contains a number of interrelated parts or areas, but it has been difficult to determine the exact number, location, and interconnections of the cortical areas of a system in any mammal. Differences in histological structure were first used to subdivide neocortex, but it was difficult or impossible to determine the significance of most of the areas so demarcated. Thus, Campbell (1905) parceled the neocortex of man into 20 distinct zones; Brodmann (1909) followed with 47, and C. and O. Vogt (1919) distinguished 200 fields. Later investigators postulated various numbers, with Lashley and Clark (1946) taking an extreme position and arguing that the cortex of man (or rat for that matter) contained no more than 7–10 subdivisions of functional significance. Later, considerable progress was made when the electrophysiological investigations of Woolsey, Adrian, and others established the primary and secondary sensory areas as detailed representations of sensory surfaces. More recently, microelectrode recordings have been used to determine the extent and boundaries of such sensory representations accurately and to relate these areas precisely to histological subdivisions of neocortex. In the more advanced brains, the sensory and motor areas, so clearly delimited by electrophysiological means, were found to constitute only a fraction of the total cortical surface. Much of the cortex, the so-called association cortex, was “silent” during recording and further subdivision was not possible. This condition has proven to be largely an artifact of the anesthetics popular at the time, and it is now clear that most of the cortex of higher primates responds to at least one modality. Furthermore, microelectrode recordings indicate that much of “association cortex” is subdivided into a number of separate areas, each of which contains a detailed map of a sensory surface such as the retina, skin, or cochlear partition.

...it is important to recognize the general concept that the cortex is by no means uniform in function and structure and is made up of a mosaic of different areas.... W. E. Le Gros Clark, 1959

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J. M., and Kaas, J. H. 1971a. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31:85–105.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1971b. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus).Brain Res. 35:89–106.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1974a. The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield. Brain Res. 76:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1974b. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus).Brain Res. 81:199–213.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1975. The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus).Brain Res. 100:473–487.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H. 1976. Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science 191:572–575.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M., Kaas, J. H., and Lane, R. H. 1973. The middle temporal visual area (MT) in the bush baby, Galago senegalensis.Brain Res. 57:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Brodmann, K. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde. V. A. Barth, Leipzig. Pp. 1–324.

    Google Scholar 

  • Campbell, A. W. 1905. Histological Studies on the Localization of Cerebral function. Cambridge University Press, Cambridge. 360 pp.

    Google Scholar 

  • Campos-Ortega, J. A., and Hayhow, W. R. 1972. On the organization of the visual cortical projection to the pulvinar in Macaca mulatta.Brain Behav. Evol. 6:394–423.

    Article  PubMed  CAS  Google Scholar 

  • Casagrande, V. A., and Harting, J. K. 1976. Transneuronal transport of 3H fucose and proline in the visual pathways of tree shrew, Tupaiaglis. Brain Res. 96:367–372.

    Article  Google Scholar 

  • Clark, W. E. Le Gros 1931. The brain of Microcebus murinus.Proc. Zool. Soc. London 101:463–485.

    Article  Google Scholar 

  • Clark, W. E. Le Gros 1959. The Antecedents of Man. An Introduction to the Evolution of the Primates. Edinburgh University Press, Edinburgh. 374 pp.

    Google Scholar 

  • Cowey, A. 1964. Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimiri sciureus.J. Neurophysiol. 27:366–396.

    PubMed  CAS  Google Scholar 

  • Cragg, B. G. 1969. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9:733–747.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, P. M., and Whitteridge, D. 1961. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (London)159:203–221.

    CAS  Google Scholar 

  • Glickstein, M., and Whitteridge, D. 1976. Degeneration of layer III pyramidal cells in area 18 following destruction of callosal input. Brain Res. 104:148–151.

    Article  PubMed  CAS  Google Scholar 

  • Gross, C. G. 1973. Visual functions of inferotemporal cortex. In R. Jung (ed.). Handbook of Sensory Physiology. Springer, Berlin. Pp. 451–482.

    Google Scholar 

  • Guillery, R. W., and Kaas, J. H. 1971. A study of normal and congenitally abnormal retinogeniculate terminations in cats. J. Comp. Neurol. 143:71–100.

    Article  Google Scholar 

  • Holländer, H. 1974. Projections from the striate cortex to the diencephalon in the squirrel monkey (Saimiri sciureus). A light microscopic radioautographic study following intracortical injection of H3 leucine. J. Comp. Neurol. 155:425–440.

    Article  PubMed  Google Scholar 

  • Holmes, G. 1962. Disturbances of vision by cerebral lesions. J. Physiol. (London) 160:106–154.

    Google Scholar 

  • Hubel, D. H. 1975. An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis)Brain Res. 96:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. 1970. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature (London)225:41–42.

    Article  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. 1972. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–450.

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen, J., and Poranen, A. 1974. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692.

    Article  PubMed  Google Scholar 

  • Jones, E. G., and Powell, T. P. S. 1970. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., and Guillery, R. W. 1973. The transfer of abnormal visual field representation from the dorsal lateral geniculate nucleus to the visual cortex in Siamese cats. Brain Res. 59:61–95.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., and Lin, C. S. 1977. Cortical projections of area 18 in owl monkeys. Vision Res. 16:739–741.

    Article  Google Scholar 

  • Kaas, J. H., Lin, C. S., and Casagrande, V. A. 1976. The relay of ipsilation and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey. A transneuronal study. Brain Res. 106:371–378.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Lin, C. S., and Wagor, E. 1977. Cortical projections of posterior parietal cortex in owl monkeys. J. Comp. Neurol. 171:387–408.

    Article  Google Scholar 

  • Klüver, H., and Bucy, P. C. 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiat. 42:979–1000.

    Google Scholar 

  • Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E. 1965. Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11:245–262.

    Article  PubMed  CAS  Google Scholar 

  • Lashley, K. S., and Clark, G. 1946. The cytoarchitecture of the cerebral cortex of Ateles: A critical examination of architectonic studies. J. Comp. Neurol. 85:223–247.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark, see Clark.

    Google Scholar 

  • LeVay, S., Hubel, D. H., and Wiesel, T. N. 1975. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159:559–576.

    Article  Google Scholar 

  • Lin, C. S., and Kaas, J. H. 1975. Some efferent and afferent connections of a medial division of the inferior pulvinar nucleus in the owl monkey (Aotus trivirgatus). Neurosci. Abstr. 1:44.

    Google Scholar 

  • Lin, C. S., and Kaas, J. H. 1977. Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. J. Comp. Neurol. 173:457–474.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., and Booth, R. G. 1975. Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J. Comp. Neurol. 159:305–334.

    Article  Google Scholar 

  • Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F. 1975. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164:287–303.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Millán, M., and Holländer, H. 1975. Cortico-cortical projections for striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Res. 83:405–417.

    Article  PubMed  Google Scholar 

  • Mishkin, M. 1972. Cortical visual areas and their interactions. In A. G. Karczmar and J. C. Eccles (eds.). The Brain and Human Behavior. Springer, Berlin. Pp. 187–208.

    Chapter  Google Scholar 

  • Mountcastle, V. B. 1975. The view from within: Pathways to the study of perception. Johns Hopkins Med. J. 136:109–131.

    PubMed  CAS  Google Scholar 

  • Myers, R. E. 1965. Commissural connections between occipital lobes of the monkey. J. Comp. Neurol. 718:1–16.

    Google Scholar 

  • Norden, J. J., Lin, C. S., and Kaas, J. H. 1978. Subcortical projections of the dorsomedial visual area (DM) of visual association cortex in the owl monkey, Aotus trivirgatus.Exp. Brain Res. 32:1–14.

    Article  Google Scholar 

  • Polyak, S. 1957. The Vertebrate Visual System. University of Chicago Press, Chicago. 1390 pp.

    Google Scholar 

  • Shoumura, K., Tasashi, A., and Kazuo, K. 1975. Structural organization of “Callosal” OBg in human corpus callosum agenesis. Brain Res. 93:241–252.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. Elliot. 1907. New studies on the folding of the visual cortex and the significance of the occipital sulci in the human brain. J. Anat. (London) 41:198–207.

    CAS  Google Scholar 

  • Solnitzky, O., and Harman, P. J. 1946. The regio occipitalis of the lorisiform lemuroid Galago demidovii.J. Comp. Neurol. 84:339–384.

    Article  PubMed  CAS  Google Scholar 

  • Spatz, W. B. 1975. An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset, Callithrix. Brain Res. 92:450–455.

    Article  CAS  Google Scholar 

  • Spatz, W. B. 1977. Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in marmoset Callithrix jacchus Exp. Brain Res. 27:559–572.

    CAS  Google Scholar 

  • Spatz, W. B., and Erdmann, G. 1974. Striate cortex projections to the lateral geniculate and other thalamic nuclei; a study using degeneration and autoradiographic tracing methods in the marmoset, Callithrix. Brain Res. 82:91–108.

    Article  CAS  Google Scholar 

  • Spatz, W. B., and Tigges, J. 1972. Experimental-anatomical studies on the “Middle Temporal Visual Area (MT)” in primates. I. Efferent corticocortical connections in the marmoset (Callithrix jacchus).J. Comp. Neurol. 146:451–464.

    Article  PubMed  CAS  Google Scholar 

  • Spatz, W. B., and Tigges, J. 1973. Studies on the visual area MT in primates. II. Projection fibers to subcortical structures. Brain Res. 61:374–387.

    Article  PubMed  CAS  Google Scholar 

  • Spatz, W. B., Tigges, J., and Tigges, M. 1970. Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri).J. Comp. Neurol. 140:155–174.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, S. A. 1941. A lateral localization in cat’s visual cortex, Fed. Proc. 1:84.

    Google Scholar 

  • Talbot, S. A., and Marshall, W. H. 1941. Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthalmol 24:1255–1263.

    Google Scholar 

  • Tigges, J., Spatz, W. B., and Tigges, M. 1973a. Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey (Saimiri).J. Comp. Neurol. 148:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Tigges, J., Tigges, M., and Kalaha, C. 1973b. Efferent connections of area 17 in Galago. Am. J. Phys. Anthropol. 38:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Tigges, J., Spatz, W. B., and Tigges M. 1974. Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri).J. Comp. Neurol. 158:219–236.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, C., and Vogt, O. 1919. Allgemeine Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25:279–462.

    Google Scholar 

  • Wagor, E., Lin, C. S., and Kaas, J. H. 1975. Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 163:227–250.

    Article  PubMed  CAS  Google Scholar 

  • Whitteridge, D. 1973. Projection of optic pathways to visual cortex. In R. Jung (ed.). Handbook of Sensory Physiology, Vol. VII/3, Central Processing of Visual Information, Part B. Visual Centers in the Brain. Springer, Berlin. Pp. 247–268.

    Google Scholar 

  • Wiesel, T. N., Hubel, D. H., and Lam, D. M. K. 1974. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 79:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T. 1974. Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 79:267–272.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, C. N., and Fairman, D. 1946. Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery 19:684–702.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M. 1969. Representation of central visual field in prestriate cortex of monkey. Brain Res. 14:271–291.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. 1970. Interhemispheric connections of prestriate cortex in monkey. Brain Res. 19:63–75.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. 1971. Cortical projections from two prestriate areas in the monkey. Brain Res. 34:19–35.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. 1973. Color coding in rhesus monkey prestriate cortex. Brain Res. 53:422–427.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. 1974. The mosaic organization of the visual cortex in the monkey. In R. Bellairs and E. G. Gray (eds.). Essays on the Nervous System—A Festschrift for Professor J. Z. Young. Clarendon Press, Oxford. Pp. 327–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Kaas, J.H. (1978). The Organization of Visual Cortex in Primates. In: Noback, C.R. (eds) Sensory Systems of Primates. Advances in Primatology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2484-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2484-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2486-7

  • Online ISBN: 978-1-4684-2484-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics