Advertisement

The Chemical Structure of Lignin and Quantitative and Qualitative Methods of Analysis in Foodstuffs

  • Anthony J. Gordon

Abstract

The large polymeric molecules, cellulose, lignin, and hemicellulose, are the major components of plant cell walls. Taken in that order, they represent the three most abundant organic compounds on earth. Yet there are no known endogenous enzymes (as there are for starch or proteins) in the digestive system of vertebrates capable of converting them into smaller units that can be absorbed from the intestine. Digestion of the carbohydrates, cellulose, and hemicellulose, is by exogenous enzymes secreted by bacteria and protozoa living symbiotically in the gut of the animal. The absorbed end products are not the basic monomeric units of the molecule but volatile fatty acids, mainly acetic, propionic and butyric acids, with smaller amounts of branched-chain fatty acids. In ruminants, the site of this fermentation process is the rumen, which is an enlarged portion of the stomach. In monogastric herbivorous animals it occurs in a specially adapted cecum. Man and other monogastric nonherbivores do not have an extensively developed cecal fermentation system and are therefore incapable of digesting large amounts of vegetable fiber.

Keywords

Ferulic Acid Methoxyl Group Aryl Ether Klason Lignin Coniferyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allinson, D. W., and Osbourne, D. F., 1970, The cellulose-lignin complex in forages and its relationship to ‘orage nutritive value, J. Agric. Sci., 74: 23.CrossRefGoogle Scholar
  2. 2.
    Association of Official Analytical Chemists, Official methods of analysis, edited by W. Horowitz, eleventh edition, 1970, p. 862.Google Scholar
  3. 3.
    Aulin-Erdtmann, G., 1952, Spectrographic contributions to lignin chemistry, II, Svensk Papperstindning, 55: 745.Google Scholar
  4. 4.
    Bjorkman, A., 1956, Studies on finely divided wood, I, Svensk Papperstidning, 59: 477.Google Scholar
  5. 5.
    Bjorkman, A., 1957, Studies on finely divided wood, III, Svensk Papperstidning, 60: 243.Google Scholar
  6. 6.
    Bolker, H. I., and Brenner, H. S., 1970, Polymeric structure of spruce lignin, Science, 170: 173.CrossRefGoogle Scholar
  7. 7.
    Bondi, A., and Meyer, H., 1948, Lignins in young plants, Biochem. J., 43: 248.Google Scholar
  8. 8.
    Brand, J. M., 1967, Studies on grass lignins, II. The estimation of lignin oxidation products by gas-liquid chromatography, J. Chromatog., 26: 373.CrossRefGoogle Scholar
  9. 9.
    Brauns, F. E., The Chemistry of Lignin ( New York: Academic Press, 1952 ).Google Scholar
  10. 10.
    Brauns, F. E., and Brauns, D. A., The Chemistry of Lignin, supplement volume ( New York: Academic, 1960 ).Google Scholar
  11. 11.
    Brown, S. A., Biochemistry of Phenolic Compounds, J. B. Harborne, editor (London: Academic, 1964), chapter 9, p. 361.Google Scholar
  12. 12.
    Brown, S. A., 1966, Lignins, Ann. Review of Plant Physiol., 17: 223.CrossRefGoogle Scholar
  13. 13.
    Brown, S. A., 1969, Biochemistry of lignin formation, BioScience, 19: 115.Google Scholar
  14. 14.
    Brownell, H. H., 1965, Isolation of milled wood lignin and lignin-carbohydrate complex, TAPPI, 48: 513.Google Scholar
  15. 15.
    Brownell, H. H., 1968, Improved ball milling in the isolation of milled wood lignin, TAPPI, 51: 298.Google Scholar
  16. 16.
    Chang, H. M., and Allan, G. G., “Oxidation,” in: Lignins, Occurrence, Formation, Structure and Reactions, K. V. Sarkanen and C. H. Ludwig, editors, New York: Wiley Interscience, 1971) chapter 11, p. 433.Google Scholar
  17. 17.
    Clark. E. P., 1932, The Vieböck and Schwappach method for the determination of methoxyl and ethoxyl groups, J. A. O. A. C., 15: 136.Google Scholar
  18. 18.
    Creighton, R. H. J., and Hibbert, H., 1944, Studies on lignin and related compounds, LXXVI. Alkaline nitrobenzene oxidation of corn stalks. Isolation of L-hydroxybenzaldehyde, J. Amer. Chem. Soc., 66: 37.CrossRefGoogle Scholar
  19. 19.
    Csonka, F. A., Phillips, M. and Jones, D. B., 1929, Studies on lignin metabolism, J. Biol. Chem., 85: 65.Google Scholar
  20. 20.
    Cymbaluk, N. F., Gordon, A. J., and Neudoerffer, T. S., 1973, The effect of the chemical composition of maize plant lignin on the digestibility of maize stalk in the rumen of cattle, Br. J. Nutr., 29: 1.CrossRefGoogle Scholar
  21. 21.
    Cymbaluk, N. F., and Neudoerffer, T. S., 1970, A quantitative gas-liquid chromatographic determination of aromatic aldehydes from nitrobenzene oxidation of lignin, J. Chromatog., 54: 167.CrossRefGoogle Scholar
  22. 22.
    Donnelly, E. D., and Wear, J. I., 1972, Acid detergent method for reduction of tannin interference in determining lignin of Sericea Lespediza, Agron. J., 64: 838.CrossRefGoogle Scholar
  23. 23.
    Edwards, C. S., 1973, Determination of lignin and cellulose in forages by extraction with triethylene glycol, J. Sci. Fd. Agric., 24: 381.CrossRefGoogle Scholar
  24. 24.
    El-Basyouni, S. Z., and Towers, G. H. N., 1964, The phenolic acids in wheat, I. Changes during growth and development, Can. J. Biochem., 42: 203.Google Scholar
  25. 25.
    Ellis, G. H., Matrone, G., and Maynard, L. A., 1946, A 72-percent H2SO4 method for the determination of lignin and its use in animal nutrition studies, J. Anim. Sci., 5: 285.Google Scholar
  26. 26.
    Fischer, H., 1961, Quantitative determination of lignin in hay, Acta Agrie. Scand., Supplementum Number 10, 43 p.Google Scholar
  27. 27.
    Freudenberg, K., 1964, Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols, Science, 148: 595.Google Scholar
  28. 28.
    Freudenberg, K., in: Constitution and Biosynthesis of Lignin, by K. Freudenberg and A. C. Neish, ( New York: Springer, 1968 ) p. 47.Google Scholar
  29. 29.
    Gee, M., Nelson, O. E., and Kuc, J., 1968, Abnormal lignins produced by the Brown-Midrib Mutants of maize, II, Archs. Biochem. Biophys., 123: 403.CrossRefGoogle Scholar
  30. 30.
    Gierer, J., 1954, Die reaktion von Chinonmonochlorimid mit lignin, I. Spezifitat der reaktion auf 2–0xybenzylalkoholgruppen und der Bestimmung in verschiedenen Ligninprgparaten, Acta Chemica Scand., 8: 1319.CrossRefGoogle Scholar
  31. 31.
    Goldschmid, O., 1954, Determination of phenolic hydroxyl content of lignin preparations by ultraviolet spectrophotometry, Anal. Chem., 26: 1421.CrossRefGoogle Scholar
  32. 32.
    Gordon, A. J., A comparison of some chemical and physical properties of alkali ligning from grass and lucerne hays before and after digestion by sheep, J. Sci. Fd. Agric., in press.Google Scholar
  33. 33.
    Gordon, A. J., and Griffith, P. R., 1973, Chemical and in vivo evaluation of a Brown Midrib Mutant of Zea mays, II. Nuclear magnetic resonance spectra of digested and undigested alkali lignins and undigested dimethylformatide lignins, J. Sci. Fd. Agric., 24: 579.CrossRefGoogle Scholar
  34. 34.
    Gordon, A. J., and Neudoerffer, T. S., Chemical and in vivo evaluation of a Brown Midrib Mutant of Zea mays, I. Fibre, lignin and amino acid composition and digestibility for sheep, J. Sci. Fd. Agric., 24: 565, 1973.Google Scholar
  35. 35.
    Goring, D. A. I., “Polymer properties of lignin and lignin derivatives,” in: Lignins, Occurrence, Formation, Structure, and Reactions, K. V. Sarkanen and C. H. Ludwig, editors, (New York: Wiley Interscience, 1971) chapt. 17, p. 695.Google Scholar
  36. 36.
    Hall, F. K., 1974, Wood pulp, Scientific American, 230: 51.Google Scholar
  37. 37.
    Harkin, J. M., 1967, “Lignin - a natural polymeric product of phenol oxidation,” in: Oxidative Coupling of Phenols, edited by W. I. Taylor and A. R. Battersby, New York: Marcel Dekker, Inc., chapter 6, p. 243.Google Scholar
  38. 38.
    Hartley, R. D., 1971, Improved methods for the estimation by gas-liquid chromatography of lignin degradation products from plants, J. Chromatog., 54: 335.CrossRefGoogle Scholar
  39. 39.
    Hartley, R. D., 1972, P Coumaric and ferulic acid components of cell walls of ryegrass and their relationships with lignin and digestibility, J. Sci. Fd. Agric., 23: 1347.Google Scholar
  40. 40.
    Hartley, R. D., 1973, Carbohydrate esters of ferulic acid as components of cell walls of Lolium multiflorum, Phytochem., 12: 661.CrossRefGoogle Scholar
  41. 41.
    Higuchi, T., Ito, Y., and Kawamura, I., 1967, P-Hydroxyphenylpropane component of grass lignin and role of tryosine-ammonia lyase in its formation, Phytochem, 6: 875.CrossRefGoogle Scholar
  42. 42.
    Higuchi, T., Ito, Y., Shimada, M., and Kawamura, I., 1967, Chemical properties of milled wood lignin of grasses, Phytochem., 6: 1551.CrossRefGoogle Scholar
  43. 43.
    Higuchi, T., and Kawamura, I., 1966, Occurrence of L-hydroxyphenylglycerol-ß-aryl ether structure in lignins, Holzforschung, 20: 16.Google Scholar
  44. 44.
    Higuchi, T., Tanahashi, M., and Sato, A., 1972, Acidolysis of bamboo lignin, I. Gas-liquid chromatography and mass spectrometry of acidolysis monomers, Mokuzai Gakkaishi, 18: 183.Google Scholar
  45. 45.
    Johnson, D. B., Moore, W. E., and Zank, L. C., 1961, The spectrophotometric determination of lignin in small wood samples, TAPPI, 44: 793.Google Scholar
  46. 46.
    Kawamura, I. and Higuchi, T., 1964, Comparative studies of milled wood lignins from different taxonomical origins by infrared spectroscopy, in: Chimie et Biochimie de la lignine, de la cellulose et des hemicelluloses, Symp., Grenoble, p. 439.Google Scholar
  47. 47.
    Kirk, T. K., Brown, W., and Cowling, E. B., 1969, Preparative fractionation of lignin by gel-permeation chromatography, Biopolymers, 7: 135.CrossRefGoogle Scholar
  48. 48.
    Kosikova, B., and Polcin, J., 1973, Isolation of lignin from spruce by acidolysis in dioxane, Wood Science and Technology, 7: 308.CrossRefGoogle Scholar
  49. 49.
    Kué, J., and Nelson, O. E., 1964, The abnormal lignins produced by the brown-midrib mutants of maize, I, Archs. Biochem. Biophys., 105: 103.CrossRefGoogle Scholar
  50. 50.
    Kué, J., Nelson, O. E., and Flanagan, P., 1968, Degradation of abnormal lignins in the Brown-Midrib Mutants and Double Mutants of maize, Phytochem., 7: 1435.CrossRefGoogle Scholar
  51. 51.
    Kutscha, N. P., and Gray, J. R., 1970, The potential of lignin research, Technical Bulletin 41, Maine Agricultural Experiment Station, University of Maine, 20 pages.Google Scholar
  52. 52.
    Lai, Y. Z., and Sarkanen, K. V., “Isolation and structural studies,” in: Lignins, Occurrence, Formation, Structure and Reactions (New York: Wiley Interscience, 1971) chapter 5, p. 165.Google Scholar
  53. 53.
    Leary, G., 1971, The problem of lignin, J. N. Z. Inst. Chem., 35: 7.Google Scholar
  54. 54.
    Lenz, B. L., 1968, Application of nuclear magnetic resonance spectroscopy to characterization of lignin, TAPPI, 51: 511.Google Scholar
  55. 55.
    Lüdemann, H. D., and Nimz, H., 1973, Carbon-13 nuclear magnetic resonance spectra of lignins, Biochem. Biophys. Res. Comm., 52: 1162.CrossRefGoogle Scholar
  56. 56.
    Ludwig, C. G., Nist, B. J., and McCarthy, J. L., 1963, Lignin, XII and XIII, J. Am. Chem. Soc., 86:1186 and 1196.Google Scholar
  57. 57.
    Macdonald, A. M. G., “The oxygen-flash method,” in: Advances in Analytical Chemistry and Instrumentation, C. N. Reilley, editor (New York: John Wiley and Sons, Inc.,1965) vol. 4, p. 75.Google Scholar
  58. 58.
    McKenzie, A. W., McPherson, J. A., and Stewart, C. M., 1955, The estimation of acid-soluble lignin, Holzforshung, 9: 109.CrossRefGoogle Scholar
  59. 59.
    Manning, K. R., and DeLong, W. A., 1941, The lignin content of some common vegetables with observations on methods for the determination of lignin, Sci. Agric., 22: 69.Google Scholar
  60. 60.
    Martin, A. K., 1970, The urinary aromatic acids excreted by sheep given S24 perennial ryegrass cut at six stages of maturity, Br. J. Nutr., 24: 943.CrossRefGoogle Scholar
  61. 61.
    Mathers, A. P., and Pro, M. J., 1955, Spectrophotometric determination of methoxyl, Anal. Chem., 27: 1662.Google Scholar
  62. 62.
    Merewether, J. W. T., 1957, A lignin-carbohydrate complex in wood, Holzforschung, 11: 65.CrossRefGoogle Scholar
  63. 63.
    Meyer, H., and Bondi, A., 1952, Lignin in young plants, Biochem. J., 52: 95.Google Scholar
  64. 64.
    Miksche, G. E., 1973, Studies on the structure of gynmosperm and angiosperm lignins, Abstracts of Gothenburg Dissertations in Science, 31: 24 pages.Google Scholar
  65. 65.
    Moon, F. E., and Abou-Raya, A. K., 1954, The lignin fraction of animal feeding-stuffs, IV. The preparation of “Reference” lignin by extraction with ethyl acetoacetate, J. Sci. Fd. Agric., 5: 319.CrossRefGoogle Scholar
  66. 66.
    Morrison, I. M., 1972, Improvements in the acetyl bromide technique to determine lignin and digestibility and its application to legumes, J. Sci. Fd. Agric., 23: 1463.CrossRefGoogle Scholar
  67. 67.
    Morrison, I. M., 1974, Structural investigation on the lignin-carbohydrate complexes of Lolium perenne, Biochem. J., 139: 197.Google Scholar
  68. 68.
    Neish, A. C., “Monomeric intermediates in the biosynthesis of lignin,” in: Constitution and Biosynthesis of Lignin, by K. Freudenberg and A. C. Neish, ( New York: Springer, 1968 ) p. 1.Google Scholar
  69. 69.
    Neth. J. Agric. Sci., 1966, 14: 215.Google Scholar
  70. 70.
    Nimz, H., 1973, Chemistry of potential chromophoric groups in beech lignin, TAPPI, 56: 124.Google Scholar
  71. 71.
    Pepper, J. M., and Wood, P. D. S., 1962, The isolation of a representative lignin fraction from wood and straw meals, Can. J. Chem., 40: 1026.Google Scholar
  72. 72.
    Pepper, J. M., Manolopoulo, M., and Burton, R., 1962, Gas-liquid chromatographic analysis of lignin oxidation products, Can. J. Chem., 40: 1976.Google Scholar
  73. 73.
    Pew, J. C., and Connors, W. J., 1969, New structures from enzymic dehydrogenation of lignin model 2-hydroxypropiophenones, J. Org. Chem., 34: 585.CrossRefGoogle Scholar
  74. 74.
    Phillips, M., Goss, M. J., Davis, B. L., and Stevens, H., 1939, Composition of the various parts of the oat plant at successive stages of growth, with special reference to the formation of lignin, Sci. Agric., 52: 319.Google Scholar
  75. 75.
    Pigden, W. J., and Stone, J. E., 1952, The effect of ruminant digestion on forage lignin, Sci. Agric., 32: 502.Google Scholar
  76. 76.
    Porter, P., and Singleton, A. G., 1971, The degradation of lignin and quantitative aspects of ruminant digestion, Br. J. Nutr., 25: 3.CrossRefGoogle Scholar
  77. 77.
    Quicke, G. V., and Bentley, O. G., 1959, Lignin and methoxyl as related to the decreased digestibility of mature forages, J. Anim. Sci., 18: 365.Google Scholar
  78. 78.
    Rezl, V., and Janâk, J., 1973, Elemental analysis by gas chromatography, J. Chromatog., 81: 233.CrossRefGoogle Scholar
  79. 79.
    Roadhouse, F. E. and MacDougall, D., 1956, A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation, Biochem. J., 63:33Google Scholar
  80. 80.
    Sarkanen, K. V., and Ludwig, C. H., editors, Lignins, Occurrence, Formation, Structure and Reactions, ( New York: Wiley Interscience. 1971.Google Scholar
  81. 81.
    Sarkanen, K. V., “Precursors and their polymerization,” in: Lignins, Occurrence, Formation, Structure and Reactions, K. V. Sarkanen and C. H. Ludwig, editors, (New York: Wiley Interscience, 1971), chapter 4, p. 95.Google Scholar
  82. 82.
    Sato, A., Nishio, K., and Kitamura, T., 1972, On the ratio of syringaldehyde to vanillin (S/V value) of the lignin in peanuts (Arachis hypogaea L.), Ag. Chem. (Japan), 46: 603.Google Scholar
  83. 83.
    Shimada, M., 1972, Biochemical studies of bamboo lignin and methoxylation in hardwood and softwood lignins, Wood Research, 53: 19.Google Scholar
  84. 84.
    Siggia, S., 1966, Quantative Organic Analysis via Functional Groups, third edition, New York: John Wiley and Sons, Inc., chapter 4, p. 209.Google Scholar
  85. 85.
    Soundararajan, T. N., and Wayman, M., 1970, The determination of the molecular weight and molecular weight distribution of dehydrogenase polymers of coniferyl alcohol and lignins, J. Polymer Sci., 30: 521.Google Scholar
  86. 86.
    Stafford, H. A., 1960, Differences between lignin-like polymers formed by peroxidation of eugenol and ferulic acid in leaf sections of Phleum, Plant Physiol. 1: 108.CrossRefGoogle Scholar
  87. 87.
    Stafford, H. A., 1960, Comparison of lignin-like polymers produced peroxidatively by cinnamic acid derivatives in leaf sections of Phleum, Plant Physiol., 35: 612.CrossRefGoogle Scholar
  88. 88.
    Stafford, H. A., 1962, Histochemical and biochemical differences between lignin-like materials in Phleum pratense L., Plant Physiol., 37: 643.CrossRefGoogle Scholar
  89. 89.
    Stafford, H. A., 1964, Comparison of lignin-like products found naturally or induced in tissues of Phleum Elodea and Coleus and in a paper peroxidase system, Plant Physiol., 12: 350.CrossRefGoogle Scholar
  90. 90.
    Stafford, H. A., 1974, The metabolism of aromatic compounds, Ann. Review of Plant Physiol., 25: 460.Google Scholar
  91. 91.
    Stone, J. E., Blundell, M. J., and Tanner, K. G., 1951, The formation of lignin in wheat plants, Can. J. Chem., 72: 734.Google Scholar
  92. 92.
    Streeter, C. H., 1969, A review of techniques used to estimate the in vivo digestibility of grazed forage, J. Anim. Sci., 29: 757.Google Scholar
  93. 93.
    Talmadge, K. W., Keegstra, K., Bauer, W. D., and Albersheim, P., 1973, The structure of plant cell walls, I, Plant Physiol., 51: 158.CrossRefGoogle Scholar
  94. 94.
    Thomas, B., and Armstrong, D. G., 1949, A study of some methods at present used for the determination of lignin, J. Agric. Sci., 39: 335.CrossRefGoogle Scholar
  95. 95.
    Van Soest, P. J., 1973, Use of detergents in the analysis of fibrous feeds, II. A rapid method for the determination of fiber and lignin, J. A. O. A. C., 46: 829.Google Scholar
  96. 96.
    Van Soest, P. J., 1964, Symposium on nutrition and forage and pastures: New chemical procedures for evaluating forages, J. Anim. Sci, 23: 838.Google Scholar
  97. 97.
    Van Soest, P. J., 1967, Development of a comprehensive system of feed analyses and its application to forages, J. Anim. Sci., 26: 119.Google Scholar
  98. 98.
    Van Soest, P. J., and McQueen, R. W., 1973, The chemistry and estimation of fibre, Proc. Nutr. Soc., 32: 123.CrossRefGoogle Scholar
  99. 99.
    Van Soest, P. J., and Wine, R. H., 1967, Use of detergents in the analysis of fibrous feeds, IV. Determination of plant cell-wall constituents, J. A. O. A. C., 50: 50.Google Scholar
  100. 100.
    Van Soest, P. J. and Wine, R. H., 1968, Determination of lignin and cellulose in acid-detergent fiber with permanganate, J. A. 0. A. C., 51: 780.Google Scholar
  101. 101.
    Wardrop, A. B., “Occurrence and formation in plants,” in: Lignins, Occurrence, Formation, Structure and Reactions, K. V. Sarkanen and C. H. Ludwig, editors, (New York: Wiley Interscience, 1971) chapter 2, p. 79.Google Scholar
  102. 102.
    Wexler, A. 5.,1964, Characterization of lignosulfonates by ultraviolet spectrometry, Anal. Chem., 36: 213.Google Scholar
  103. 103.
    Whitehead, D. L., and Quicke, G. V., 1960, The nitrogen content of grass lignin, J. Sci. Fd. Agric., 11: 151.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Anthony J. Gordon
    • 1
  1. 1.Department of Animal PhysiologyUniversity of WageningenThe Netherlands

Personalised recommendations