The Detergent System of Fiber Analysis

  • James B. Robertson


Hill (31) has postulated that the microflora of the gut produce carcinogens from, most probably, bile acids, and Visek (74) has suggested that ammonia, produced from microbial degradation of dietary protein in the lower gut, is a possible carcinogen. Both hypotheses are probably secondary to what seems to be the primary cause, a deficiency of dietary fiber which has been implicated in diverticular disease of the large bowel, carcinoma of the colon, ischemic heart disease, diabetes mellitus, and gallstone formation (9, 10, 14, 16, 27, 55, 58). Although by definition fiber is indigestible by the secretions of the gastrointestinal tract, there is sufficient evidence to show that the monogastric animal, in addition to the ruminant and nonruminant herbivore, has a microbial population (23) in the tract capable of utilizing plant structural carbohydrates as a source of energy (Table 1). However, no cellulolytic organisms have yet been isolated from human feces (35), although Bryant (8) has characterized strains of Rumunococcus and Bacteroides fragilis, many of which can ferment pentoses and possibly hemicelluloses.


Crude Fiber Acid Detergent Fiber Detergent Solution Neutral Detergent Sodium Sulfite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arroyo-Aguilu, J. A., and Evans, J. L., 1972, Nutrient digestibility of low-fiber rations in the ruminant animal, J. Dairy Sci., 22: 1266.CrossRefGoogle Scholar
  2. 2.
    Association of Official Analytical Chemists, Official Methods of Analysis of the Association of Official Analytical Chemists, XI edition, AOAC, Washington, DC, 1970.Google Scholar
  3. 3.
    Bailey, R. W., 1964, Pasture quality and ruminant nutrition. Carbohydrate composition of ryegrass varieties grown as sheep pastures, N. Z. J. Agric. Res., 7: 496.Google Scholar
  4. 4.
    Bailey, R. W., and Ulyatt, M. J., 1970, Pasture quality and ruminant nutrition, II. Carbohydrates and lignin composition of detergent-extracted residues from pasture grasses and legumes, N. Z. J. Agric. Res., 13: 591.CrossRefGoogle Scholar
  5. 5.
    Bevenue, A., and Williams, K. T., 1959, Note on the use of detergents for removal of nitrogen from plant materials, J. A. 0. A. C., 42: 441.Google Scholar
  6. 6.
    Blake, J. D., and Richards, G. N., 1970a, Polysaccharides of tropical pasture herbage, I. Studies on the distribution of the major polysaccharide components of spear grass (Heteropogon Contortus) during growth, Aust. J. Chem., 23: 2353.CrossRefGoogle Scholar
  7. 7.
    Blake, J. D., and Richards, G. N., 1970b, Polysaccharides of tropical pasture herbage, II. A xylan from the leaf of spear grass (Heteropogon Contortus), Aust. J. Chem., 23: 2361.CrossRefGoogle Scholar
  8. 8.
    Bryant, M. P., 1974, Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract, 27: 1313.Google Scholar
  9. 9.
    Burkitt, D. P., 1973, Epidemiology of large bowel disease: the role of fibre, Proc. Nutr. Soc., 32: 145.CrossRefGoogle Scholar
  10. 10.
    Burkitt, D. P., and Trowell, H. C., Refined Carbohy- drate Foods and Disease: Some Implications of Dietary Fibre ( London: Academic Press, 1975 ).Google Scholar
  11. 11.
    Butterworth, M. H., 1967, The digestibility of tropical grasses, Nutr. Abstr. Rev., 37: 349.Google Scholar
  12. 12.
    Crampton, E. W., Irwin, M. I., Lloyd, L. E., and Neilsen, H. R., 1951, The apparent digestibility of essentially similar diets by rats, guinea pigs, sheep, swine and by human subjects, J. Nutr., 43: 541.Google Scholar
  13. 13.
    Crampton, E. W., and Maynard, L. A., 1938, The relation of cellulose and lignin content to the nutritive value of animal feeds, J. Nutr., 15: 383.Google Scholar
  14. 14.
    Cummings, J. W., 1973, Progress report - dietary fibre, Gut, 14: 69.CrossRefGoogle Scholar
  15. 15.
    Darah, C., Personal communication.Google Scholar
  16. 16.
    Eastwood, M. A., 1973, Vegetable fibre: its physical properties, Proc. Nutr. Soc., 32: 137.CrossRefGoogle Scholar
  17. 17.
    Farrell, D. J., 1973, Digestibility by pigs of the major chemical components of diets high in plant cell-wall constituents, Animal Production, 16: 43.CrossRefGoogle Scholar
  18. 18.
    Fonnesbeck, P. V., 1968, Digestion of soluble and fibrous carbohydrate of forages by horses, J. Animal Sci., 27: 1336.Google Scholar
  19. 19.
    Fonnesbeck, P. V., 1969, Partitioning the nutrients of forage for horses, J. Animal Sci., 28: 624.Google Scholar
  20. 20.
    Fonnesbeck, P. V., Harris, L. E., and Kearl, L. C., 1974, Digestion of plant cell walls by animals, abstract, J. Animal Sci., 39: 182.Google Scholar
  21. 21.
    Foster, J. F., Yang, J. T., and Yui, N. H., 1950, Extraction and electrophoretic analyses of the proteins of corn, Cereal Chem., 27: 477.Google Scholar
  22. 22.
    Gaillard, B. D. E., 1962, The relationship between cell-wall constituents of roughage and the digestibility of the organic matter, J. Agric. Sci., Camb., 51: 369.Google Scholar
  23. 23.
    Gall, L. S., 1970, Normal fecal flora of man, Am. J. Clin. Nutr., 23: 1457.Google Scholar
  24. 24.
    Goering, H. K., Gordon, C. H., Hemken, R. W., Waldo, D. R., Van Soest, P. J., and Smith, L. W., 1972, Analytical estimates of nitrogen digestibility in heat-damaged forages, J. Dairy Sci., 55: 1275.CrossRefGoogle Scholar
  25. 25.
    Goering, H. K., and Van Soest, P. J., Forage fiber analyses (apparatus, reagents, procedures, and some applications), Agr. Handbook No. 379, A. R. S., USDA, Washington, D. C., 1970.Google Scholar
  26. 26.
    Goering, H. K., Van Soest, P. J., and Hemken, R. W., 1973, Relative susceptibility of forages to heat damage as affected by moisture, temperature and pH, J. Dairy Sci., 56: 137.CrossRefGoogle Scholar
  27. 27.
    Groen, J. J., 1973, Why bread in the diet lowers serum cholesterol, Proc. Nutr. Soc., 32: 159.CrossRefGoogle Scholar
  28. 28.
    Harkin, J. M., “Lignin,” in: Chemistry and Biochemistry of Herbage, G. W. Butler and R. W. Bailey, editors, Vol. 1 ( New York: Academic Press, 1973 ) p. 323.Google Scholar
  29. 29.
    Hartley, R. D., 1972, p-Coumaric and ferulic acid components of cell walls of ryegrass and their relationships with lignin and digestibility, J. Sci. Pd. Agric., 23: 1347.CrossRefGoogle Scholar
  30. 30.
    Hellendoorn, E. W., Noordhoff, M. G., and Slagman, J., 1975, Enzymatic determination of the indigestible residue (dietary fibre) content of human foods, J. Sci. Fd. Agric., 26: 1461.CrossRefGoogle Scholar
  31. 31.
    Hill, M. J., 1974, Bacteria and the etiology of colonic cancer, Cancer, 34: 815.CrossRefGoogle Scholar
  32. 32.
    Hintz, H. F., Argenzio, R. A., and Schryver, H. F., 1971, Digestion coefficients, blood glucose levels and molar percentage of volatile acids in intestinal fluid of ponies fed varying forage-grain ratios, J. Animal Sci., 33: 992.Google Scholar
  33. 33.
    Hintz, H. F., Hogue, D. E., Walker Jr., E. F., Lowe, J. E., and Schryver, H. F., 1971, Apparent digestion in various segments of the digestive tract of ponies fed diets with varying roughage-grain ratios, J. Animal Sci., 32: 245.Google Scholar
  34. 34.
    Hintz, H. F., Schryver, H. F., and Halbert, M., 1973, A note on the comparison of digestion by new world camels, sheep and ponies, Animal Production, 16: 303.CrossRefGoogle Scholar
  35. 35.
    Holdeman, L. V., Good, I. J., and Moore, W. E. C., 1976, Human fecal flora: variation in bacterial composition within individuals and a possible effect on emotional stress, Appl. Env. Microb., 31: 359.Google Scholar
  36. 36.
    Hoover, W. H., and Clarke, S. D., 1972, Fiber digestion in the beaver, J. Nutr., 102: 9.Google Scholar
  37. 37.
    Hoppert, C. A., and Clark, A. J., 1945, Digestibility and effect on laxation of crude fiber and cellulose in certain common foods, J. Amer. Diet Assn., 21: 157.Google Scholar
  38. 38.
    Hummel, F. C., Shepherd, M. I., and Macy, I. G., 1943, Disappearance of cellulose and hemicellulose from the digestive tracts of children, J. Nutr., 25: 59.Google Scholar
  39. 39.
    Jones, A. S., 1953, The isolation of bacterial nuclei acids using cetyl trimethyl ammonium (Cetavlon), Biochim. Biophys. Acta., 10: 607.CrossRefGoogle Scholar
  40. 40.
    Keys Jr., J. E., and Van Soest, P. J., 1970, Digestibility of forages by the meadow vole (Microtus pennsylvanicus), J. Dairy Sci., 23: 1502.CrossRefGoogle Scholar
  41. 41.
    Keys Jr., J. E., Van Soest, P. J., and Young, E. P., 1969, Comparative study of the digestibility of forage cellulose and heimcellulose in ruminants and non-ruminants, J. Animal Sci., 29: 11.Google Scholar
  42. 42.
    King, R. H., and Taverner, M. R., 1975, Prediction of the digestible energy in pig diets from analyses of fibre contents, Animal Production, 21: 275.CrossRefGoogle Scholar
  43. 43.
    Lucas Jr., H. L., Smart Jr., W. W. G., Cipolloni, M. A., and Gross, H. D., 1961, Relations between digestibility and composition of feeds and foods, S-45 Report, North Carolina State College (mimeo).Google Scholar
  44. 44.
    McQueen, R. E., Personal communication.Google Scholar
  45. 45.
    McQueen, R. E., and Van Soest, P. J., 1975, Fungal cellulase and hemicellulase prediction of forage digestibility, J. Dairy Sci., 28: 1482.CrossRefGoogle Scholar
  46. 46.
    Mason, V. C., 1969, Some observations on the distribution and origin of nitrogen in sheep faeces, J. Agric. Sci. Camb., 73: 99.CrossRefGoogle Scholar
  47. 47.
    Mertens, D. R., Application of theoretical mathematical models to cell wall digestion and forage intake in ruminants, Ph.D. Thesis, Cornell Univ., Ithaca, N. Y.Google Scholar
  48. 48.
    Raymond, T. L., Connor, W. E., Robertson, J. B., and Van Soest, P. J., October 1976, Measurement of dietary fiber balance in man, Circulation, supplement.Google Scholar
  49. 49.
    Robertson, J. B., and Van Soest, P. J., 1975, A note on digestibility in sheep as influenced by level of intake, Animal Production, 21: 89.CrossRefGoogle Scholar
  50. 50.
    Robertson, J. B., Van Soest, P. J., and Torres, F., 1972, Substitution of filter paper for crucibles in the in vitro true digestibility determination, J. Dairy Sci., 55: 1305.CrossRefGoogle Scholar
  51. 51.
    Salo, M. L., 1965, Determination of carbohydrate fractions in animal foods and faeces, Acta Agric. Fenn., 105: 1.Google Scholar
  52. 52.
    Southgate, D. A. T., 1969a, Determination of carbohydrates in. foods, I. Available carbohydrate, J. Sci. Fd. Agric., 20: 326.CrossRefGoogle Scholar
  53. 53.
    Southgate, D. A. T., 1969b, Determination of carbohydrates in foods, II. Unavailable carbohydrates, J. Sci. Fd. Agric., 20: 331.CrossRefGoogle Scholar
  54. 54.
    Southgate, D. A. T., and Durnin, J. V. G. A., 1970, Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets, Brit. J. Nutr., 24: 517.CrossRefGoogle Scholar
  55. 55.
    Spiller, G. A., and Amen, R. J., 1975, Dietary fiber in human nutrition, Crit. Rev, in Fd. Sci. and Nutr., 7: 39.CrossRefGoogle Scholar
  56. 56.
    Sullivan, J. T., 1964, The chemical composition of forages in relation to digestibility by ruminants, ARS 34–62, Agricultural Research Council, USDA, Washington, D. C.Google Scholar
  57. 57.
    Tilley, J. M. A., and Terry, R. A., 1963, A two-stage technique for the in vitro digestion of forage crops, J. Brit. Grassland Soc., 18: 104.CrossRefGoogle Scholar
  58. 58.
    Trowell, H., 1973, Dietary Fibre. Ischaemic heart disease and diabetes mellitus, Proc. Nutr. Soc., 32: 151.CrossRefGoogle Scholar
  59. 59.
    Tyler, C., 1975, Albrecht Thaer’s hay equivalents: fact or fiction, Nutrition Abstracts and Reviews, 45: 1.Google Scholar
  60. 60.
    Uden, P., Personal communication.Google Scholar
  61. 61.
    Van Soest, P. J., Personal communication.Google Scholar
  62. 62.
    Van Soest, P. J., 1963a, Use of detergents in the analysis of fibrous feeds, I. Preparation of fiber residues of low nitrogen content, J. A. O. A. C., 46: 825.Google Scholar
  63. 63.
    Van Soest, P. J., 1963b, Use of detergents in the analysis of fibrous feeds, II. A rapid method for the determination of fiber and lignin, J. A. O. A. C., 46: 829.Google Scholar
  64. 64.
    Van Soest, P. J., 1965, Use of detergents in the analysis of fibrous feeds, III. Study of effects of heating and drying on yield of fiber and lignin in forages, J. A. O. A. C., 48: 785.Google Scholar
  65. 65.
    Van Soest, P. J., 1966, Nonnutritive residues: A system of analysis for the replacement of crude fiber, J. A. O. A. C., 49: 546.Google Scholar
  66. 66.
    Van Soest, P. J., 1967, Development of a comprehensive system of feed analyses and its application to forages, J. Animal Sci., 26: 119.Google Scholar
  67. 67.
    Van Soest, P. J., 1968, Structural and chemical characteristics which limit the nutritive value of forages. In:Forage: economics-quality, Amer. Soc. of Agronomy, Spec. Publ. No. 13, p. 63.Google Scholar
  68. 68.
    Van Soest, P. J., 1975, Physico-chemical aspects of fibre digestion, Proc. IV, International Symposium on Ruminant Physiology, I. W. McDonald and A. C. I. Warner, Sydney, Australia, pp. 351.Google Scholar
  69. 69.
    Van Soest, P. J., and McQueen, R. E., 1973, The chemistry and estimation of fibre, Proc. Nutr. Soc., 32: 123.CrossRefGoogle Scholar
  70. 70.
    Van Soest, P. J. and Moore, L. A., 1965, New chemical methods for analysis of forages for the purpose of predicting nutritive value, Proc. IX, International Grassland Congress, p. 783.Google Scholar
  71. 71.
    Van Soest, P. J., and Wine, R. H., 1967, Use of detergents in the analysis of fibrous feeds, IV. Determination of plant cell-wall constituents, J. A. O. A. C.,, 20: 50.Google Scholar
  72. 72.
    Van Soest, P. J., and Wine, R. H., 1968, Determination of lignin and cellulose in acid-detergent fiber with permanganate, J. A. O. A. C., 51: 780.Google Scholar
  73. 73.
    Van Soest, P. J., Wine, R. H., and Moore, L. A., 1966, Estimation of the true digestibility of forages by the in vitro digestion of cell walls, Proc. X, International Grassland Congress, p. 438.Google Scholar
  74. 74.
    Visek, W. J., 1974, Some biochemical considerations in utilization of nonspecific nitrogen, J. Agr. Food Chem., 22: 174.CrossRefGoogle Scholar
  75. 75.
    Visek, W. J. and Roberton, J. B., 1973, Dried brewers grains in dog diets, Proc. Cornell Nutrition Conf., p. 40.Google Scholar
  76. 76.
    Waldo, D. R., 1969, Factors influencing the voluntary intake of forages, Proc. Nat. Conf. Forage Quality Evaluation and Utilization, Lincoln, Nebraska, p. El.Google Scholar
  77. 77.
    Waldo, D. R., Smith, L. W., and Cox, E. L., 1972, Model of cellulose disappearance from the rumen, J. Diary Sci., 55: 125.CrossRefGoogle Scholar
  78. 78.
    Williams, K. T., and Bevenue, A., 1956, Problems and techniques in the analysis of plant material for hemicellulose, J. A. O. A. C., 32: 901.Google Scholar
  79. 79.
    Williams, R. D., and Olmsted, W. H., 1936, The effect of cellulose, hemicellulose, and lignin on the weight of the stool: A contribution to the study of laxation in man, J. Nutr., 11: 433.Google Scholar
  80. 80.
    Wrick, K., 1976, Personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • James B. Robertson
    • 1
  1. 1.Animal Science DepartmentCornell UniversityIthacaUSA

Personalised recommendations