UV-A pp 177-219 | Cite as

Effects of Ultraviolet Radiation on the Eye

  • John A. Parrish
  • R. Rox Anderson
  • Frederick Urbach
  • Donald Pitts


In humans, the eye has evolved into an incredibly sophisticated organ whose neurophysiologic responses to photons in a certain portion of the electromagnetic spectrum provide a constant detailed map of our immediate environment. The action spectrum for this response lies primarily within the 400–700 nm wavelength range, which has therefore been labeled the visible spectrum, or “light” The maximum of the eye’s spectral response corresponds roughly to the maximum of solar spectral irradiance. Because solar UV radiation is present during most of the daylight hours, the eye may be exposed daily to some amount of solar ultraviolet radiation throughout life.


Action Spectrum Corneal Epithelium Anterior Uveitis Human Lens Lens Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuwabara, T., Kinoshita, J. H., and Cogan D. G. Electron microscopic study of galactoseinduced cataract. Invest. Ophthalmol. 8: 133–149, 1969.Google Scholar
  2. 2.
    Benedek, G. B. Theory of transparency of the eye. Appl. Optics 10: 459–473, 1971.CrossRefGoogle Scholar
  3. 3.
    Hogan, M. J., Alvarado, J. A., and Waddell, J. E. Histology of the Human Eye: An Atlas and Textbook. W. B. Saunders, Philadelphia, 1971.Google Scholar
  4. 4.
    Martin, E. K. The effects of ultraviolet rays upon the eye. Proc. R. Soc. Lond. 885: 319–330, 1912.CrossRefGoogle Scholar
  5. 5.
    Duke-Elder, W. S. Radiational injuries. In Textbook of Ophthalmology, Vol. 6. Mosby, St. Louis, 1954, pp. 6443–6579.Google Scholar
  6. 6.
    Verhoeff, F. H., Bell, L., and Walker, C. B. The pathological effects of radiant energy on the eye: An experimental investigation with a systematic review of the literature. Proc. Am. Acad. ArtsSci. 57: 630–818, 1916.Google Scholar
  7. 7.
    Buchanan, A. R., Heim, H.C., and Stilson, D. W. Biomedical effects of exposure to electromagnetic radiation. I. Ultraviolet. Wright-Patterson Air Force Base, Dayton, Ohio, May 1960. WADD Tech. Report 60 - 376.Google Scholar
  8. 8.
    Christner, C. A., State-of-the-art study on visual impairment by high intensity flash of visible, infrared, or ultraviolet light. Battelle Memorial Institute, Columbus, Ohio, January 1965. Report No. BAT-171-9.Google Scholar
  9. 9.
    Duke-Elder, W. S. The pathological action of light upon the eye. I. Action of the outer eye: Photophthalmia. Lancet 1: 1137–1141, 1926.CrossRefGoogle Scholar
  10. 10.
    Buschke, W., Friedenwald, J. S., and Moses, S. G. Effects of ultraviolet irradiation on corneal epithelium: Mitosis, nuclear fragmentation, post-traumatic cell movements, loss of tissue cohesion. J. Cell Comp. Physiol. 26: 147–164, 1945.CrossRefGoogle Scholar
  11. 11.
    Cogan, D. G., and Kinsey, V. E. Action spectrum of keratitis produced by ultraviolet radiation. Arch. Ophthalmol. 55: 670–677, 1946.CrossRefGoogle Scholar
  12. 12.
    Sherashov, S. G. Spectral sensitivity of the cornea to ultraviolet radiation. Biofizika 75: 543–544, 1970.Google Scholar
  13. 13.
    Pitts, D. G. A comparative study of the effects of ultraviolet radiation on the eye. Am. J. Optom. Physiol. Opt. 47: 535–546, 1970.Google Scholar
  14. 14.
    Pitts, D. G., and Tredici, T. J. The effects of ultraviolet on the eye. Am. Ind. Hyg. Assoc. J. 32: 235–246, 1971.CrossRefGoogle Scholar
  15. 15.
    Pitts, D. G. The human ultraviolet action spectrum. Am. J. Optom. Physiol. Opt. 57: 946–960, 1974.Google Scholar
  16. 16.
    Pitts, D. G., and Kay, K. R. The photo-ophthalmic threshold for the rabbit. Am J. Optom. Physiol. Opt. 46: 561–572, 1969.Google Scholar
  17. 17.
    Pitts, D. G., and Gibbons, W. D. Corneal light scatter measurements of ultraviolet radiant exposures. Am. J. Optom. Physiol. Opt. 50: 187–194, 1973.Google Scholar
  18. 18.
    Söllner, F. Uber die Lichtabsorption eiweissfreier Extrakte von frischen und konservierten Hornhaüten. Albrecht von Graefes. Arch. Ophthalmol. 767: 527–536, 1964.Google Scholar
  19. 19.
    Hamerski, W., and Zajaczkowska, A. Electrophoretic investigations of proteins of the corneal epithelium in experimental photophthalmia. Pol. Med. J. 5: 1464–1468, 1969.Google Scholar
  20. 20.
    Hamerski, W. Studies on the histochemical changes in experimental corneal trauma by ultraviolet rays and on prophylaxis of photophthalmia. Klin. Oczna 39:537–542, 1969 (in Russian). English translation: Hamerski, W. Investigations on histochemical changes in experimental corneal lesions induced with ultraviolet radiation and on prevention of photophthalmia. Pol. Med. J. 5: 1469–1476, 1969.Google Scholar
  21. 21.
    Tapaszto, I., and Vass, Z. Alterations in mucopolysaccharide compounds of tear and that of cornea’s epithelium, caused by ultraviolet radiation. Ophthalmologica (Additamentum) 755: 343–347, 1969.Google Scholar
  22. 22.
    Trümpy, E. Experimentelle Untersuchungen über die Wirkung hochintensiven ultravioletts und violetts zwischen 314 und 435.9 mμ Wellenlänge auf das Auge unter besonderer Berücksichtigung der Linse. Albrecht von Graefes. Arch. Ophthalmol. 775: 495–514, 1925.Google Scholar
  23. 23.
    van der Hoeve, J. Strahlen und Auge. Albrecht von Graefes. Arch. Ophthalmol. 776: 245–248, 1925.Google Scholar
  24. 24.
    Fischer, F. P., Vermeulen, D., and Eymers, J. G. Uber die zur Schädigung des Auges nötige Minimalquantität von ultraviolettem und infrarotem Licht. Arch. Augenheilk. 709: 462–467, 1935.Google Scholar
  25. 25.
    Bachem, A. Ophthalmie ultraviolet action spectra. Am. J. Ophthalmol. 47: 969–975, 1956.Google Scholar
  26. 26.
    Pitts, D. G., and Cullen, A. P. Ocular ultraviolet effects from 295 to 335 nm in the rabbit eye. A preliminary report, DHEW (NIOSH) Publication No. 77-130. National Institute of Occupational Safety and Health, Division of Biomedical and Behavioral Science, Cincinnati, Ohio, 1977.Google Scholar
  27. 27.
    Ebbers, R. W., and Sears, D. Ocular effects of 325 nm ultraviolet laser. Am. J. Optom. Physiol. Opt. 52: 216–223, 1975.Google Scholar
  28. 28.
    MacKeen, D., Fine, S.R and Fine, B. S. Production of cataracts in rabbits with an ultraviolet laser. Ophthalmol. Res. 5: 317–324, 1973.CrossRefGoogle Scholar
  29. 29.
    Zuclich, J. A., and Connolly, S. Ocular damage induced by near-ultraviolet laser radiation. Invest. Ophthalmol. 75: 760–764, 1976.Google Scholar
  30. 30.
    Zuclich, J. A., and Kurtin, W. E. Oxygen dependence of near-ultraviolet induced corneal damage. Photochem. Photobiol. 25: 133–135, 1977.CrossRefGoogle Scholar
  31. 31.
    Goldman, H. Genesis of heat cataract. Arch. Ophthalmol. 9: 314, 1933.Google Scholar
  32. 32.
    Langley, R. K., Mortimer, C. B., and McCulloch, C. The experimental production of cataracts by exposure to heat and light. Arch. Ophthalmol. 63: 473–488, 1960.CrossRefGoogle Scholar
  33. 33.
    Duke-Elder, S. System of Ophthalmology, Vol. 14: Injuries, Part 2: Non-mechanical injuries. C. V. Mosby, St. Louis, 1972.Google Scholar
  34. 34.
    van Heyningen, R. What happens to the human lens in cataract. Sci. Am. 253: 70–81, 1975.CrossRefGoogle Scholar
  35. 35.
    Hiller, R., Giacometti, L., and Yuen, K. Sunlight and cataract: An epidemiological investigation. Am. J. Epidemiol., 705: 450–459, 1977.Google Scholar
  36. 36.
    Zigman, S., Yulo, T., Paxhia, T., Salceda, S., and Datiles, M. Comparative studies of human cataracts. Abstracts of the Association for Research in Vision and Ophthalmology, Sarasota, Florida, 1977.Google Scholar
  37. 37.
    Clark, R., Zigman, S., and Lerman, S. Studies on the structural proteins of the human lens. Exp. Eye Res. 8: 172–182, 1969.CrossRefGoogle Scholar
  38. 38.
    Lerman, S. Lens proteins and fluorescence. Isr. J. Med. Sci. 8: 1583–1589, 1972.Google Scholar
  39. 39.
    Spector, A., Roy, D., and Stauffer, J. Isolation and characterization of an age-dependent polypeptide from human lens with non-tryptophan fluorescence. Exp. Eye Res. 27: 9–24, 1975.CrossRefGoogle Scholar
  40. 40.
    Pirie, A. Formation of N1-formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem. J. 725: 203–208, 1971.Google Scholar
  41. 41.
    Walrant, P., Santis, R., and Grossweiner, L. I. Photosensitizing properties of N 1- formylkynurenine. Photochem. Photobiol. 22: 63–67, 1975.CrossRefGoogle Scholar
  42. 42.
    Pirie, A. The effects of sunlight on proteins of the lens. In Contemporary Ophthalmology (J. Bellows, Ed.). Williams & Wilkins, Baltimore, 1971, pp. 484–493.Google Scholar
  43. 43.
    Zigman, S. Eye lens color: Formation and function. Science 777: 807–809, 1971.CrossRefGoogle Scholar
  44. 44.
    Zigman, S., Schultz, J., Yulo, T., and Griess, G. Possible roles of near UV light in the cataractous process. Exp. Eye Res. 75: 201–208, 1973.CrossRefGoogle Scholar
  45. 45.
    Zigman, S., Griess, G., Yulo, T., and Schultz, J. Ocular protein alterations by near UV light. Exp. Eye Res. 15: 255–265, 1973.CrossRefGoogle Scholar
  46. 46.
    van Heyningen, R. Fluorescent compounds of the human lens. In CIBA Symposium 19 (New Series). Elsevier, Amsterdam/New York, 1973, p. 151.Google Scholar
  47. 47.
    Weiter, J. R., and Finch, E. D. Paramagnetic species in cataractous human lenses. Nature 254: 536–531, 1975.CrossRefGoogle Scholar
  48. 48.
    Zigman, S., and Hare J. D. Inhibition of cell growth by near ultraviolet light photoproducts of tryptophan. Mol. Cell Biochem. 70: 131–135, 1976.CrossRefGoogle Scholar
  49. 49.
    Lerman, S., Kuck, J. F., Borkman, R. F., and Sarchar, E. Spectroscopic evaluation and classification of the normal, aging, and cataractous lens. Ophthalmol. Res. 8: 335–353, 1976.CrossRefGoogle Scholar
  50. 50.
    Lerman, S. In Progress of Lens Biochemistry Research (O. Hockwin, Ed.). Doc. Ophthalmol. Proc. Series, Vol. 8, 1976, pp. 241–260.Google Scholar
  51. 51.
    Kurzel, R. B., Wolbarsht, M. L., and Yamanashi, B. S. Spectral studies on normal and cataractous intact human lenses. Exp. Eye Res. 77: 65–71, 1973.CrossRefGoogle Scholar
  52. 52.
    Kurzel, R. B., Wolbarsht, M. L., Yamanashi, B. S., Staton, G. W., and Borkman, R. F. Tryptophan excited states and cataracts in the human lens. Nature 247: 132–133, 1973.CrossRefGoogle Scholar
  53. 53.
    Zigman, S., Groff, J., Yulo, T., and Griess, G. Light extinction and protein in lens. Exp. Eye Res. 23: 555–567, 1976.CrossRefGoogle Scholar
  54. 54.
    Zigman, S., Schultz, J. B., Yulo, T., and Grover, D. Effects of near-UV irradiation on lens and aqueous humor proteins. Isr. J. Med. Sci. 5: 1590–1595, 1972.Google Scholar
  55. 55.
    Zigman, S., Schultz, J. B., and Yulo, T. Possible roles of near UV light in the cataractous process. Exp. Eye Res. 75: 201–208, 1973.CrossRefGoogle Scholar
  56. 56.
    Grover, D., and Zigman, S. Coloration of human lenses by near UV-photooxidized tryptophan. Exp. Eye Res. 13: 10–16, 1972.CrossRefGoogle Scholar
  57. 57.
    Zigman, S., Yulo, T., and Schultz, J. B. Cataract induction in mice exposed to near UV light. Ophthalmol. Res. 6: 259–270, 1974.CrossRefGoogle Scholar
  58. 58.
    Kurzel, R. B., Wolbarsht, M. L., and Yamanashi, B. S. Ultraviolet radiation effects of the human eye. In Photochemical and Photobiological Reviews, Vol. 2 (K. C. Smith, Ed.). Plenum Press, New York, 1977, pp. 133–168.Google Scholar
  59. 59.
    Borkman, R. F., Dairymple, A., and Lerman, S. Ultraviolet action spectrum for fluorogen production in the ocular lens. Photochem. Photobiol. 26: 129–132, 1977.CrossRefGoogle Scholar
  60. 60.
    Borkman, R. F. Ultraviolet action spectrum for tryptophan destruction in aqueous solution. Photochem. Photobiol. 26: 163–166, 1977.CrossRefGoogle Scholar
  61. 61.
    Zigman, S. Y., Groff, J., and Yulo, T. Enhancement of the non-tryptophan fluorescence of human lens proteins after nearrUV light exposure. Photochem. Photobiol. 26: 505–509, 1977.CrossRefGoogle Scholar
  62. 62.
    Zigman, S., and Vaughan, T. Near-ultraviolet light effects on the lenses and retinas of mice. Invest. Ophthalmol. 73: 462–465, 1974.Google Scholar
  63. 63.
    Pirie, A. Colour and solubility of the proteins of human cataracts. Invest. Ophthalmol. 7: 634–650, 1968.Google Scholar
  64. 64.
    Harding, J. J., and Dilley, K. J. Structural proteins of the mammalian lens: A review with emphasis on changes in development, aging, and cataract. Exp. Eye Res. 22: 1–73, 1976.CrossRefGoogle Scholar
  65. 65.
    Dilley, K. J., and Pirie, A. Changes to the proteins of the human lens nucleus in cataract. Exp. Eye Res. 79: 59–72, 1974.CrossRefGoogle Scholar
  66. 66.
    Buckingham, R. H., and Pirie, A. The effect of light on lens proteins in vitro. Exp. Eye Res. 74: 297–299, 1972.CrossRefGoogle Scholar
  67. 67.
    Girgus, J. S., Coren, S., and Porac, C. Independence in vivo human lens pigmentation from UV light exposure. Vision Res. 77: 749–750, 1977.CrossRefGoogle Scholar
  68. 68.
    Jose, J. G., and Yielding, K. L. “Unscheduled” DNA synthesis in lens epithelium following ultraviolet irradiation. Exp. Eye Res. 24: 113–119, 1977.CrossRefGoogle Scholar
  69. 69.
    Jose, J. G., and Yielding, K. L. Unscheduled DNA synthesis in frog lens at 5°C. Photochem. Photobiol. 26: 549–551, 1977.CrossRefGoogle Scholar
  70. 70.
    Radnot, M. Effects of irradiation on the eye lens. At. Energy Rev. 7: 129–165, 1969.Google Scholar
  71. 71.
    Conklin, J. W., Upton, A. C., Christenberry, K. W., and McDonald, T. P. Comparative late somatic effects of some radiomimetic agents and X-rays. Radiat. Res. 79: 156–168, 1963.CrossRefGoogle Scholar
  72. 72.
    Freeman, R. G., and Knox, J. Ultraviolet induced corneal tumors in different species and strains of animals. J. Invest. Dermatol. 43: 431–436, 1964.Google Scholar
  73. 73.
    Tomicic, H., Pieba, M., Romero, C., Soto, A., and Toha, J. C. Radioprotection (UV and gamma rays) of DNA molecule by indole and indole derivatives. A. Naturforsch(c) 25: 379–385, 1973.Google Scholar
  74. 74.
    Helene, C. Energy transfer between nucleic acid bases and tryptophan in aggregates and in oligopeptide nucleic acid complexes. Photochem. Photobiol. 18: 255–262, 1973.CrossRefGoogle Scholar
  75. 75.
    Patterson, P. S. P., Sweasey, D., Roberts, B. A., and Pattison, M. The protective effect of promethazine treatment against photoperoxidation of lipid in turkey eyes. Exp. Eye Res. 79: 267–272, 1974.CrossRefGoogle Scholar
  76. 76.
    Zigman, S., and Bagley, S. New UV light effects on dogfish retinal rods. Exp. Eye Res. 72: 155–157, 1971.CrossRefGoogle Scholar
  77. 77.
    Marshall, J., Mellerio, J., and Palmer, D. Damage to pigeon retinae by moderate illumination from fluorescent lamps. Exp. Eye Res. 74: 164–169, 1972.CrossRefGoogle Scholar
  78. 78.
    O’Steen, W. K., and Karcioglu, A. Z. Phagocytosis in the light damaged albino rat eye: Light and electron microscopic study. Am. J. Anat. 139: 503–518, 1974.CrossRefGoogle Scholar
  79. 79.
    Weisse, I., and Stotzer, H. Age and light dependent changes in the rat eye. Virchows Arch. Pathol. Anat. Physiol. 362: 145–156, 1974.Google Scholar
  80. 80.
    Ham, W. T., Mueller, H. A., and Clarke, A. M. Retinal sensitivity to damage from short wavelength light. In Symposium on Biologic Effects and Measurement of Light Sources. U. S. Dept. HEW Publication (FDA) 77-8002. BRH Rockville, Maryland, 1977, pp. 37–47.Google Scholar
  81. 81.
    Griffin, A. C. Methoxsalen in ultraviolet carcinogenesis in the mouse. J. Invest. Dermatol. 32: 361–372, 1959.CrossRefGoogle Scholar
  82. 82.
    Cloud, T. M., Hakim, R., and Griffin, A. C. Photosensitization of the eye with methoxsalen. I. Acute effect. Arch. Ophthalmol. 64: 346–351, 1960.CrossRefGoogle Scholar
  83. 83.
    Cloud, T. M., Hakim, R., and Griffin, A. C. Photosensitization of the eye with methoxsalen. II. Chronic effects. Arch. Ophthalmol. 66: 689–694, 1961.CrossRefGoogle Scholar
  84. 84.
    Freeman, R. G., and Troll, D. Photosensitization of the eye by 8-methoxypsoralen. J. Invest. Dermatol. 53: 449–453, 1969.Google Scholar
  85. 85.
    Lerman, S. A method for detecting 8-methoxypsoralen in the ocular lens. Science 797: 1287–1288, 1977.CrossRefGoogle Scholar
  86. 86.
    Lerman, S., Jocoy, M., and Borkman, R. F. Photosensitization of the lens by 8-methoxypsoralen. Invest. Ophthalmol. Visual Sei. 76: 1065–1068, 1977.Google Scholar
  87. 87.
    Egyed, M. N., Singer, L., Eilat, A., and Shlosberg, A. Eye lesions in ducklings fed Ammi majus seeds. Zentralbl. Veterinaermed. Reihe A 22: 764–768, 1975.CrossRefGoogle Scholar
  88. 88.
    Barishak, Y. R., Beemer, A. M., Egyed, M. N., and Eilat, A. Histology of the retina and choroid in ducklings photosensitized by feeding Ammi majus seeds. Ophthalmic Res. 8: 169–178, 1976.CrossRefGoogle Scholar
  89. 89.
    Parrish, J. A., Fitzpatrick, T. B., Tanenbaum, L., and Pathak, M. A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet. N. Engl. J. Med. 297: 1207–1212, 1974.CrossRefGoogle Scholar
  90. 90.
    Parrish, J. A., Fitzpatrick, T. B., Shea, C., and Pathak, M. A. Photochemotherapy of vitiligo with oral psoralen and a new high-intensity longwave ultraviolet light (UV-A) system. Arch. Dermatol. 772: 1531–1534, 1976.CrossRefGoogle Scholar
  91. 91.
    Pathak, M. A., Kramer, D. M., and Fitzpatrick, T. B. Photobiology and photochemistry of furocoumarins. In Sunlight and Man: Normal and Abnormal Photobiologic Responses (M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, Eds.; T. B. Fitzpatrick, Consulting Ed.). University of Tokyo Press, Tokyo, 1974, pp. 335–368.Google Scholar
  92. 92.
    Melski, J., Tanenbaum, L., Parrish, J. A., Fitzpatrick, T. B., Bleich, H. L., and 28 participating investigators. Oral methoxsalen photochemotherapy for the treatment of psoriasis: A cooperative clinical trial. J. Invest. Dermatol. 68: 328–335, 1977.CrossRefGoogle Scholar
  93. 93.
    McDonald, C. J., Snell, R. S., and Lerner, A. B. The effect of chlorpromazine on oculocutaneous pigmentation in the guinea pig. J. Invest. Dermatol. 49: 39–42, 1967.Google Scholar
  94. 94.
    Bernstein, H. N., Curtis, J., Earl, F. L., and Kuwabara, T. Phototoxic corneal and lens opacities. Arch. Ophthalmol. 53: 336–348, 1970.CrossRefGoogle Scholar
  95. 95.
    Emmett, E. A., Stetzer, L., and Taphorn, B. Phototoxic keratoconjunctivitis from coaltar pitch volatiles. Science 795: 841–842, 1977.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • John A. Parrish
    • 1
  • R. Rox Anderson
    • 1
  • Frederick Urbach
    • 2
  • Donald Pitts
    • 3
  1. 1.Harvard Medical SchoolUSA
  2. 2.Skin and Cancer HospitalTemple University School of MedicineUSA
  3. 3.College of OptometryUniversity of HoustonUSA

Personalised recommendations