Advertisement

UV-A pp 241-256 | Cite as

Safety Measures and Protection against Ultraviolet Exposure

  • John A. Parrish
  • R. Rox Anderson
  • Frederick Urbach
  • Donald Pitts

Abstract

There are potential biologic hazards associated with exposure to essentially every spectral region of the continuum of electromagnetic radiation. Exposure to microwave radiation is associated with heating of tissues, and possibly cataract formation and deleterious effects upon the central nervous system. Infrared energy may also cause destructive heating of the skin and eyes and cataract formation (“glass blower’s cataract”). Near infrared radiation and visible light focused on the retina may produce retinal burns. The shorter wavelengths of the visible light spectrum produce retinal damage at much lower irradiances than the longer visible and near-infrared wavelengths.1 The biologic effects and hazards of ultraviolet radiation on the skin and eyes of humans have been well recorded in the literature. Ionizing radiation (X rays and gamma rays) can cause tissue destruction and mutagenesis and can penetrate deeply into the body.

Keywords

Exposure Dose Spectral Irradiance Minimal Erythemal Dose Near Infrared Radiation Ultraviolet Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ham, W. T., Mueller, H. A., and Sliney, D. H. Retinal sensitivity to damage from short wavelength light. Nature 260: 153–155, 1977.CrossRefGoogle Scholar
  2. 2.
    Webb, R. B., and Lorenz, J. R. Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem. Photobiol. 72: 283–289, 1970.CrossRefGoogle Scholar
  3. 3.
    Webb, R. B., and Malina, M. M. Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of Escherichia coli. Photochem. Photobiol. 72: 457–468, 1970.CrossRefGoogle Scholar
  4. 4.
    Spikes, J. D., and Glad, B. W. Photodynamic action. Photochem. Photobiol. 5: 471–487, 1964.CrossRefGoogle Scholar
  5. 5.
    Norman, C., Goldberg, E., and Porterfield, D. The effect of visible radiation on the functional life-span of mammalian and avian spermatozoa. Exp. Cell Res. 28: 69–84, 1962.CrossRefGoogle Scholar
  6. 6.
    Bohme, H., and Wacker, A. Mutagenic activity of thiopyronine and methylene blue in combination with visible light. Biochem. Biophys. Res. Commun. 72: 137–139, 1963.CrossRefGoogle Scholar
  7. 7.
    Spikes, J. D. Photodynamic action. Photophysiology 3: 33, 1968.Google Scholar
  8. 8.
    Santamaria, L. Photodynamic action and carcinogenicity. In Recent Contributions to Cancer Research in Italy, Vol. 1 (P. Bucalossi and I. Veronesi, Eds.). Casa Editrice Ambrosiana, Milan, 1960, p. 167.Google Scholar
  9. 9.
    Behrman, R. E., Brown, A. K., Currie, M. R., Hastings, J. W., Odell, G. B., Shaffer, R., Setlow, R. B., Vogl, T. P., and Wurtman, R. J. Preliminary report of the committee on phototherapy in the newborn infant. J. Pediatr. 54: 135–147, 1974.Google Scholar
  10. 10.
    Wurtman, R. J. The effects of light on the human body. Sci. Am. 233: 68–11, 1975.CrossRefGoogle Scholar
  11. 11.
    Halberg, F. Chronobiology. Ann. Rev. Physiol. 37: 675–725, 1969.CrossRefGoogle Scholar
  12. 12.
    Axelrod, J., Wurtman, R. J., and Snyder, S. H. Control of hydroxyindole O-methyltransferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240: 949–954, 1965.Google Scholar
  13. 13.
    Hastings, J. W. The biology of circadian rhythms from man to microorganism. N. Engl. J. Med. 252: 435–441, 1970.Google Scholar
  14. 14.
    Mills, J. N. Human circadian rhythms. Physiol. Rev. 46: 128–171, 1966.Google Scholar
  15. 15.
    Loomis, W. F. Rickets. Sci. Am. 223: 11–91, 1970.CrossRefGoogle Scholar
  16. 16.
    Neer, R., Davis, T., Walcott, A., Koski, S., Schepis, P., Taylor, I., Thorington, L., and Wurtman, R. Stimulation by artificial lighting of calcium absorption in elderly human subjects. Nature 229: 255–251, 1971.CrossRefGoogle Scholar
  17. 17.
    Epstein, W. L., Fukuyama, K., and Epstein, J. H. Ultraviolet light, DNA repair, and skin carcinogenesis in man. Fed. Proc. 30: 1766–1771, 1971.Google Scholar
  18. 18.
    Blum, H. F. Carcinogenesis by Ultraviolet Light. Princeton University Press, Princeton, New Jersey, 1959.Google Scholar
  19. 19.
    Michaelson, S. M. Human exposure to nonionizing radiant energy—Potential hazards and safety standards. Proc. IEEE 60: 389–421, 1972.CrossRefGoogle Scholar
  20. 20.
    Matelsky, I. The non-ionizing radiations. In Industrial Hygiene Highlights, Vol. 1 (L. V. Cralley and G. D. Clayton, Eds.). Industrial Hygiene Foundation of America, Inc., Pittsburgh, Pennsylvania, 1968, pp. 140–179.Google Scholar
  21. 21.
    Leach, W. M. Biological aspects of ultraviolet radiation: A review of hazards. Division of Biological Effects, Bureau of Radiological Health, USDHEW, Rep. BRH/DBE 70 - 3, 1970.Google Scholar
  22. 22.
    Sliney, D. H., and Freasier, B. C. Evaluation of optical radiation hazards. Applied Optics 72: 1–24, 1973.CrossRefGoogle Scholar
  23. 23.
    Biologic Effects and Measurements of Light Sources. Bureau of Radiological Health, FDA Doc. 76-8058, Washington, D.C. 1976.Google Scholar
  24. 24.
    Occupational Exposure to Ultraviolet Radiation. USDHEW, National Institute for Occupational Safety and Health (NIOSH), HSM 73-11009, Washington, D.C. 1972.Google Scholar
  25. 25.
    Pitts, D. G. The ocular ultraviolet action spectrum and protection criteria. Health Phys. 25: 559–566, 1973.CrossRefGoogle Scholar
  26. 26.
    Sliney, D. H. The merits of an envelope action spectrum for ultraviolet radiation exposure criteria. Am. Indust. Hyg. Assoc. J. 33: 644–653, 1972.CrossRefGoogle Scholar
  27. 27.
    Pathak, M. A., Fitzpatrick, T. B., and Frenk, E. Evaluation of topical agents that prevent sunburn—Superiority of paraaminobenzoic acid and its ester in ethyl alcohol. N. Engl. J. Med. 280: 1459–1463, 1969.CrossRefGoogle Scholar
  28. 28.
    Willis, I., and Kligman, A. M. Aminobenzoic acid and its esters. Arch. Dermatol. 102: 405–417, 1970.CrossRefGoogle Scholar
  29. 29.
    Fitzpatrick, T. B., Pathak, M. A., and Parrish, J. A. Protection of the human skin against the effects of the sunburn ultraviolet (290–320 nm). In Sunlight and Man: Normal and Abnormal Photobiologic Responses (M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, Eds.; T. B. Fitzpatrick, Consulting Ed.). University of Tokyo Press, Tokyo, 1974, pp. 751–765.Google Scholar
  30. 30.
    Finnerty, E. F. The results of exposure to solar radiation. Southwestern Med. 43: 112–120, 1962.Google Scholar
  31. 31.
    Kahn, G., and Wilcox, G. Comparison of in vitro and in vivo sunscreen testing methods. J. Soc. Cosmet. Chem. 20: 807–824, 1969.Google Scholar
  32. 32.
    Parrish, J. A., Pathak, M. A., and Fitzpatrick, T. B. Protection of skin from germicidal ultraviolet radiation in the operating room by topical chemicals. N. Engl. J. Med. 254: 1257–1258, 1971.CrossRefGoogle Scholar
  33. 33.
    Dahlen, R. F., Shapiro, S. I., Berry, C. Z., and Schreiber, M. M. A method of evaluating sunscreen protection from longwave ultraviolet. J. Invest. Dermatol. 55: 164–169, 1970.CrossRefGoogle Scholar
  34. 34.
    Parrish, J. A., Pathak, M. A., and Fitzpatrick, T. B. Prevention of unintentional overexposure in topical psoralen treatment of vitiligo. Arch. Dermatol. 104: 281–283, 1971.CrossRefGoogle Scholar
  35. 35.
    Pathak, M. A., Parrish, J. A., and Fitzpatrick, T. B. New effective sunscreens for protection against erythemogenic and carcinogenic spectrum of solar radiation. Program and Abstracts, 2nd Annual Meeting of the American Society for Photobiology, July 1974, p. 136.Google Scholar
  36. 36.
    Van Allen, J., and Tinker, J. F. Derivatives of benzoylresorcinol. J. Org. Chem. 19: 1243–1251, 1954.CrossRefGoogle Scholar
  37. 37.
    Purvis, J. E., and McCleland, N. P. The absorption spectra of some substances containing two benzene nuclei. J. Chem. Soc. 707: 1516, 1912.Google Scholar
  38. 38.
    Tronnier, H., and Hoppe-Seyler, G. Praktischdermatologische Gesichtspunkte für den Lichtschutz und die Depigmentierung. Anaesthet. Med. (Berlin) 77: 221–228, 1968.Google Scholar
  39. 39.
    Hodgman, C. D. (Ed.). Handbook of Chemistry and Physics (38th ed.). Cleveland, Chemical Rubber Publishing Co., 1956, pp. 794–796.Google Scholar
  40. 40.
    Hoppe, U. Photostabilität und Hautaffinitat—zwei Kriterien für kosmetische Lichtschutzsubstanzen am Beispiel der Naphthalin- 1,5-bis-harnstoffe. J. Soc. Cosmet. Chem. 25: 667–680, 1974.Google Scholar
  41. 41.
    Fusaro, R. M., Runge, W. J., Lynch, F. W., and Watson, C. J. Sunlight protection in normal skin—By absorptive filter chemically induced in stratum corneum. Arch. Dermatol. 93: 106–111, 1966.CrossRefGoogle Scholar
  42. 42.
    Fusaro, R. M., and Johnson, J. A. Photoprotection of patients sensitive to short and/or long ultraviolet light with dehydroxyacetone/naphthoquinone. Dermatologica 148: 224–221, 1974.CrossRefGoogle Scholar
  43. 43.
    MacLeod, T. M., and Frain-Bell, W. The study of the efficacy of some agents used for the protection of the skin from exposure to light. Br. J. Dermatol. 84: 266–281, 1974.CrossRefGoogle Scholar
  44. 44.
    Findlay, G. H. Oral interceptives that do not work. In The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin) (F. Urbach, Ed.). Pergamon Press, Oxford, 1969, pp. 693–695.Google Scholar
  45. 45.
    Mathews-Roth, M. M., Pathak, M. A., Parrish, J. A., Fitzpatrick, T. B., Kass, E. H., Toda, K., and Clemens, W. A clinical trial of the effects of oral beta-carotene on the responses of human skin to solar radiation. J. Invest. Dermatol. 59: 349–353, 1972.CrossRefGoogle Scholar
  46. 46.
    Imbrie, J. D., Daniels, F., Jr., Bergeron, L., Hopkins, C. E., and Fitzpatrick, T. B. Increased erythema threshold six weeks after a single exposure to sunlight plus oral methoxsalen. J. Invest. Dermatol. 32: 331–337, 1959.CrossRefGoogle Scholar
  47. 47.
    Imbrie, J. D., Bergeron, L., and Fitzpatrick, T. B. Follow-up study of effect of oral methoxsalen (8-methoxypsoralen) in sunburn and suntan. Arch. Dermatol. 82: 617–620, 1960.CrossRefGoogle Scholar
  48. 48.
    Mathews-Roth, M. M., Pathak, M. A., Fitzpatrick, T. B., Harber, L. C., and Kass, E. H. Beta-carotene as a photoprotective agent in erythropoietic protoporphyria. N. Engl. J. Med. 282: 1231–1234, 1970.CrossRefGoogle Scholar
  49. 49.
    Epstein, J. Effects of β-carotene on ultraviolet-induced cancer formation in the hairless mouse. Photochem. Photobiol. 25: 211–213, 1977.CrossRefGoogle Scholar
  50. 50.
    Anderson, W. J., and Gebel, K. H. Ultraviolet windows in commercial sunglass. Appl. Optics 76: 515–517, 1977.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • John A. Parrish
    • 1
  • R. Rox Anderson
    • 1
  • Frederick Urbach
    • 2
  • Donald Pitts
    • 3
  1. 1.Harvard Medical SchoolUSA
  2. 2.Skin and Cancer HospitalTemple University School of MedicineUSA
  3. 3.College of OptometryUniversity of HoustonUSA

Personalised recommendations