Ion Transport by Mitochondria

  • Gerald P. Brierley


The inner membrane of the mitochondrion fulfills several crucial roles in cell metabolism. It segregates the enzymes and metabolites of the major energy-yielding metabolic pathways from alternative reactions in the cytosol and, at the same time, provides pathways for regulated interchange of metabolites between the matrix and nonmitochondrial compartments.(1,2) In addition, a large body of evidence suggests that the primary mode of energy coupling in the mitochondrion consists of pH and electrical gradients across(3) or within(4) the inner membrane of the mitochondrion. It has become apparent that the movement of protons, anions, and cations across the inner membrane can profoundly affect both energy coupling and the regulation of metabolism. It is also clear that we have only begun to understand the pathways that are available to these components in the mitochondrial membrane, and we can expect that future work will provide a complete explanation of the mechanism and control features of these processes.


Energy Coupling Heart Mitochondrion Proton Motive Force Cation Uptake Adenine Nucleotide Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williamson, J. R. (1976) in Mitochondria -Bioenergetics, Biogenesis, and Membrane Structure (Packer, L., and Gomez-Puyou, A., eds.), pp. 79–107, Academic Press, New YorkGoogle Scholar
  2. 2.
    Meijer, A. J., and Van Dam, K. (1974) Biochim. Biophys. Acta 36, 213–244.Google Scholar
  3. 3.
    Mitchell, P. (1976) Biochem. Soc. Trans. 4, 399–430.PubMedGoogle Scholar
  4. 4.
    Williams, R. J. P. (1976) T. 1. B. S. 1, N222–N224.Google Scholar
  5. 5.
    Brierley, G. P., Bachmann, E., and Green, D. E. (1962) Proc. Natl. Acad. Sci. USA 48, 1928–1935.PubMedCrossRefGoogle Scholar
  6. 6.
    Brierley, G. P., Murer, E., and Green, D. E. (1963) Science 140, 60–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Brierley, G. P., Murer, E., Bachmann, E., and Green, D. E. (1963) J. Biol. Chem. 238, 3482–3489.PubMedGoogle Scholar
  8. 8.
    Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967) Adv. Enzymol. 29, 259–320.PubMedGoogle Scholar
  9. 9.
    Chappell, J. B., Cohn, M., and Greville, G. D. (1963) in Energy-Linked Functions of Mitochondria (Chance, B., ed.), pp. 219–231, Academic Press, New York.Google Scholar
  10. 10.
    Brierley, G. P. (1976) Molec. Cell. Biochem. 10, 41–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Chance, B. and Montai, M. (1971) Curr. Topics Membranes Transport 2, 99–156.CrossRefGoogle Scholar
  12. 12.
    Pressman, B. C. (1976) Ann. Rev. Biochem. 45, 501–530.PubMedCrossRefGoogle Scholar
  13. 13.
    Racker, E. (1976) A New Look at Mechanisms in Bioenergetics, Academic Press, New York.Google Scholar
  14. 14.
    Azzone, G. F., and Massari, S. (1973) Biochim. Biophys. Acta 301, 195–226.PubMedGoogle Scholar
  15. 15.
    Papa, S. (1976) Biochim. Biophys. Acta 456, 39–84.PubMedGoogle Scholar
  16. 16.
    Skulachev, V. P. (1975) in Energy Transducing Mechanisms (Racker, E., ed.), pp. 31–73, Butterworths, London.Google Scholar
  17. 17.
    Greville, G. D. (1969) Curr. Topics Bioenergetics 3, 1–78.Google Scholar
  18. 18.
    Harris, E. J. (1972) Transport and Accumulation in Biological Systems, Butterworths, London.Google Scholar
  19. 19.
    Klingenberg, M. (1970) Essays Biochem. 6, 119–159.PubMedGoogle Scholar
  20. 20.
    Packer, L., and Gomez-Puyou, A. (1976) Mitochondria-Bioenergetics, Biogenesis and Membrane Structure, Academic Press, New York.Google Scholar
  21. 21.
    Quagliariello, E., Papa, S., Palmeri, F., Slater, E. C., and Siliprandi, N. (eds.) (1975) Electron Transfer Chains and Oxidative Phosphorylation, North-Holland, Amsterdam.Google Scholar
  22. 22.
    Jagendorf, A. T. (1975) in Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 414–492, Academic Press, New York.Google Scholar
  23. 23.
    Blondin, G. A., and Green, D. E. (1975) Chem. Eng. News. 53, 26–42.CrossRefGoogle Scholar
  24. 24.
    Wilson, T. H., and Maloney, P. C. (1976) Fed. Proc. 35, 2174–2179.PubMedGoogle Scholar
  25. 25.
    Chappell, J. B. (1968) Br. Med. Bull. 24, 150–157.PubMedGoogle Scholar
  26. 26.
    Klingenberg, M., Durand, R., and Guerin, B. (1974) Eur J . Biochem. 42, 135–150.PubMedCrossRefGoogle Scholar
  27. 27.
    Brierley, G. P., and Stoner, C. D. (1970) Biochemistry 9, 708–713.PubMedCrossRefGoogle Scholar
  28. 28.
    Brierley, G. P., Jurkowitz, M., Scott, K. M., and Merola, A. J. (1970) J. Biol. Chem. 245, 5405–5411.Google Scholar
  29. 29.
    Lehninger, A. L. (1974) Circ. Res. Suppl. III, 34, 83–88.Google Scholar
  30. 30.
    Carafoli, E. (1973) Biochimie 55, 755–762.PubMedCrossRefGoogle Scholar
  31. 31.
    Rottenberg, H., and Scarpa, A. (1974) Biochemistry 13, 4811–4817.PubMedCrossRefGoogle Scholar
  32. 32.
    Chappell, J. B., and Crofts, A. R. (1966) in Regulation of Metabolic Processes in Mitochondria (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., eds.), pp. 293–316, Elsevier, Amsterdam.Google Scholar
  33. 33.
    Brierley, G. P. (1974) Ann. N.Y. Acad. Sci. 227, 398–411.PubMedCrossRefGoogle Scholar
  34. 34.
    Diwan, J. J., and Harrington, P. (1975) Fed. Proc. 34, 518 (abstr.).Google Scholar
  35. 36.
    Chavez, E., and Brierley, G. P. (1977) Biophys. J. 17, 253a.Google Scholar
  36. 36.
    Chavez, E., Jung, D. W., and Brierley, G. P. (1977) Biochem. Biophys. Res. Commun. 75, 69–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Jung, D. W., Chavez, E., and Brierley, G. P. (1977) Arch. Biochem. Biophys. 183, 452–459.PubMedCrossRefGoogle Scholar
  38. 38.
    Chavez, E., Jung, D. W., and Brierley, G. P. (1977) Arch. Biochem. Biophys. 183, 460–470.PubMedCrossRefGoogle Scholar
  39. 39.
    Brierley, G. P., Jurkowitz, M., Scott, K. M., and Merola, A. J. (1972) Arch. Biochem. Biophys. 152, 744–754.PubMedCrossRefGoogle Scholar
  40. 40.
    Mueller, P. (1975) Ann. N.Y. Acad. Sci. 264, 247–264.PubMedCrossRefGoogle Scholar
  41. 41.
    Harris, E. J., and Pressman, B. C. (1969) Biochim. Biophys. Acta 172, 66–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Rottenberg, H. (1972) J. Membrane Biol. 11, 117–137.CrossRefGoogle Scholar
  43. 43.
    Brierley, G. P., and Jurkowitz, M. (1976) Biochem. Biophys. Res. Commun. 68, 82–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Brierley, G. P., Jurkowitz, M., and Chavez, E. (1977) Biochem. Biophys. Res. Commun. 74, 235–241.PubMedCrossRefGoogle Scholar
  45. 45.
    Brierley, G. P., Jurkowitz, M., Chavez, E., and Jung, D. W. (1977) J. Biol. Chem. 252, 7932–7939.PubMedGoogle Scholar
  46. 46.
    Douglas, M. G., and Cockrell, R. S. (1974) J. Biol. Chem. 249, 5464–5471.PubMedGoogle Scholar
  47. 47.
    Reynafarje, B., Brand, M. D., and Lehninger, A. L. (1976) J. Biol. Chem. 251, 7442–7451.PubMedGoogle Scholar
  48. 48.
    Diwan, J. J., and Lehrer, P. H. (1975) J. Cell Biol. 67, 96a.Google Scholar
  49. 49.
    Diwan, J. J., and Tedeschi, H. (1975) FEBS Lett. 60, 176–179.PubMedCrossRefGoogle Scholar
  50. 50.
    Diwan, J. J. (1973) Biochem. Biophys. Res. Commun. 50, 384–391.PubMedCrossRefGoogle Scholar
  51. 51.
    Brierley, G. P., Jurkowitz, M., and Scott, K. M. (1973) Arch. Biochem. Biophys. 159, 742–756.CrossRefGoogle Scholar
  52. 52.
    Southard, J. H., Blondin, G. A., and Green, D. E. (1974) J. Biol. Chem. 249, 678–681.PubMedGoogle Scholar
  53. 53.
    Crompton, M., Capano, M., and Carafoli, E. (1976) Biochem. J. 154, 735–742.PubMedGoogle Scholar
  54. 54.
    Cockrell, R. S. (1976) Fed. Proc. 35, 1759 (abstr.).Google Scholar
  55. 55.
    Puskin, J. S., Gunter, T. E., Gunter, K. K., and Russell, P. R. (1976) Biochemistry 15, 3834–3842.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Gerald P. Brierley
    • 1
  1. 1.Department of Physiological Chemistry, College of MedicineOhio State UniversityColumbusUSA

Personalised recommendations