Advertisement

Studies of Energy-Linked Reactions: A Biochemical Genetic Approach to the Mechanism of Oxidative Phosphorylation

  • David E. Griffiths

Abstract

Current theories of the mechanism of oxidative phosphorylation can be divided into three different concepts: (a) the chemical coupling hypothesis based on the mechanism of substrate-linked phosphorylation,(1,2) (b) the conformational coupling hypothesis,(3,4) and (c) the chemiosmotic (electrochemical) hypothesis. (5) Many variants of these hypotheses have been proposed, and the evidence in favor and the limitations of each hypothesis have been summarized recently. (6) There is general agreement that energy made available in respiratory chain oxidations is primarily conserved in a form other than ATP, and this form (termed “~” or “X ~ 1”) can be utilized to drive a number of endergonic processes such as ATP synthesis, ion transport, energy-linked transhydrogenation and energy linked reversal of electron transport (Fig. 1) (cf. ref. 7). Such reactions can also be driven by ATP hydrolysis and under these conditions are inhibited by oligomycin, triethyl tin, and DCCD as well as uncoupling agents, and, in addition, it can be demonstrated that the intermediate energy form (~ or X ~1) is common to all three coupling sites.(8)

Keywords

Oxidative Phosphorylation Lipoic Acid Purple Membrane Uncouple Agent Synthetase Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slater, E. C. (1966) Compr. Biochem. 14, 327–396.Google Scholar
  2. 2.
    Reed, L. J. (1966) Compr. Biochem. 14, 99–126.Google Scholar
  3. Boyer, P. D. (1965) in Oxidase and Related Redox Systems King, T. E., et al., eds.), pp. 994-1008, Wiley, New York. Google Scholar
  4. 4.
    Green, D. E. (1974) Biochim. Biophys. Acta 346, 27–78.PubMedGoogle Scholar
  5. 5.
    Mitchell, P. (1966) Biol. Rev.41, 445.PubMedCrossRefGoogle Scholar
  6. 6.
    Klingenberg, M. (1976) in Energy Transformation in Biological Systems, Ciba Foundation Symposium 31, pp. 22–40, Associated Scientific Publishers, Amsterdam.Google Scholar
  7. 7.
    Van Dam, K., and Meyer, A. L. (1971) Ann. Rev. Biochem.40, 115–160.CrossRefGoogle Scholar
  8. 8.
    Lee, C. P., and Ernster, L., (1968) Eur. J. Biochem.3, 385–390.PubMedCrossRefGoogle Scholar
  9. 9.
    Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) J. Biol. Chem.237, 1676–1680.PubMedGoogle Scholar
  10. 10.
    Ziegler, D. M., and Doeg, K. A. (1959) Biochem. Biophys. Res. Commun. 1, 344 - 349.CrossRefGoogle Scholar
  11. 11.
    Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) J. Biol. Chem.237, 1681–1685.PubMedGoogle Scholar
  12. 12.
    Griffiths, D. E., and Wharton, D. C. (1961) J.Biol. Chem.236, 1850–1856.PubMedGoogle Scholar
  13. 13.
    Hâtefi, Y., Hanstein, W. G., Galante, Y., and Stiggall, D. L. (1975) Fed. Proc.34, 1699–1706.PubMedGoogle Scholar
  14. 14.
    Tzagoloff, A., Rubin, M. S., and Sierra, M. F. (1973) Biochim. Biophys. Acta 301, 71–104.PubMedGoogle Scholar
  15. 15.
    Schatz, G., and Mason, T. (1974) Ann. Rev. Biochem. 43, 51 - 87.CrossRefGoogle Scholar
  16. Tzagoloff, A., and Meagher, P. (1971) J. Biol. Chem. 246, 7328–7336.Google Scholar
  17. Serrano, R., Kanner, B. I., and Racker, E. (1976) J. Biol. Chem. 251, 2453–2461.Google Scholar
  18. Hunter, D. R., Komai, H., and Howarth, R. A. (1974) Biochem. Biophys. Res. Commun. 56, 647–653.Google Scholar
  19. 19.
    Griffiths, D. E., and Houghton, R. L. (1974) Eur. J. Biochem. 46, 157 - 167.PubMedCrossRefGoogle Scholar
  20. 20.
    Cain, K., and Griffiths, D. E. (1977) Biochem. J.162, 575–580.PubMedGoogle Scholar
  21. Komai, H., Hunter, D. R., Southard, J. H., Howarth, R. A., and Green, D. E. (1976) Biochem. Biophys. Res. Commun. 69, 695–704.Google Scholar
  22. Ragan, C. I., and Racker, E. (1973) J. Biol. Chem. 248, 6876–6882.Google Scholar
  23. 23.
    Racker, E., and Kandrach, A. (1973) J. Biol. Chem. 248, 5841 - 5847.PubMedGoogle Scholar
  24. 24.
    Racker, E. (1975) Biochem. Soc. Trans. 3, 785 - 802.Google Scholar
  25. 25.
    Senior, A. E. (1973) Biochim. Biophys. Acta 301, 249 - 277.PubMedGoogle Scholar
  26. 26.
    Racker, E., and Stoeckenius, W. (1974) J. Biol. Chem. 248, 662 - 663.Google Scholar
  27. 27.
    Green, D. E., and Ji, S. (1973) Proc. Natl. Acad. Sci USA 56, 904 - 908.CrossRefGoogle Scholar
  28. 28.
    Ernster, L., Nordenbrand, K., Chude, O., and Juntti, K. (1974) in Membrane Proteins in Transport and Phosphorylation(Azzone, G. F., et al., eds.), pp. 29–41, North-Holland, Amsterdam.Google Scholar
  29. 29.
    Singer, S. J. (1974) Ann. Rev. Biochem. 43, 805 - 833.PubMedCrossRefGoogle Scholar
  30. 30.
    Bertoli, E., Finean, J. B., and Griffiths, D. E. (1976) FEBS Lett. 61, 163–165.PubMedCrossRefGoogle Scholar
  31. 31.
    Mitchell, P. (1976) Biochem. Soc. Trans.4, 399–430.PubMedGoogle Scholar
  32. 32.
    Skulachev, V. P. (1971) Curr. Top. Bioenergetics 4, 127 - 190.Google Scholar
  33. 33.
    Ferguson, S. J., John, P., Lloyd, W. J., Radda, G. K., and Whatley, F. R. (1976) FEBS Lett. 62, 272–275.PubMedCrossRefGoogle Scholar
  34. 34.
    Ernster, L., and Lee, C. P. (1964) Ann. Rev. Biochem. 33, 729 - 788.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, C. P., Simard-Duquesne, N., Ernster, L., and Hoberman, H. D. (1965) Biochim. Biophys. Acta 105, 397 - 409.PubMedGoogle Scholar
  36. 36.
    Griffiths, D. E., and Roberton., A. M. (1966) Biochim. Biophys. Acta 118, 453 - 464.PubMedGoogle Scholar
  37. 37.
    Sweetman, A. J., and Griffiths, D. E. (1970) FEBS Lett. 10, 92–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Sweetman, A.J. (1970) Ph.D. thesis, University of Warwick.Google Scholar
  39. 39.
    Horio, T., Nishikawa, K., Akayama, S., Horuiti, Y., Yamamota, Y., and Katutani, Y. (1968) Biochim. Biophys. Acta 153, 913–916.PubMedCrossRefGoogle Scholar
  40. 40.
    Griffiths, D. E. (1972) in Mitochondria: Biogenesis and Bioenergetics (Van den Bergh et al., eds.), pp. 95–104, North-Holland, Amsterdam.Google Scholar
  41. 41.
    Griffiths, D. E. (1976) in The Structural Basis of Membrane Function (Hatefi, Y., and Djavadi-Ohaniance, L., eds.), pp. 205–214, Academic Press, New York.Google Scholar
  42. 42.
    Avner, P. R., and Griffiths, D. E. (1973) Eur. J. Biochem. 32, 312 - 321.PubMedCrossRefGoogle Scholar
  43. 43.
    Griffiths, D. E., Houghton, R. L., Lancashire, W. E., and Meadows, P. A. (1975) Eur. J. Biochem. 51, 392 - 402.CrossRefGoogle Scholar
  44. 44.
    Lancashire, W. E., and Griffiths, D. E. (1975) Eur. J Biochem. 51, 377–392.PubMedCrossRefGoogle Scholar
  45. 45.
    Tzagoloff, A. (1976) in Genetics and Biogenesis of Chloroplasts and Mitochondria (Bucher, T. et al., eds.), pp. 419–426, North-Holland, Amsterdam.Google Scholar
  46. 46.
    Carignani, G., Lancashire, W. E., and Griffiths, D. E. (1977) Molec. Gen. Genet. 151, 49 - 56.PubMedCrossRefGoogle Scholar
  47. 47.
    Cain, K., Partis, M. D., and Griffiths, D. E. (1975) in International Symposium on Electron-Transfer Chains and Oxidative Phosphorylation, abst. vol., p. 47, University of Bari, Bari.Google Scholar
  48. 48.
    Cain, K., Partis, M. D., and Griffiths, D. E. (1977) Biochem. J., 166, 593–602.PubMedGoogle Scholar
  49. 49.
    Tzagoloff, A., Akai, A., and Foury, F. (1976) FEBS Lett. 65, 391–396.PubMedCrossRefGoogle Scholar
  50. 50.
    Griffiths, D. E. (1976) in Genetics and Biogenesis of Chloroplasts and Mitochondria (Bucher, T., et al., eds.), pp. 175–185, North-Holland, Amsterdam.Google Scholar
  51. 51.
    Griffiths, D. E. (1976) Biochem. J. 160, 809 - 812.PubMedGoogle Scholar
  52. 52.
    Cain, K., and Griffiths, D. E. (1977) Biochem. Soc. Trans. 5, 205 - 207.PubMedGoogle Scholar
  53. 53.
    Stokstad, E. L. R. (1954) Fed. Proc. 13, 712 - 714.PubMedGoogle Scholar
  54. 54.
    Reed, L. J. (1957) Adv. Enzymol. 18, 319 - 347.Google Scholar
  55. 55.
    Schmidt, U., Graften, P., Atland, K., and Goedde, H. W. (1969) Adv. Enzymol. 32, 423 - 469.PubMedGoogle Scholar
  56. 56.
    Aldridge, N., and Cremer, J. (1955) Biochem. J. 61, 406 - 418.PubMedGoogle Scholar
  57. 57.
    Cain, K., and Griffiths, D. E. (1977) FEBS Lett. 82, 23–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Herbert, A. A., and Guest, J. R. (1970) Methods Enzymol. 18A, 269–272.CrossRefGoogle Scholar
  59. 59.
    Partis, M. D., Hyams, R. L., and Griffiths, D. E. (1977) FEBS Lett., 75, 47–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Griffiths, D. E., Hyams, R. L., and Bertoli, E. (1977) FEBS Lett., 74, 38–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Griffiths, D. E., Hyams, R. L., and Bertoli, E. (1977), Biochem. Biophys. Res. Commun., 75, 449–456.PubMedCrossRefGoogle Scholar
  62. Haslam, J. M., Proudlock, J. W., and Linnane, A. W. (1971), J. Bioenergetics 2, 351–370.Google Scholar
  63. Walenga, R. W., and Lands, W. E. M. (1975)]. Biol. Chem. 250, 9130–9136.Google Scholar
  64. 64.
    Marzuki, S., Cobon, G. S., Haslam, J. M., and Linnane, A. W. (1975) Arch. Biochem. Biophys. 169, 577 - 590.PubMedCrossRefGoogle Scholar
  65. Griffiths, D. E., Hyams, R. L., and Carver, M. (1977) unpublished work.Google Scholar
  66. 66.
    Klein, P. D., and Johnson, R. M. (1954) J. Biol. Chem. 211, 103 - 110.PubMedGoogle Scholar
  67. 67.
    Silbert, D. F., and Vagelos, R. (1967) Proc. Natl. Acad. Sci. USA 58, 1579 - 1586.PubMedCrossRefGoogle Scholar
  68. 68.
    Esfahani, M., Barnes, E., and Wakil, S. J. (1969) Proc. Natl. Acad. Sci. USA 64, 1057 - 1064.PubMedCrossRefGoogle Scholar
  69. 69.
    Resnick, M. A., and Mortimer, R. K. (1966)]. Bacteriol. 92, 597–600.Google Scholar
  70. 70.
    Hyams, R. L., and Griffiths, D. E. (1977), unpublished results.Google Scholar
  71. 71a.
    Cain, K., Carver, M., and Griffiths, D. E., unpublished work.Google Scholar
  72. 71.
    Orlando, J. A., (1970) Arch. Biochem. Biophys. 141, 111 - 120PubMedCrossRefGoogle Scholar
  73. 72.
    Falcone, A. B., (1966) Proc. Natl. Acad. Sci. USA 56, 1043 - 1046.PubMedCrossRefGoogle Scholar
  74. 73.
    Kovac, L., Lachowicz, T., and Slonimski, P. (1967) Science 158, 1564 - 1567.PubMedCrossRefGoogle Scholar
  75. 74.
    Tzagoloff, A., and Foury, F. (1976) Mol, Gen. Genet. 149, 43 - 50.CrossRefGoogle Scholar
  76. 75.
    Lancashire, W. E., Darlison, M., and Griffiths, D. E., unpublished work.Google Scholar
  77. 76.
    Cox, G. B., and Gibson, F. (1974) Biochim. Biophys. Acta 346, 1 - 26.PubMedGoogle Scholar
  78. 77.
    Schairer, H. U., Friedl, P., Schmid, B. I., and Vogel, G. (1976) Eur. J. Biochem. 66, 257 - 268.PubMedCrossRefGoogle Scholar
  79. 78.
    Simoni, R. D., and Postma, P. W. (1975) Ann. Rev. Biochem. 44, 523 - 554.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • David E. Griffiths
    • 1
  1. 1.Department of Molecular SciencesUniversity of WarwickCoventryUK

Personalised recommendations