The Microscopical Properties of Fibers

  • Theodore George Rochow
  • Eugene George Rochow


Fibers are unique units(1) of biological tissues, mineral habits, and spinning processes. Examples are muscle and nerve fibers, wool, cotton, linen, natural silk, natural and regenerated cellulose, asbestos, fine wire, spun silicate glass, and man-made polymeric fibers. While they vary widely in chemical nature, fibers are physically alike in being very much longer than they are wide,(2) very strong for their small cross sections, and optically anisotropic. The kind and extent of optical anisot-ropy vary greatly among species of fibers according to the five classes defined in Section 5.2: single or spherulitic crystals, molecular birefringence, form birefringence, and photoelastic effect. Consequently the optical properties of fibers(3,4) are discussed separately from crystals.(5,6) Fibers do not display crystal faces, so there are fewer optical properties to be observed. Furthermore, variations in composition and treatment(7) produce variations in the optical values of a given species of fiber,(3) whereas constant values are the rule for a definite species of crystal.(5,6)


Refractive Index Cross Line Bast Fiber Microscopical Property Molar Refraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 6

  1. 1.
    A. N. J. Heyn, Fiber Microscopy, Interscience Div., John Wiley and Sons, Inc., New York, N. Y. 10016 (1954).Google Scholar
  2. 2.
    Compilation of ASTM Standard Definitions, 3rd ed., American Society for Testing and Materials, Philadelphia, Pa. 19103 (1976).Google Scholar
  3. 3.
    AATCC Test Method 20–1973, Fibers in textiles: Identification, AATCC Technical Manual, American Association of Textile Chemists and Colorists, Research Triangle Park, N. C. 27709 (1973).Google Scholar
  4. 4.
    P. L. Kirk, Crime Investigation, Interscience Div., John Wiley and Sons, Inc., New York, N. Y. 10016 (1953).Google Scholar
  5. 5.
    F.D. Bloss, An Introduction to the Methods of Optical Crystallography, Holt, Rinehart, and Winston, New York, N. Y. 10017 (1961).Google Scholar
  6. 6.
    E. M. Chamot and C. W. Mason, Chemical Microscopy, 3rd ed., Vol. 1, John Wiley and Sons, Inc., New York, N. Y. 10016 (1958).Google Scholar
  7. 7.
    T. G. Rochow and E. G. Rochow, Resinography, Plenum Press, New York, N. Y. 10011 (1976).CrossRefGoogle Scholar
  8. 8.
    E. Leitz, Instructions for Tilting Compensator K, E. Leitz, Inc., Rockleigh, N. J. 07647 (1971).Google Scholar
  9. 9.
    N. H. Hartshorne and A. Stuart, Crystals and the Polarising Microscope, 4th ed., Edward Arnold, Ltd., London, W.1. (1970).Google Scholar
  10. 10.
    M. A. Sieminski, The temperature for zero birefringence of Arnel® and other fibers, Textile Research Journal 34, 918–924 (1964).CrossRefGoogle Scholar
  11. 11.
    ASTM designation E (number pending), Method of test for determination of birefringence in fibers of circular cross section by a variable compensator technique, annual Index to ASTM Standards, American Society for Testing and Materials, Philadelphia, Pa. 19103.Google Scholar
  12. 12.
    M. A. Sieminski, A note on the measurement of birefringence in fibers, The Microscope 23, 35–36 (1975).Google Scholar
  13. 13.
    R. W. Singleton, M. A. Sieminski, and B. S. Sprague, The effect of radial heterogeneity on fiber properties, Textile Research J. 31, 917–925 (1961).CrossRefGoogle Scholar
  14. 14.
    C. P. Saylor, Heterodoxy in refractive index measurement, NYMS Dialogues, May 17–19, 1977, New York Microscopical Society, American Museum of Natural History, New York, N. Y. 10024.Google Scholar
  15. 15.
    Cargille Scientific, Inc., Cedar Grove, N. J. 07009, for example.Google Scholar
  16. 16.
    N. H. Hartshorne, The Microscopy of Liquid Crystals, Microscope Publications, Ltd., Chicago, Ill. 60616 (1974).Google Scholar
  17. 17.
    R. G. Scott, A few observations concerning the structure of synthetic fibers, ASTM Symposium on Microscopy (F. F. Morehead and R. Loveland, eds.), ASTM STP 257, American Society for Testing and Materials, Philadelphia, Pa. 19103 (1959).Google Scholar
  18. 18.
    Federal Trade Commission, Rules and regulations under the Textile Fiber Products Identification Act, March 3, 1969, Federal Trade Commission, Washington, D.C. 20580.Google Scholar
  19. 19.
    A. O. Mogensen, Microscopical apparatus and techniques for observing the fiber-forming process, in Resinographic Methods, ASTM Special Technical Publication 348, pp. 31–35, American Society for Testing and Materials, Philadelphia, Pa. 19103 (1964).Google Scholar
  20. 20.
    T. G. Rochow, Some microscopical aspects of resinography, J. Royal Microscopical Society 87, 39–45 (1966).CrossRefGoogle Scholar
  21. 21.
    T. G. Rochow and R. J. Bates, A microscopical automated microdynamometer microtension tester, Materials Research and Standards 12, 27–30 (1972).Google Scholar
  22. 22.
    S. Glasstone, Textbook of Physical Chemistry, 2nd ed., p. 528, D. van Nostrand Co., 250 Fourth Ave., New York, N. Y 10013.Google Scholar
  23. 23.
    R. O. Sauer, J. Am. Chem. Soc. 68, 954 (1946).CrossRefGoogle Scholar
  24. 24.
    R. West and E. G. Rochow, J. Am. Chem. Soc. 74, 2490 (1952).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Theodore George Rochow
    • 1
  • Eugene George Rochow
    • 2
  1. 1.North Carolina State University at RaleighRaleighUSA
  2. 2.Harvard UniversityCambridgeUSA

Personalised recommendations