Microscopical Stages

  • Theodore George Rochow
  • Eugene George Rochow


Practically all of microscopy is staged in some way and to some degree. In its simplest state, a microscopical stage is a device used to hold the specimen in a desired position in the optical path.(1) On stereoscopic, biological, and metallographic microscopes the fundamental stage is usually rectangular, flat, and drilled to take clamps for holding the microscopical slide or the specimen itself. Some rectangular stages are made with built-on mechanical stages (Figure 11.1).(2) Otherwise, there are usually tapped holes to take the fastening screws of a mechanical stage(2,3) for moving the specimen in X and Y directions. Graduations plus their vernier scale on rack-and-pinion scales usually allow for measurements in tenths of a millimeter.(3) Some specialized mechanical stages(2-6) operate with micrometer screws, which with vernier measure to within hundredths of a millimeter (Figure 11.2). Micrometer screws may be integrated into a single mechanical stage so that in a single traverse of a composite specimen the paths over separate constituents may be measured separately (Figure 11.3).(2) This mechanical idea for areal analysis has been automated by means of motors and counters.


Cover Glass Heatable Stage Microscopical Stage Rotatable Stage Ordinary Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 11

  1. 1.
    Compilation of ASTM Standard Definitions, 3rd ed., American Society for Testing and Materials, Philadelphia, Pa. 19103 (1976).Google Scholar
  2. 2.
    T. G. Rochow and R. L. Gilbert, Resinography, in Protective and Decorative Coatings (J. J. Mattiello, ed.), Vol. 5, Chapter 5, John Wiley and Sons, Inc., New York, N. Y 10016 (1946).Google Scholar
  3. 3.
    R. B. McLaughlin, Accessories for the Light Microscope, Microscope Publications, Ltd., Chicago, Ill. 60616 (1975).Google Scholar
  4. 4.
    T. G. Rochow, Some microscopical aspects of resinography, J. Royal Microscopical Society 87, 39–45 (1967).CrossRefGoogle Scholar
  5. 5.
    T. G. Rochow and R. J. Bates, A microscopical automated microdynamometer microtension tester, Materials Research and Standards 12, pp. 27–30 (April 1972).Google Scholar
  6. 6.
    J. I. Goldstein and H. Yakowitz (eds.), Practical Scanning Electron Microscopy, Plenum Press, New York, N. Y. 10011 (1975).Google Scholar
  7. 7.
    E. M. Chamot and C. W. Mason, Handbook of Chemical Microscopy, Vol. 1, 3rd ed., John Wiley and Sons, Inc., New York, N. Y. 10016 (1958).Google Scholar
  8. 8.
    ASTM designation E-210, Microscope objective thread, annual Index to ASTM Standards, American Society for Testing and Materials, Philadelphia, Pa. 19103.Google Scholar
  9. 9.
    ASTM designation E-384, Standard method of test for microhardness of materials, annual Index to ASTM Standards, American Society for Testing and Materials, Philadelphia, Pa. 19103.Google Scholar
  10. 10.
    W. C. McCrone, Fusion Methods, John Wiley and Sons, Inc., New York, N. Y 10016 (1957).Google Scholar
  11. 11.
    N. H. Hartshorne, The Microscopy of Liquid Crystals, Microscope Publications, Inc., Chicago, Ill. 60616 (1974).Google Scholar
  12. 12.
    D. G. Grabar and R. Haessly, Identification of synthetic fibers by micro fusion methods, Analytical Chemistry 28, 1586–1589 (1956).CrossRefGoogle Scholar
  13. 13.
    E. M. Chamot and C. W. Mason, Chemical microscopy. I. Crystallization experiments as an introduction to metallography, J. Chemical Education 5, pp. 9–24 (January 1928).CrossRefGoogle Scholar
  14. 14.
    F. D. Bloss, An Introduction to the Methods of Optical Crystallography, Holt, Rinehart, and Winston, New York, N. Y. 10001 (1961).Google Scholar
  15. 15.
    L. Kofler and A. Kofler, Thermomikromethoden, Wagner, Innsbruck, Austria (1954).Google Scholar
  16. 16.
    Kofler micro hot stage, Directions for Use, Technological Service, Arthur H. Thomas Co., Philadelphia, Pa. 19105 (1958 to date). A very good comprehensive treatment.Google Scholar
  17. 17.
    C. D. Felton, Dark-field microscopy, Analytical Chemistry 34, 880 (1962).CrossRefGoogle Scholar
  18. 18.
    E. Leitz, Inc., Rockleigh, N. J. 07647.Google Scholar
  19. 19.
    W. C. McCrone, Applications of Thermal Microscopy, Mettler Instrument Corp., Box 100, Princeton, N. J. 08540 (22 pp.).Google Scholar
  20. 20.
    Y. Julian and W. C. McCrone, Accurate use of hot stages, The Microscope 19, 225–241 (1971).Google Scholar
  21. 21.
    E. M. Barrall and M. A. Sweeney, Depolarized light intensity and optical microscopy of some mesophase-forming materials, Molecular Crystals 5, 257–271 (1969).CrossRefGoogle Scholar
  22. 22.
    F. T. Jones, Fusion techniques in chemical microscopy, The Microscope 16, 37–43 (1968).Google Scholar
  23. 23.
    N. H. Hartshorne, A hot-wire stage and its application, The Microscope 23, 177–190 (1975).Google Scholar
  24. 24.
    Stanton Redcroft, Copper Mill Lane, London SW170BN, England. A new hot stage.Google Scholar
  25. 25.
    E. L. Charsley and D.E. Tolhurst, The application of hot stage microscopy to the study of pyrotechnic systems, The Microscope 23, 227–237 (1975).Google Scholar
  26. 26.
    C. W. Mason and T. G. Rochow, A microscope cold stage with temperature control, Industrial and Engineering Chemistry 6, 367–369 (1934).Google Scholar
  27. 27.
    T. G. Rochow and C. W. Mason, Breaking emulsions by freezing, Industrial and Engineering Chemistry 28, 1296–1300 (1936).CrossRefGoogle Scholar
  28. 28.
    Miniature pumps like “Masterflex” connected to a motor such as “Servodyne,” Cole-Parmer Instrument Co., 7425 N. Oak Park Ave., Chicago, Ill. 60648 (1977).Google Scholar
  29. 29.
    Greiner Scientific Corp., Bulletin 3–17–164, New York, N. Y. 10013. A portable cold finger.Google Scholar
  30. 30.
    Thermoelectrics Unlimited, Inc., Wilmington, Del. 19809.Google Scholar
  31. 31.
    A. H. Thomas Co., Philadelphia, Pa. 19105.Google Scholar
  32. 32.
    Beckman Instruments, Inc., Cedar Grove, N. J. 07009.Google Scholar
  33. 33.
    E. M. Chamot and C. W. Mason, Handbook of Chemical Microscopy, Vol. 2: Chemical Methods, 2nd ed., John Wiley and Sons, Inc., New York, N. Y. 10016 (1940).Google Scholar
  34. 34.
    J. A. Davidson, Pressure cells in optical microscopy, The Microscope 23, 61–71 (1975).Google Scholar
  35. 35.
    H. Reumuth and T. Loske, Kuvette-mikroskopie in biologie und tecknik, Mikroskopie 17, 149–178 (1962), Georg Fromme and Co., Munich 9, Germany.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Theodore George Rochow
    • 1
  • Eugene George Rochow
    • 2
  1. 1.North Carolina State University at RaleighRaleighUSA
  2. 2.Harvard UniversityCambridgeUSA

Personalised recommendations