Advertisement

Genetics of Aging in Lower Organisms

  • James R. Smith

Abstract

One of the major problems confronting investigators in the field of aging is identifying the proper experimental organisms for study. The organism should have a short enough life span to facilitate experiments on duration of life span and progressive changes occurring during aging, and ideally, the results should be applicable to problems of human aging.

Keywords

Life Span Short Life Span Royal Jelly Diploid Male Longe Life Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, A. M., and Rockstein, M., 1964, Aging in insects, in: Physiology of Insecta I (M. Rockstein, ed.), pp. 227–281, Academic Press, New York.Google Scholar
  2. Clark, A. M., and Rubin, M. A., 1961, The modification by X-irradiation of the life span of haploids and diploids of the wasp, Habrobracon, Radiat. Res. 15:244.CrossRefGoogle Scholar
  3. Clark, A. M., Bertrand, H. A., and Smith, R. E., 1963, Life span differences between haploid and diploid males of Habrobracon serinopae after exposure as adults to X-rays, Am. Nat. 97:208.Google Scholar
  4. Clarke, J. M., and Maynard-Smith, J., 1955, The genetics and cytology of Drosophila subobscura. XI. Hybrid vigor and longevity, J. Genet. 53:172.CrossRefGoogle Scholar
  5. Comfort, A., 1953, Absence of a Lansing effect in Drosophila subobscura, Nature (London) 172:83.CrossRefGoogle Scholar
  6. Curtis, H. J., 1963, Biological mechanisms underlying the aging process, Science 141:686.PubMedCrossRefGoogle Scholar
  7. Danielli, J. F., 1978, Cell state transitions and aging and senescence of cells, J. Theor. Biol. (in press).Google Scholar
  8. Danielli, J. F., and Muggleton, A., 1959, Some alternative states of amoeba with special reference to life-span, Gerontologia 3:76.PubMedCrossRefGoogle Scholar
  9. Failla, G., 1957, Considerations bearing on permissible accumulated radiation doses for occupational exposure: The aging process and carcinogenesis, Radiology 69:23.PubMedGoogle Scholar
  10. Fukushima, S., 1975, Clonal age and the proportion of defective progeny after autogamy in Paramecium aurelia, Genetics 79(3):377.PubMedGoogle Scholar
  11. Gardner, T. S., 1948a, Use of Drosophila melanogaster as screening agent for longevity factors: Pantothenic acid as longevity factor in royal jelly, J. Gerontol. 3: 1.PubMedGoogle Scholar
  12. Gardner, T. S., 1948b, Use of Drosophila melanogaster as screening agent for longevity factors: Effects of biotin, pyridoxine, sodium yeast nucleate, and pantothenic acid on life span of fruit fly, J. Gerontol. 3: 9.PubMedGoogle Scholar
  13. Gedda, L., and Brenci G., 1969, Biology of the gene: The ergon/chronon system, Acta Genet. Med. Gemellol. 18 (4):329.PubMedGoogle Scholar
  14. Glass, B., 1960, The influence of immediate versus delayed mating on the life span of Drosophila, in: Biology of Aging (B. L. Strehler, ed), pp. 185–187, Publication No. 6, American Institutes of Biological Sciences, Washington, D.C.Google Scholar
  15. Gonzalez, B. M., 1923, Experimental studies on the duration of life. VIII. The influence upon duration of life of certain mutant genes of Drosophila melanogaster, Am. Nat. 57:289.CrossRefGoogle Scholar
  16. Gowen, J. W., 1931, Metabolism as related to chromosome structure and the duration of life, J. Gen. Physiol. 14:463.PubMedCrossRefGoogle Scholar
  17. Jinks, J. L., 1959, Lethal, suppressive cytoplasms in aged clones of Aspergillus glaucus, J. Gen. Microbiol. 21:397.Google Scholar
  18. Lansing, A. I., 1947, A transmissible, cumulative, and reversible factor in aging, J. Gerontol. 2:228–239.PubMedGoogle Scholar
  19. Lansing, A. I., 1954, A nongenic factor in the longevity of rotifers, Ann. N.Y. Acad. Sci. 57:455.PubMedCrossRefGoogle Scholar
  20. Lewis, C. M., and Holliday, R., 1970, Mistranslation and ageing in Neurospora, Nature(London) 228: 877.CrossRefGoogle Scholar
  21. Loeb, J., and Northrop, J. H., 1917, On the influence of food and temperature upon the duration of life, J. Biol. Chem. 32(1):103.Google Scholar
  22. Marcou, D., 1961, Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons, Ann. Sci. Nat. Bot. Ser. 12e 2:653.Google Scholar
  23. Maynard-Smith, J., 1958, Prolongation of the life of D. subobscura by a brief exposure of adults to a high temperature, Nature (London) 181:496.CrossRefGoogle Scholar
  24. Maynard-Smith, J., 1959, The rate of ageing in Drosophila subobscura, in: Ciba Found. Colloq. Ageing (G. E. W. Wolstenholme and M. O’Connor, eds.), Vol. 5, The Lifespan of Animals, pp. 269–280, Churchill, London.Google Scholar
  25. Muggleton, A., and Danielli, J. F., 1958, Aging of Amoeba proteus and A. discoides cells, Nature (London) 181: 1738.CrossRefGoogle Scholar
  26. Muggleton, A., and Danielli, J. F., 1968, Inheritance of the “life-spanning” phenomenon in Amoeba proteus, Exp. Cell Res. 49:116.PubMedCrossRefGoogle Scholar
  27. O’Brian, D. M., 1961, Effects of parental age on the life cycle of Drosophila melanogaster, Ann. Entomol. Soc. Am. 54:412.Google Scholar
  28. Orgel, L. E., 1963, The maintenance of the accuracy of protein synthesis and its relevance to ageing, Proc. Natl. Acad. Sci. U.S.A. 49:517.PubMedCrossRefGoogle Scholar
  29. Pearl, R., and Parker, S. L., 1922a, Experimental studies on the duration of life. II. Hereditary differences in duration of life in line-bred strains of Drosophila, Am. Nat. 56: 174.Google Scholar
  30. Pearl, R., and Parker, S. L., 1922b, Experimental studies on the duration of life. V. On the influence of certain environmental factors on duration of life in Drosophila, Am. Nat. 56: 385.Google Scholar
  31. Pearl, R., Parker, S. L., and Gonzalez, B. M., 1923, Experimental studies on the duration of life. VII. The Mendelian inheritance of duration of life in crosses of wild type and quintuple stocks of Drosophila melanogaster, Am. Nat. 57:153.Google Scholar
  32. Printz, D. B. and Gross, S. R., 1967, An apparent relationship between mistranslation and an altered leucyl-tRNA synthetase in a conditional lethal mutant of Neurospora crassa, Genetics 55:451.Google Scholar
  33. Rizet, G., 1953, Sur la longévité des souches de Podospora anserina, C. R. Acad. Sci. 237:838.Google Scholar
  34. Rizet, G., 1957, Les modifications qui conduisent a la senescence chez Podospora sont-elles de nature cytoplasmique, C. R. Acad. Sci. 244:663.Google Scholar
  35. Rockstein, M., 1959, The biology of aging in insects, in: Ciba Found. Colloq. Ageing (G. E. W. Wolstenholme and M. O’Connor, eds.), Vol. 5, pp. 247–264, Churchill, London.Google Scholar
  36. Sheng, T. C., 1951, A gene that causes natural death in Neurospora cras sa, Genetics 36:199.Google Scholar
  37. Smith, J. R., and Rubenstein, I., 1973a, The development of “senescence” in Podospora anserina, J. Gen. Microbiol. 76: 283.Google Scholar
  38. Smith, J. R., and Rubenstein, I., 1973b, Cytoplasmic inheritance of the timing of “senescence” in Podospora anserine, J. Gen. Microbiol. 76: 297.Google Scholar
  39. Smith-Sonneborn, J., 1974, Age-correlated effects of caffeine on nonirradiated and UV-irradiated Paramecium aurelia, J. Gerontol. 29(3):256.Google Scholar
  40. Sonneborn, T. M., 1954, The relation of autogamy to senescence and rejuvenescence in Paramecium aurelia, J. Protozool. 1:38.Google Scholar
  41. Sonneborn, T. M., and Schneller, M., 1960, Age-induced mutations in Paramecium, in: The Biology of Aging (B. L. Strehler, ed.), pp. 286–287, Publication No. 6, American Institute of Biological Sciences, Washington, D.C.Google Scholar
  42. Szilard, L., 1959, A theory of ageing, Nature (London) 184: 956.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • James R. Smith
    • 1
  1. 1.W. Alton Jones Cell Science CenterLake PlacidUSA

Personalised recommendations