Aging and DNA-Repair Capability

  • Raymond R. Tice


The aging process is best defined as a general loss in biological competence for both the individual cell and the organism as a whole. At the cellular level, this loss is expressed as decreasing replicative ability in proliferating cells and decreasing functional activity in postmitotic cells (Little, 1976). For the organism, the aging process expresses itself as decreased viability and increased vulnerability to the normal forces of mortality (Goldstein, 1971a).


Excision Repair Chromosome Aberration Fanconi Anemia Fibroblast Cell Line Xeroderma Pigmentosum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, P. V. N., 1972, The isolation and partial characterization of age-correlated oligodeoxyribo-ribo-nucleotide with covalently linked aspartyl-glutamyl-polypeptides, John Hopkins Med. J. Suppl. 1:254.Google Scholar
  2. Alexander, P., 1957, Accelerated ageing—A long term effect of exposure to ionizing radiations, Gerontologia 1:174.PubMedGoogle Scholar
  3. Alexander, P., 1967, The role of DNA lesions in the processes leading to ageing in mice, Symp. Soc. Exp. Biol. 21:29.PubMedGoogle Scholar
  4. Alexander, P., and Connell, D. I., 1960, Shortening of the life span of mice by irradiation with x-rays and treatment with radiomimetic chemicals, Radiat. Res. 12:36.Google Scholar
  5. Amici, D., Gianfranceschi, G. L., Marsili, G., and Michetti, L., 1974, Young and old rats: ATP, alkaline phosphatase, cholesterol and protein levels in the blood; DNA and RNA contents of the liver—Regulation by an aqueous thymus extract, Experientia 30:633.PubMedGoogle Scholar
  6. Andrews, A. D., Barrett, S. F., and Robbins, J. H., 1976, The relationship between pathologic ageing of the nervous system and the DNA repair defects of xeroderma pigmentosum, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian Cells, Noordwijkerhout, The Netherlands.Google Scholar
  7. Aune, J., 1976, Ultrastructure changes with age, Interdiscip. Top. Gerontol. 10:44.Google Scholar
  8. Ayme, S., Mattei, J. F., Mattei, M. G., Aurran, Y., and Giraud, F., 1976, Nonrandom distribution of chromosome breaks in cultured lymphocytes of normal subjects, Hum. Genet. 31:161.PubMedGoogle Scholar
  9. Bacchetti, S., 1975, Studies on DNA repair in mammalian cells; An endonuclease which recognizes lesions in DNA, in: Molecular Mechanisms for Repair of DNA (P. Hanawalt and R. Setlow, eds.), pp. 651–654, Plenum Press, New York.Google Scholar
  10. Bender, M. A., and Rary, J. M., 1974, Spontaneous and x-ray induced chromosomal aberrations in progeria, Radiat. Res. 59: 181a.Google Scholar
  11. Bender, M. A., Griggs, H. G., and Walker, P. L., 1973a, Mechanism of chromosomal aberration production. I. Aberration induction by ultraviolet light, Mutat. Res. 20: 387.PubMedGoogle Scholar
  12. Bender, M. A., Bedford, J. S., and Mitchell, J. B., 1973b, Mechanism of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible light, Mutat. Res. 20: 403.PubMedGoogle Scholar
  13. Bender, M. A., Griggs, H. G., and Bedford, J. S., 1974, Mechanism of chromosomal aberration production. III. Chemicals and ionizing radiation, Mutat. Res. 23:197.PubMedGoogle Scholar
  14. Ben-Ishai, R., and Peleg, L., 1975, Excision-repair in primary cultures of mouse embryo cells and its decline in progressive passages and established cell lines, in: Molecular Mechanisms for Repair of DNA (P. Hanawalt and R. Setlow, eds.), pp. 607–610, Plenum Press, New York.Google Scholar
  15. Benn, P. A., 1976, Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos, Am. J. Hum. Genet. 28:465.PubMedGoogle Scholar
  16. Berech, J., and Curtis, H. J., 1964, The role of age and x-irradiation on kidney function in the mouse, Radiat. Res. 22:95.PubMedGoogle Scholar
  17. Bochkov, N. P., 1972, Spontaneous chromosome aberrations in human somatic cells, Humangenetik 16:159.PubMedGoogle Scholar
  18. Bochkov, N. P., and Kuleshov, N. P., 1971, Dependence of the intensity of the chemical mutagenesis in human cells on sex and age of individuals, Genetics (USSR) 7:132.Google Scholar
  19. Bochkov, N. P., and Kuleshov, N. P., 1972, Age sensitivity of human chromosomes to alkylating agents, Mutat. Res. 14:345.Google Scholar
  20. Bochkov, N. P., Kozlov, V. M., Pilosov, P. A., and Sevankaev, A. V., 1968, Spontaneous level of chromosome aberrations in cultures of human leukocytes, Genetics (USSR) 4:93.Google Scholar
  21. Bochkov, N. P., Lopukhin, Y. M., Kuleshov, N. P., and Kovalchuk, L. V., 1974, Cytogenetic studies of patients with ataxia telangiectasia, Humangenetik 24:115.PubMedGoogle Scholar
  22. Bowman, P. D., Meek, R. L., and Daniel, C. W., 1976, Decreased unscheduled DNA synthesis in nondividing aged WI-48 ceBs, Mech. Ageing Dev. 5:251.PubMedGoogle Scholar
  23. Bradley, M. O., Erickson, L. C., and Kohn, K. W., 1976, Normal DNA strand rejoining and absence of DNA crosslinking in progeroid and aging human cells, Mutat. Res. 37:279.PubMedGoogle Scholar
  24. Brooks, A. L., Mead, D. K., and Peters, R. F., 1973, Effect of ageing on the frequency of metaphase chromosome aberrations in the liver of the Chinese hamster, J. Gerontol. 28:452.PubMedGoogle Scholar
  25. Buhl, S. N., Stillman, R. M., Setlow, R. B., and Regan, J. D., 1972, DNA chain elongation in normal human and xeroderma pigmentosum cells after ultraviolet irradiation, Biophys. J. 12:1183.PubMedGoogle Scholar
  26. Burk, P. G., Lutzner, M. A., and Robbins, J. H., 1969, Decreased incorporation of thymidine into the DNA of lymphocytes from patients with xeroderma pigmentosum after UV-irradiation in vitro, Clin. Res. 17:614.Google Scholar
  27. Burnett, F. M., 1974, Intrinsic Mutagenesis: A Genetic Approach to Aging, John Wiley & Sons, New York.Google Scholar
  28. Cameron, I. L., and Thrasher, J. D., 1976, Cell renewal and cell loss in the tissues of aging mammals, Interdiscip. Top. Gerontol. 10:108.Google Scholar
  29. Carrier, W. L., and Setlow, R. B., 1971, The excision of pyrimidine dimers (the detection of dimers in small amounts), Methods Enzymol. 21:230.Google Scholar
  30. Casarett, G. W., 1964, Similarities and contrasts between radiation and time pathology, Adv. Gerontol. Res. 1:109.Google Scholar
  31. Chan, A. C., Ng, S. K. C., and Walker, I. G., 1976, Reduced DNA repair during differentiation of a myogenic cell line, J. Cell Biol. 70:685.PubMedGoogle Scholar
  32. Chetsanga, C. J., Boyd, Y., Peterson, L., and Ruchlow, K., 1975, Single-stranded regions in the DNA of old mice, Nature (London) 253:130.Google Scholar
  33. Chlebovsky, O., Praslicka, M., and Horak, J., 1966, Chromosome aberrations: Increased incidence in bone marrow of continuously irradiated rats, Science 153:195.PubMedGoogle Scholar
  34. Clarkson, J. M., and Painter, R. B., 1974, Repair of x-ray damage in aging WI-38 cells, Mutat. Res. 23:107.PubMedGoogle Scholar
  35. Cleaver, J., 1969, Xeroderma pigmentosum: A human disease in which an initial stage of DNA repair is defective, Proc. Natl. Acad. Sci. U.S.A. 63:428.PubMedGoogle Scholar
  36. Cleaver, J., 1970, DNA repair and radiation sensitivity in human (xeroderma pigmentosum) cells, Int. J. Radiat. Biol. 18:557.Google Scholar
  37. Cleaver, J., 1974, DNA strand breaks during excision repair in human fibroblasts: Demonstration of repair defect in xeroderma pigmentosum, Radiat. Res. 57:207.PubMedGoogle Scholar
  38. Cleaver, J., and Bootsma, D., 1975, Xeroderma pigmentosum: Biochemical and genetic characteristics, Annu. Rev. Genet. 9:19.PubMedGoogle Scholar
  39. Cleaver, J., and Painter, R. B., 1968, Evidence for repair replication of HeLa cell DNA damaged by ultraviolet light, Biochim. Biophys. Acta 161:552.PubMedGoogle Scholar
  40. Cleaver, J., Thomas, G., Trosko, J., and Lett, J., 1972, Excision repair (dimer excision, strand breakage and repair replication) in primary cultures of eukaryote (bovine) cells, Exp. Cell Res. 74:61.Google Scholar
  41. Cleaver, J., Bootsma, D., and Friedberg, E., 1975, Human diseases with genetically altered DNA repair processes, Genetics 79:215.PubMedGoogle Scholar
  42. Cohen, M. M., Shaham, M., Dagan, J., Shmuell, E., and Kohn, G., 1975, Cytogenetic investigations in families with ataxia telangiectasia, Cytogenet. Cell Genet. 15:338.PubMedGoogle Scholar
  43. Conard, R. A., Lowrey, A., Eicher, M., Thompson, K., and Scoot, W. A., 1966, Aging studies in a Marshallese population exposed to radioactive fallout in 1954, in: Radiation and Ageing (P. J. Lindop and G. A. Sacher, eds.), pp. 345–360, Taylor and Frances, London.Google Scholar
  44. Conklin, J. W., Upton, A. C., Christenberry, K. W., and McDonald, T. P., 1963, Comparative late somatic effects of some radiomimetic agents and x-rays, Radiat. Res. 19:156.PubMedGoogle Scholar
  45. Court Brown, W. M., Buckton, K. E., Jacobs, P. A., Tough, I. M., Kuenssberg, E. V., and Knox, J. D. E., 1966, Chromsome studies on adults, Eugen. Lab. Mem. 42:1.Google Scholar
  46. Crowley, C., and Curtis, H. J., 1963, The development of somatic mutation in mice with age, Proc. Natl. Acad. Sci. U.S.A. 49:626.PubMedGoogle Scholar
  47. Curtis, H. J., 1963, Biological mechanisms underlying the aging process, Science 141:686.PubMedGoogle Scholar
  48. Curtis, H. J., and Miller, K., 1971, Chromosome aberrations in liver cells of guinea pigs, J. Gerontol. 26:292.PubMedGoogle Scholar
  49. Curtis, H. J., and Tilley, J., 1971, The lifespan of dividing mammalian cells in vivo, J. Gerontol. 126:1.Google Scholar
  50. Curtis, H. J., Leith, J., and Tilley, J., 1966, Chromosome aberrations in liver cells of dogs of different ages, J. Gerontol. 21:268.PubMedGoogle Scholar
  51. Cutler, R. G., 1976a, Nature of aging and life maintenance processes, Interdiscip. Top. Gerontol. 9: 83.Google Scholar
  52. Cutler, R. G., 1976b, Alteration of chromatin as a function of age in Mus and Peromyscus rodent species, Abstract, 29th Annual Meeting Gerontological Society, New York.Google Scholar
  53. Cutler, R. G., 1976c, Evolution of longevity in primates, J. Hum. Evol. 2: 169.Google Scholar
  54. D’Ambrosio, S. M., and Setlow, R. B., 1976, Enhancement of postreplication repair in Chinese hamster cells, Proc. Natl. Acad. Sci. U.S.A. 73:2396.PubMedGoogle Scholar
  55. Danes, S. B., 1971, Progeria: A cell culture study on aging, J. Clin. Invest. 50:2000.PubMedGoogle Scholar
  56. Darzynkiewicz, Z., 1971, Radiation induced DNA synthesis in normal and stimulated human lymphocytes, Exp. Cell Res. 69:356.PubMedGoogle Scholar
  57. DeBusk, F. L., 1972, The Hutchinson—Gilford progeria syndrome, J. Pediatr. 80:697.PubMedGoogle Scholar
  58. Dugle, D. L., and Gillespie, C. J., 1975, Kinetics of the single-strand repair mechanism in mammalian cells, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), pp. 685–688, Plenum Press, New York.Google Scholar
  59. Elmore, E., and Swift, M., 1976, Growth of cultured cells from patients with ataxia—telangiectasia, J. Cell. Physiol. 89:429.PubMedGoogle Scholar
  60. Epstein, C. J., Martin, G. M., Schultz, A. L., and Motulsky, A., 1966, Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process, Medicine (Baltimore) 45:177.Google Scholar
  61. Epstein, J., Williams, J. R., and Little, J. B., 1973a, Deficient DNA repair in progeria and senescent human cells, Radiat. Res. 55: 527.Google Scholar
  62. Epstein, J., Williams, J. R., and Little, J. B. 1973b, Deficient DNA repair in human progeroid cells, Proc. Natl. Acad. Sci. U.S.A. 70: 977.PubMedGoogle Scholar
  63. Epstein, J., Williams, J. R., and Little, J. B., 1974, Rate of DNA repair in progeric and normal human fibroblasts, Biochem. Biophys. Res. Commun. 59:850.PubMedGoogle Scholar
  64. Evans, R. G., and Norman, A., 1968, Unscheduled incorporation of thymidine in ultraviolet irradiated human lymphocytes, Radiat. Res. 36:287.PubMedGoogle Scholar
  65. Franks, L., 1974, Ageing in differentiated cells, Gerontologia 20:51.PubMedGoogle Scholar
  66. German, J., 1972, Genes which increase chromosomal instability in somatic cells and predispose to cancer, Prog. Med. Genet. 8:61.Google Scholar
  67. Goldstein, S.,1971a, The biology of aging, N. Engl. J. Med. 285:1120.Google Scholar
  68. Goldstein, S., 1971b, The role of DNA repair in aging of cultured fibroblasts from xeroderma pigmentosum and normals, Proc. Soc. Exp. Biol. Med. 137: 730.Google Scholar
  69. Goldstein, S., and Moerman, E. J., 1976, Defective proteins in normal and abnormal human fibroblasts during aging in vitro,Interdiscip. Top. Gerontol. 10:24.Google Scholar
  70. Goldstein, S., and Singal, D. P., 1974, Alteration of fibroblast agene products in vitro from a subject with Werner’s syndrome, Nature (London) 251:719.Google Scholar
  71. Goodman, R. M., Fechheimer, N. S., Miller, F., Miller, R., and Zartman, D., 1969, Chromosome alterations in three age groups of human females, Am. J. Med. Sci. 258:26.PubMedGoogle Scholar
  72. Gropp, A., and Flatz, G., 1967, Chromosome breakage and blastic transformation of lymphocytes in ataxia—telangiectasia, Humangenetik 5:77.PubMedGoogle Scholar
  73. Hahn, G. M., King, D., and Yang, S. J., 1971, Quantitative changes in unscheduled DNA synthesis in rat muscle cells after differentiation, Nature (London) 230:242.Google Scholar
  74. Hanawalt, P. C., and Setlow, R. B., 1975 (eds.), Molecular Mechanisms for Repair of DNA, Plenum Press, New York.Google Scholar
  75. Harnden, D. G., 1974, Ataxia telangiectasia syndrome: Cytogenetic and cancer aspects, in: Chromosomes and Cancer (J. German, ed.), pp. 619–636, John Wiley & Sons, New York.Google Scholar
  76. Hart, R. W., and Setlow, R. B. 1974, Correlation between deoxyribonucleic acid excision-repair and lifespan in a number of mammalian species, Proc. Natl. Acad. Sci. U.S. A. 71:2169.PubMedGoogle Scholar
  77. Hart, R. W., and Setlow, R. B., 1976, DNA repair in late-passage human cells, Mech. Ageing Dev. 5:67.PubMedGoogle Scholar
  78. Hart, R. W., and Trosko, J. E., 1976, DNA repair processes in mammals, Interdiscip. Top. Gerontol. 9:134.Google Scholar
  79. Hayflick, L., 1975, Current theories of biological aging, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:9.Google Scholar
  80. Hecht, F., Koler, R. D., Rigas, D. A., Dahnke, G. S., Case, M. P., Tisdale, V., and Miller, R. W., 1966, Leukemia and lymphocytes in ataxia—telangiectasia, Lancet 2:1193.Google Scholar
  81. Hecht, F., McCaw, B. K., and Koler, R. D., 1973, Ataxia telangiectasia—Clonal growth of translocation lymphoctyes, N. Engl. J. Med. 289:286.PubMedGoogle Scholar
  82. Higurashi, M., and Conen, P. E., 1971, Comparison of chromosomal behavior in cultured lymphocytes and fibroblasts from patients with chromosomal disorders and controls, Cytogenetics 10:273.PubMedGoogle Scholar
  83. Higurashi, M., and Conen, P. E., 1973, In vitro radiosensitivity in “chromosomal breakage syndrome,” Cancer 32:380.PubMedGoogle Scholar
  84. Hoar, D. I., and Sargent, P., 1976, Chemical mutagen hypersensitivity in ataxia telangiectasia, Nature (London) 261:590.Google Scholar
  85. Hoel, D. G., and Walburg, H. E., 1972, Statistical analysis of survival experiments, J. Natl. Cancer Inst. 49:361.PubMedGoogle Scholar
  86. Holliday, R., and Tarrant, G. M., 1972, Altered enzymes in ageing human fibroblasts, Nature (London) 238:26.Google Scholar
  87. Holliday, R., Porterfield, J. S., and Gibbs, D. O., 1974, Werner’s syndrome: Premature aging in vivo and in vitro,Nature (London) 248:762.Google Scholar
  88. Hollingworth, D. R., Hollingworth, J. W., Bogitch, S., and Keehn, R. J., 1969, Neuromuscular tests of aging Hiroshima subjects, J. Gerontol. 24:276.Google Scholar
  89. Huang, C. C., Banerjee, A., and Hou, Y., 1975, Chromosomal instability in cell lines derived from patients with xeroderma pigmentosum, Proc. Soc. Exp. Biol. Med. 148:1244.PubMedGoogle Scholar
  90. Jacobs, P. A., and Court Brown, W. M., 1966, Age and chromosomes, Nature (London) 212:823.Google Scholar
  91. Jarvik, L. F., and Kato, T., 1970, Chromosome examinations in aged twins, Am. J. Hum. Genet. 22:562.PubMedGoogle Scholar
  92. Karran, P., and Ormerod, M. G., 1973, Is the ability to repair damage to DNA related to the proliferative capacity of a cell? The rejoining of x-ray produced strand breaks, Biochim. Biophys. Acta. 299:54.PubMedGoogle Scholar
  93. Kato, H., 1977, Spontaneous and induced sister chromatid exchanges as revealed by a BUDR-labeling method, Int. Rev. Cytol. 49:55.PubMedGoogle Scholar
  94. Kersey, J. H., Spector, B. D., and Gord, R. A., 1973, Primary immunodeficiency diseases and cancer: The immunodeficiency registry, Int. J. Cancer 12:333.PubMedGoogle Scholar
  95. Kihlman, B. A., 1966, Actions of Chemicals on Dividing Cells, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  96. Kleijer, W. J., DeWeerd-Kastelein, E. A., Sluyter, M. L., Keijer, W., DeWit, J., and Bootsma, D., 1973, UV-induced DNA repair synthesis in cells of patients with different forms of xeroderma pigmentosum and of heterozygotes, Mutat. Res. 20:417.PubMedGoogle Scholar
  97. Kligman, A. M., 1969, Early destructive effects of sunlight on human skin, J. Am. Med. Assoc. 210:2377.Google Scholar
  98. Kohn, R. R., 1966, A possible final common pathway for natural ageing and radiation-induced life-shortening, in: Radiation and Ageing (P. J. Lindop and G. A. Sacher, eds.), pp. 373–392, Taylor and Frances, London.Google Scholar
  99. Kohn, R. R., 1975, Intrinsic aging of postmitotic cells, in: International Symposium on Aging Gametes, Seattle, 1973, pp. 1–18, S. Karger, Basel.Google Scholar
  100. Kraemer, K. H., DeWeerd-Kastelein, E. A., Robbins, J. H., Keijzer, W., Barrett, S. F., Petinga, R. A., and Bootsma, D., 1975, Five complementation groups in xeroderma pigmentosum, Mutat. Res. 33:327.PubMedGoogle Scholar
  101. Lambert, B., Ringborg, U., and Swanbeck, G., 1976, Repair of UV-induced DNA lesions in peripheral lymphocytes from healthy subjects of various ages, individuals with Down’s syndrome and patients with actinic keratosis, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian Cells, Noordwijkerhout, The Netherlands.Google Scholar
  102. Lampidis, T. J., and Little, J. B., 1976, Unscheduled DNA synthesis in fibroblasts and pulsating myocardial cells isolated from newborn rat heart, Radiat. Res. 67:621.Google Scholar
  103. Lampidis, T. J., and Schaiberger, G. E., 1975, Age-related loss of DNA repair synthesis in isolated rat myocardial cells, Exp. Cell Res. 96:412.PubMedGoogle Scholar
  104. Latt, S. A., 1973, Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A. 70:3395.PubMedGoogle Scholar
  105. Latt, S. A., Stetten, G., Juergens, L. A., Buchanan, G. R., and Gerald, P. S., 1975, Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia, Proc. Natl. Acad. Sci. U.S.A. 72:4066.PubMedGoogle Scholar
  106. Lehmann, A. R., 1972, Postreplication repair of DNA in mammalian cells, Life Sci. 15:2005.Google Scholar
  107. Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Paterson, M. C., Lohman, P. H. M., De Weerd-Kastelein, E. A., and Bootsma, D., 1975, Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation, Proc. Natl. Acad. Sci. U.S.A. 72:219.PubMedGoogle Scholar
  108. Lima, L., Malaise, E., and Macieira-Coelho, A., 1972, Aging in vitro: Effect of low dose-rate irradiation on the division potential of chick embryonic fibroblasts, Exp. Cell Res. 73:345.PubMedGoogle Scholar
  109. Lindop, P., and Rotblat, J., 1961a, Long-term effects of a single whole-body exposure of mice to ionizing radiations. I. Life-shortening, Proc. R. Soc. London Ser. B 154: 332.Google Scholar
  110. Lindop, P., and Rotblat, J., 1961b, Long-term effects of a single whole-body exposure of mice to ionizing radiations. II. Causes of death, Proc. R. Soc. London Ser. B 154: 350.Google Scholar
  111. Liniecki, J., Bajerska, A., and Andryszek, C., 1971, Chromosomal aberrations in human lymphocytes irradiated in vitro from donors (males-females) of varying age, Int. J. Radiat. Biol. 19:349.Google Scholar
  112. Lipetz, J., and Cristofalo, V. J., 1972, Ultrastructural changes accompanying the ageing of human diploid cells in culture, J. Ultrastruct. Res. 39:43.PubMedGoogle Scholar
  113. Little, J. B., 1976, Relationship between DNA repair capacity and cellular aging, Gerontology 22:28.PubMedGoogle Scholar
  114. Little, J. B., and Williams, J. R., 1976, Effects of ionizing radiation on mammalian cells, in: Handbook of Physiology, Vol. I, Williams and Wilkins, Baltimore.Google Scholar
  115. Little, J. B., Epstein, J., and Williams, J. R., 1975, Repair of DNA strand breaks in progeric fibroblasts and aging human diploid cells, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. R. Setlow, eds), pp. 793–800, Plenum Press, New York.Google Scholar
  116. Macieira-Coelho, A., Diatloff, C., and Malaise, E., 1976, Converse response of cells with finite and infinite life-spans to ionizing radiation, J. Cell Biol. 67: 253a.Google Scholar
  117. Martin, G. M., Sprague, C. A., and Epstein, C. J., 1970, Replicative life-span of cultivated human cells: Effects of donor’s age, tissue, and genotype, Lab. Invest. 23:86.PubMedGoogle Scholar
  118. Massie, H. R., Baird, M. B., Nicolosi, R. J., and Samis, H. V., 1972, Changes in the structure of rat liver DNA in relation to age, Arch. Biochem. Biophys. 153:736.PubMedGoogle Scholar
  119. Mattern, M. R., and Cerutti, P. A., 1975, Age-dependent excision repair of damaged thymidine from irradiated DNA by isolated nuclei from human fibroblasts, Nature (London) 254:450.Google Scholar
  120. McCombe, P., Lavin, M., and Kidson, C., 1976, Control of DNA repair linked to neuroblastoma differentiation, Intr. J. Radiat. Biol. 29:523.Google Scholar
  121. McFee, A. F., Banner, M. W., and Sherill, M. N., 1970, Influence of animal age on radiation-induced chromosome aberrations in swine leukocytes, Radiat. Res. 41:425.PubMedGoogle Scholar
  122. McGrath, R. A., and Williams, R. W., 1966, Reconstruction in vivo of irradiated E. coli deoxyribonucleic acid: The rejoining of broken pieces, Nature (London) 212:534.Google Scholar
  123. Medvedev, Zh. A., 1976, Error theories of aging, in: Alterns theorien (D. Platt, ed.), pp. 37–46, F. K. Schattauer Verlag, New York.Google Scholar
  124. Meneghini, R., and Hanawalt, P. C., 1975, Postreplication repair in human cells: On the presence of gaps opposite dimers and recombination, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), pp. 639–642, Plenum Press, New York.Google Scholar
  125. Mikhelson, V. M., 1976, Deficient repair of gamma-damaged DNA in xeroderma pigmentosum cells, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian cells, Noordwijkerhout, The Netherlands.Google Scholar
  126. Modak, S. P., and Price, G. B., 1971, Exogenous DNA polymerase-catalyzed incorporation of deoxyribonucleotide monophosphates in nuclei of fixed mouse-brain cells, Exp. Cell Res. 65:289.PubMedGoogle Scholar
  127. Ono, T., Okada, S., and Sugahara, T., 1976, Comparative studies of DNA size in various tissues of mice during the aging process, Exp. Gerontol. 11:127.PubMedGoogle Scholar
  128. Oxford, J. M. Harnden, D. G., Parrington, J. M., and Delhanty, J. D. A., 1975, Specific chromosome aberrations in ataxia telangiectasia, J. Med. Genet. 12:251.PubMedGoogle Scholar
  129. Painter, R. B., 1974, DNA damage and repair in eukaryotic cells, Genetics 78:139.PubMedGoogle Scholar
  130. Painter, R. B., and Cleaver, J. E., 1969, Repair replication, unscheduled DNA synthesis, and the repair of mammalian DNA, Radiat. Res. 37:451.PubMedGoogle Scholar
  131. Painter, R. B., Clarkson, J. M., and Young, B. R., 1973, Ultraviolet-induced repair replication on aging diploid human cells (WI-38), Radiat. Res. 56:560.PubMedGoogle Scholar
  132. Parrington, J. M., Delhanty, J. D. A., and Baden, H., 1971, Unscheduled DNA synthesis, UV-induced chromosome aberrations and SV40 transformation in cultured cells from xeroderma pigmentosum, Ann. Hum. Genet. 35:149.PubMedGoogle Scholar
  133. Parrington, J. M., Casey, G., West, L., and Maia, V. D. V., 1976, Frequency of chromosome aberrations and chromatid exchange in cultured fibroblasts from patients with xeroderma pigmentosum, Huntington’s chorea and normal controls, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian Cells, Noordwijkerhout, The Netherlands.Google Scholar
  134. Paterson, M. C., Lohman, P. H. M., De Weerd-Kastelein, E. A., and Westerfeld, A., 1974, Photoreactivation and excision repair of ultraviolet radiation in injured DNA in primary embryonic chick cells, Biophys, J. 14:454.Google Scholar
  135. Paterson, M. C., Smith, B. P., Lohman, P. H. M., Anderson, A. K., and Fishman, L., 1976, Defective excision repair of gamma-ray damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature (London) 260:444.Google Scholar
  136. Peterson, R. D. A., Cooper, M. D., and Good, R. A., 1966, Lymphoid tissue abnormalities associated with ataxia telangiectasia, Am. J. Med. 41:342.PubMedGoogle Scholar
  137. Pfeiffer, R. A., 1970, Chromosomal abnormalities in ataxia—telangiectasia (Louis-Bar’s syndrome), Humangenetik 8:302.PubMedGoogle Scholar
  138. Poon, P. K., Parker, J. W., and O’Brien, R. L., 1975, Faulty DNA repair following ultraviolet irradiation in Fanconi’s anemia, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), pp. 821–824, Plenum Press, New York.Google Scholar
  139. Price, G. B., Modak, S. P., and Makinodan, I., 1971, Age-associated changes in the DNA of mouse tissue, Science 171:917.PubMedGoogle Scholar
  140. Rasmussen, R. E., and Painter, R. B., Evidence for repair of ultraviolet damaged deoxyribonucleic acid in cultured mammalian cells, Nature (London) 203:1360.Google Scholar
  141. Rauth, A. M., 1970, Effects of ultraviolet light on mammalian cells in culture, Curr. Top. Radiat. Res. 6:193.Google Scholar
  142. Reed, W. B., Landing, B., Sugarmen, G., Cleaver, J. E., and Melnyk, J., 1969, Xeroderma pigmentosum, J. Am. Med. Assoc. 207:2073.Google Scholar
  143. Regan, J. D., and Setlow, R. B., 1974, DNA repair in human progeroid cells, Biochem. Biophys. Res. Commun. 59:858.PubMedGoogle Scholar
  144. Regan, J. D., Setlow, R. B., and Ley, R. D., 1971, Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine, Proc. Natl. Acad. Sci. U.S.A. 68:708.PubMedGoogle Scholar
  145. Remsen, J. F., and Cerutti, P. A., 1976, Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi’s anemia, Proc. Natl. Acad. Sci. U.S.A. 73:2419.PubMedGoogle Scholar
  146. Reye, C., and Mosman, N. S. W., 1960, Ataxia telangiectasia: A case report, Am. J. Dis. Child. 99:238.Google Scholar
  147. Robbins, E., Levine, E. M., and Eagle, H., 1970, Morphological changes accompanying senescence of cultured human diploid cells, J. Exp. Med. 131:1211.PubMedGoogle Scholar
  148. Robbins, J. H., Kraemer, K. H., Lutzner, M. D., Festoff, B. W., and Coon, H. G., 1974, Xeroderma pigmentosum: An inherited disease with sun sensitivity, multiple cutaneous neoplasms, with abnormal DNA repair, Ann. Intern. Med. 80:221.PubMedGoogle Scholar
  149. Saksela, E., and Moorhead, P. S., 1963, Aneuploidy in the degenerative phase of serial cultivation of human cell strains, Proc. Natl. Acad. Sci. U.S.A. 50:390.PubMedGoogle Scholar
  150. Salser, J. S., and Balis, M. E., 1972b, Alterations in deoxyribonucleic acid-bound amino acids with age and sex, J. Gerontol. 27:1.PubMedGoogle Scholar
  151. Samis, H. V., Jr., 1966, A concept of biological aging: The role of compensatory processes, J. Theor. Biol. 13:236.Google Scholar
  152. Sandberg, A. A., Cohen, M. M., Rimon, A. A., and Levin, M. L., 1967, Aneuploidy and age in a population survey, Am. J. Hum. Genet. 19:633.PubMedGoogle Scholar
  153. Sasaki, M. S., 1973, DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells, Mutat. Res. 20:291.PubMedGoogle Scholar
  154. Sasaki, M. S., and Tonomura, A., 1973, A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents, Cancer Res. 33:1829.PubMedGoogle Scholar
  155. Sax, H. J., and Passano, K. N., 1961, Spontaneous chromosome aberrations in human tissue cells, Am. Nat. 95:97.Google Scholar
  156. Schmid, W., 1967, Familial constitutive panmyelocytopathy, Fanconi’s anemia (F.A.). II. A discussion of the cytogenetic findings in F.A., Semin. Hematol. 4:241.PubMedGoogle Scholar
  157. Schmid, W., and Jerusalem, F., 1972, Cytogenetic findings in two brothers with ataxiatelangiectasia (Louis-Bar’s syndrome), Arch. Genet. 45:49.Google Scholar
  158. Schroeder, T. M., 1966, Cytogenetischer Befund und Ätiologie bei Fanconi Anämie, Humangenetik 3:76.PubMedGoogle Scholar
  159. Schroder, T. M., and Kurth, R., 1971, Spontaneous chromosomal breakage and high incidence of leukemia in inherited disease, Blood 37:96.Google Scholar
  160. Schroeder, T. M., Anschütz, F., and Knopp, A., 1964, Spontane Chromosomenaberrationen bei familiarer Panmyelopathie, Humangenetik 1:194.PubMedGoogle Scholar
  161. Schroeder, T. M., Tilgen, D., Krüger, J., and Vogel, F., 1976, Formal genetics of Fanconi’s anemia, Hum. Genet. 32:257.PubMedGoogle Scholar
  162. Schuler, D., Kiss, A., and Fabian, F., 1969, Chromosomal peculiarities and “in vitro” examinations in Fanconi’s anemia, Humangenetik 7:314.PubMedGoogle Scholar
  163. Schwartz, A., 1975, Capacity of cultured fibroblasts from different mammalian species to metabolize 7,12-dimethylbenz(a)anthracene to mutagenic metabolities: A correlation with lifespan, Adv. Exp. Biol. Med. 61:270.Google Scholar
  164. Scudiero, D., Norin, A., Karran, P., and Strauss, B., 1976, DNA excision-repair deficiency of human peripheral blood lymphocytes treated with chemical carcinogens, Cancer Res. 36:1397.PubMedGoogle Scholar
  165. Setlow, R. B., Regan, J. D. German J., and Carrier, W. L., 1969, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA, Proc. Natl. Acad. Sci. U.S.A. 64:1035.PubMedGoogle Scholar
  166. Singal, D. P., and Goldstein, S., 1973, Absence of detectable HL-A antigens on cultured fibroblasts in progeria, J. Clin. Invest. 52:2259.PubMedGoogle Scholar
  167. Smith, K. C., 1976, Chemical adducts to deoxyribonucleic acid: Their importance to the genetic alteration theory of aging, Interdiscip. Top. Gerontol. 9:16.Google Scholar
  168. Spence, A. M., and Herman, M. M., 1973, Critical re-examination of the premature aging concept in progeria: A light and electron microscopic study, Mech. Ageing Dev. 2:211.PubMedGoogle Scholar
  169. Stecker, E., and Gardner, H. A., 1970, Werner’s syndrome, Lancet 2:1317.PubMedGoogle Scholar
  170. Stevenson, K. G., and Curtis, H. J., 1961, Chromosome aberrations in irradiated and nitrogen mustard treated mice, Radiat. Res. 15:774.PubMedGoogle Scholar
  171. Stich, H. F., San, R. H. C., and Kawazoe, Y., 1973, Increased sensitivity of xeroderma pigmentosum cells to some chemical carcinogens and mutagens, Mutat. Res. 17:127.PubMedGoogle Scholar
  172. Stockdale, F. E., 1971, DNA synthesis in differentiating skeletal muscle cells: Initiation by ultraviolet light, Science 171:1145.PubMedGoogle Scholar
  173. Stockdale, F. E., and O’Neill, M. D., 1972, Repair DNA synthesis in differentiated embryonic muscle cells, J. Cell Biol. 52:589.PubMedGoogle Scholar
  174. Strauss, B., 1976, Non-genetic factors affecting the quantitative repair capability of cells, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian Cells, Noordwijkerhout, The Netherlands.Google Scholar
  175. Sutherland, B. M., 1974, Photoreactivating enzyme from human leukocytes, Nature (London) 248:109.Google Scholar
  176. Sutherland, B. M., and Chamberlin, M. J., 1973, A rapid and sensitive assay for pyrimidine dimers in DNA, Anal. Biochem. 53:168.PubMedGoogle Scholar
  177. Sutherland, B. M., Runge, P., and Sutherland, J. C., 1974, DNA photoreactivating enzyme from placental mammals: Origin and characteristics, Biochemistry 13:4710.PubMedGoogle Scholar
  178. Sutherland, B. M., Rice, M., and Wagner, E. K., 1975, Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme, Proc. Natl. Acad. Sci. U.S.A. 72:103.PubMedGoogle Scholar
  179. Swift, M. R., and Hirschhorn, K., 1966, Fanconi’s anemia: Inherited susceptibility to chromosome breakage in various tissues, Ann. Intern. Med. 65:496.PubMedGoogle Scholar
  180. Tadjoedin, M. K., and Fraser, F. C., 1965, Heredity of ataxia—telangiectasia (Louis-Bar syndrome), Am. J. Dis. Child. 110:64.PubMedGoogle Scholar
  181. Takebe, H., 1976, Decreased DNA repair activity and skin cancers in xeroderma pigmentosum, Abstract, The Second International Workshop on DNA Repair Mechanisms in Mammalian Cells, Noordwijkerhout, The Netherlands.Google Scholar
  182. Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., and Bridges, B. A., 1975, Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity, Nature (London) 258:427.Google Scholar
  183. Taylor, A. M. R., Metcalfe, J. A., Oxford, J. M., and Harnden, D. G., 1976, Is chromatid-type damage in ataxia telangiectasia after irradiation at G0 a consequence of defective repair?, Nature (London) 260:441.Google Scholar
  184. Thompson, E. N., and Williams, R., 1965, Effect of age on liver function with particular reference to bromosulphalein excretion, Gut 6:266.PubMedGoogle Scholar
  185. Thompson, K. V. A., and Holliday, R., 1975, Chromosome changes during the in vitro ageing of MRC-5 human fibroblasts, Exp. Cell Res. 96:1.PubMedGoogle Scholar
  186. Thung, P. J., and Hollander, C. F., 1967, Regenerative growth and accelerated aging, Symp. Soc. Exp. Biol. 21:455.PubMedGoogle Scholar
  187. Tice, R. R., 1976, Cellular kinetics of PHA-stimulated human lymphocytes from young and old human male donors, Abstract, 29th Annual Meeting Gerontology Society, New York.Google Scholar
  188. Tice, R. R., and Ishii, Y., 1977, The induction of sister chromatid exchanges (SCEs) in PHA-stimulated human lymphocytes by mitomycin C (MMC), Abstract, ICN-UCLA Symposia on Molecular and Cellular Biology, Keystone, Colorado.Google Scholar
  189. Tough, J. M., Smith, P. G., Brown, C., and Harden, D. G., 1970, Chromosome studies on workers exposed to atmospheric benzenes. The possible influence of age, Eur. J. Cancer 6:49.PubMedGoogle Scholar
  190. Treton, J. A., and Courtois, Y., 1976, A comparison of DNA repair in cultured bovine lens epithelial cells and lung fibroblast cells, Exp. Cell Res. 102:419.PubMedGoogle Scholar
  191. Trosko, J. E., and Hart, R. W., 1976, DNA mutation frequencies in mammals, Interdiscip. Top. Geroniol. 9:168.Google Scholar
  192. Upton, A. C., 2957, Ionizing radiation and the aging process—A review, J. Gerontol. 12:306.Google Scholar
  193. Upton, A. C., Kimball, A. W., Furth, J., Christenberry, K. W., and Benedict, W. H., 1960, Some delayed effects of atom-bomb radiations in mice, Cancer Res. 20 (Suppl. 8, Part 2):1.Google Scholar
  194. Vincent, R. A., and Huang, P. C., 1976, The proportion of cells labeled with tritiated thymidine as a function of population doubling level in cultures of fetal, adult, mutant and tumor origin, Exp. Cell Res. 102:31.PubMedGoogle Scholar
  195. Vincent, R. A., Jr., Sheridan, R. B., III, and Huang, P. C., 1975, DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells, Mutat. Res. 33:357.PubMedGoogle Scholar
  196. von Hahn, H. P., and Fritz, E., 1966, Age-related alterations in the structure of DNA. III. Thermal stability of rat liver DNA, related to age, histone content and ionic strength, Gerontologia 12:237.Google Scholar
  197. Walburg, H. E., Jr., 1975, Radiation-induced life-shortening and premature aging, Adv. Radiat. Biol. 5:145.Google Scholar
  198. Wheeler, K. T., and Lett, J. T., 1974, On the possibility that DNA repair is related to age in non-dividing cells, Proc. Natl. Acad. Sci. U.S.A. 71:1862.PubMedGoogle Scholar
  199. Williams, J. R., and Little, J. B., 1975, Correlation of DNA repair and in vitro growth potential in hamster embryo cells; cited in Little (1976).Google Scholar
  200. Yielding, E. L., 1974, A model for aging based on differential repair of somatic mutational damage, Perspect. Biol. Med. 17:210.Google Scholar
  201. Zucker-Franklin, D., Rifkin, H., and Jacobson, H. G., 1968, Werner’s syndrome: An analysis of ten cases, Geriatrics 23:123.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Raymond R. Tice
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations