Enzymes of Normal and Malignant Intestine

  • M. Earl Balis
Part of the Sloan-Kettering Institute Cancer Series book series (SKICS)


The understanding of how the enzymatic balance in a eukaryotic cell leads to its function in the total organism, its mitotic activity, and on occasion malignancy is a goal many have sought. The differences in activities in similar tissues in slightly altered states could be highly indicative of their control. The cells of the intestinal mucosa undergo gradual changes and parallel these maturations with changes in location. In theory, at least, they provide an ideal model system to study.


Thymidine Kinase Guanylate Cyclase Crypt Cell Villus Cell Placental Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, C. W., and Monahan, T. M., 1973, The role of adenosine 3’,5’-cydic monophosphate in the regulation of mammalian cell division, J. Cell Biol. 59: 549–558.PubMedCrossRefGoogle Scholar
  2. Al-Awqati, Q., Cameron, J. L., Field, M., and Greenough, W. B., III, 1970, Effect of prostaglandin E, on electrolyte transport in rabbit ileal mucosa, J. Clin. Invest. 49: 2a.Google Scholar
  3. Balis, M. E., Brown, G. F., and Cappuccino, J. G., 1971, Heat stability of AMP pyrophosphorylase in differentiating intestinal epithelial cells, Biochem. Biophys. Res. Commun. 42 (6): 1007–1011.PubMedCrossRefGoogle Scholar
  4. Balis, M. E., Ball, W.J., Salser, J. S., and Yip, L. C., 1974, Effects of drugs on cells at various stages of differentiation in the intestinal epithelium, in: Perinatal Pharmacology(J. Dancis and J. C. Hwang, eds.), pp. 27–47, Raven Press, New York.Google Scholar
  5. Ball, W. J., and Balis, M. E., 1976, Ornithine decarboxylase activity in rat intestines: Changes during aging, Cancer Res. 36: 3312–3316.PubMedGoogle Scholar
  6. Barker, S. A., Stacey, M., and Tipper, D. J., 1959, Some observations on certain mucoproteins containing sialic acid, Nature (London) 184: 68–90.Google Scholar
  7. Beck, W. T., Bellantone, R. A., and Canellakis, E. S., 1973, Puromycin stimulation of rat liver ornithine decarboxylase activity, Nature (London) 241: 275–277.CrossRefGoogle Scholar
  8. Byus, C. V., and Russell, D. H., 1975, Ornithine decarboxylase activity: Control by cydic nucleotides, Science 187: 650–652.PubMedCrossRefGoogle Scholar
  9. Chrisman, T. D., Garbers, D. L., Parks, M. A., and Hardman, J. G. 1975, Characterization of particulate and soluble guanylate cyclases from rat lung, J. Biol. Chem. 250: 374–381.PubMedGoogle Scholar
  10. Cleaver, V. E., 1968, Defective repair replication in xerodermic pigmentosum, Nature (London) 218: 652–656.CrossRefGoogle Scholar
  11. Cole, V., 1973, Carcinogens and carcinogenesis in the colon, Hosp. Pract. 8: 123–130.Google Scholar
  12. Damjanov, I., Cox, R., Sarma, D. S. R., and Farber, E., 1973, Patterns of damage and repair of liver DNA induced by carcinogenic methylating agents in vivo, Cancer Res. 33: 2122–2128.PubMedGoogle Scholar
  13. de Jonge, H. R., 1975a, Properties of guanylate cyclase and levels of cyclic GMP in rat small intestinal villus and crypt cells, FEBS Lett. 55: 143–152.PubMedCrossRefGoogle Scholar
  14. de Jonge, H. R., 1975b, The localization of guanylate cyclase in rat small intestinal epithelium, FEBS Lett. 53: 237–242.PubMedCrossRefGoogle Scholar
  15. DeRubertis, F. R., Chayoth, R., and Field, J. B., 1976, The content and metabolism of cyclic adenosine 3’,5’-monophosphate and cydic guanosine 3’,5’-monophosphate in adenocarcinoma of the human colon, J. Clin. Invest. 57: 641–649.PubMedCrossRefGoogle Scholar
  16. Domshke, S., and Domshke, W., 1972, Polyamines and the liver, Acta Hepato-Gastroenterol. 19: 212–217.Google Scholar
  17. Field, M., 1971, Intestinal secretion: Effect of cyclic AMP and its role in cholera, N. Eng. J. Med. 284: 1137–1144.CrossRefGoogle Scholar
  18. Field, M., Sheerin, H. E., Henderson, A., and Smith, P. L., 1975, Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa, Am. J. Physiol. 229: 86–92.PubMedGoogle Scholar
  19. Filipe, M. I., and Cooke, K. B., 1974, Changes in composition of mucin in the mucosa adjacent to carcinoma of the colon as compared with the normal: A biochemical investigation, J. Clin. Pathol. 27: 315–318.PubMedCrossRefGoogle Scholar
  20. Fortin-Magana, R., Hurwitz, R., Herbst, J. J., and Kretchner, N., 1970, Intestinal enzymes: Indicators of proliferation and differentiation in the jejunum, Science 167: 1627–1628.PubMedCrossRefGoogle Scholar
  21. Goodman, J. I., and Potter, V. R., 1972, Evidence for DNA repair synthesis and turnover in rat liver following ingestion of 3’,-methyl-4-dimethyl-aminoazobenzene, Cancer Res. 32: 766–755.PubMedGoogle Scholar
  22. Greenough, W. B., III, Pierce, N. F., Al-Awqati, Q., and Carpenter, C. C. J., 1969, Stimulation of gut electrolyte secretion by prostaglandins, theophylline, and cholera exotoxin, J. Clin. Invest. 48: 32a.Google Scholar
  23. Grossberg, A. L., Harris, E. G., and Schlamowitz, M., 1961, Enrichment and separation of alkaline phosphatase activities of human tissues by chromatography on cellulose ion-exchange adsorbents, Arch. Biochem. Biophys. 93: 267 - -277.PubMedCrossRefGoogle Scholar
  24. Guerrant, R. L., Ganguly, U., Casper, A. G. T., Moore, E. J., Pierce, N. F., and Carpenter, C. C. J., 1973, Mechanism and time-course with enterotoxin and whole bacterial cells, J. Clin. Invest. 52: 1707–1714.PubMedCrossRefGoogle Scholar
  25. Hardman, J. G., and Sutherland, E. W., 1969, Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3’,5’-monophosphate from guanosine triphosphate, J . Biol. Chemis. 244: 6363–6370.Google Scholar
  26. Harrer, D. S., Stern, B. K., and Reilly, R. W., 1964, Removal and dissociation of epithelial cells from the rodent gastrointestinal tract, Nature (London) 203: 319–320.CrossRefGoogle Scholar
  27. Harrison, D. D., and Webster, H. L., 1969, The preparation of isolated intestinal crypt cells, Exp. Cell Res. 55: 257–260.PubMedCrossRefGoogle Scholar
  28. Herbst, J. J., Fortin-Magana, R., and Sunshine, P., 1970, Relationship of pyrimidine biosynthetic enzymes to cellular proliferation in rat intestines during development, Gastroenterology 59: 240–246.PubMedGoogle Scholar
  29. Hogan, B. L. M., Mcllhinney, A., and Murden, S., 1974, Effect of growth conditions on the activity of ODC in cultured hepatoma cells, J. Cell. Physiol. 83: 353–363.PubMedCrossRefGoogle Scholar
  30. Hölttä, E., 1975, Immunochemical demonstration of increased accumulation of ornithine decarboxylase in rat liver after partial hepatectomy and growth hormone induction, Biochim. Biophys. Acta 399: 420–427.PubMedCrossRefGoogle Scholar
  31. Imondi, A. R., Balis, M. E., and Lipkin, M., 1969, Changes in enzyme levels accompanying differentiation of intestinal epithelial cells, Exp. Cell Res. 58: 323–330.PubMedCrossRefGoogle Scholar
  32. Imondi, A. R., Lipkin, M., and Balis, M. E., 1970, Enzyme and template stability as regulatory mechanisms in differentiating intestinal epithelial cells, J. Biol. Chem. 245: 2194–2198.PubMedGoogle Scholar
  33. Ishikawa, E., Ishikawa, S., Davis, J. W., and Sutherland, E. W., 1969, Determination of guanosine 3’,5’-monophosphate in tissues and of guanyl cydase in rat intestine, J. Biol. Chem. 244: 6371–6376.PubMedGoogle Scholar
  34. Jänne, J., and Hölttä, E., 1973, Putrescine metabolizing enzyme activities in some rat tissues during postnatal development, Acta Chem. Scand. 27: 2399–2404.PubMedCrossRefGoogle Scholar
  35. Kanagalingam, K., and Balis, M. E., 1975, In vivo repair of rat intestinal DNA damage by alkylating agents, Cancer 36: 2364–2372.PubMedCrossRefGoogle Scholar
  36. Kim, Y. S., Perdomo, J., and Nordberg, J., 1971a, Glycoprotein biosynthesis in small intestinal mucosa, J. Biol. Chem. 246: 5466–5467.Google Scholar
  37. Kim, Y. S., Perdomo, J., Bella, A., and Nordberg, J., 197la, Glycoprotein biosynthesis in small intestinal mucosa, J. Biol. Chem. 246: 5466–5467.Google Scholar
  38. Kim, Y. S., Perdomo, J., Bella, A., and Nordberg, J., 1971b, N-Acetyl-D-galactosaminyltransferase in human serum and erythrocyte membranes, Proc. Natl. Acad. Sci. USA 68: 1753–1756.PubMedCrossRefGoogle Scholar
  39. Kimura, H., and Murad, F., 1974, Evidence for two different forms of guanylate cyclase in rat heart, J . Biol. Chem. 249: 6910–6916.PubMedGoogle Scholar
  40. Lipkin, M., 1973, Proliferation and differentiation of gastrointestinal cells, Physiol. Rev. 53: 891–915.PubMedGoogle Scholar
  41. Lipkin, M., 1974, Phase 1 and phase 2 proliferative lesions of colonic epithelial cells in diseases leading to colonic cancer, Cancer 34: 878–888.PubMedCrossRefGoogle Scholar
  42. Moog, F., Vire, H. R., and Grey, R. D., 1966, The multiple forms of alkaline phosphatase in the small intestine of the young mouse, Biochim. Biophys. Acta 113: 336–349.PubMedCrossRefGoogle Scholar
  43. Moss, D. W., 1963, Heterogeneity of human intestinal alkaline phosphate, Nature (London) 200: 1206–1207.CrossRefGoogle Scholar
  44. Moss, D. W., 1965, Properties of alkaline phosphatase fractions in extracts of human small intestine, Biochem J 94: 458–462.PubMedGoogle Scholar
  45. Nordstrom, C., Dahlqvist, A., and Josefsson, L., 1967, Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine, j. Histochem. Cytochem. 15: 713–721.PubMedCrossRefGoogle Scholar
  46. O’Brien, T. G., Simsiman, R. C., and Boutwell, R. K., 1975, Induction of the polyaminebiosynthetic enzymes in mouse epidermis by tumor-promoting agents, Cancer Res. 35: 1662–1670.PubMedGoogle Scholar
  47. Perris, A. D., 1966, Isolation of the epithelial cells of the rat small intestine, Can J . Biochem. 44: 687–693.PubMedCrossRefGoogle Scholar
  48. Pierce, N. F., Carpenter, C. C. J., Elliott, H. L., and Greenough, W. B., III, 1971, Effects of prostaglandins, theophylline, and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum, Gastroenterology 60: 22–32.PubMedGoogle Scholar
  49. Russell, D. H., 1973a, in: Polyamines in Normal and Neoplastic Growth (D. H. Russell, ed.), p. 1, Raven Press, New York.Google Scholar
  50. Russell, D. H. 1973b, Roles of the polyamines, putrescine, spermidine and spermine in normal and malignant tissues, Life Sci. 13: 1635–1647.CrossRefGoogle Scholar
  51. Russell, D. H., and Levy, C. C., 1971, Polyamine accumulation and biosynthesis in mouse L1210 leukemia, Cancer Res. 31: 248–251.PubMedGoogle Scholar
  52. Russell, D. H., and Russell, S. D., 1975, Relative usefulness of measuring polyamines in serum, plasma, and urine as biochemical markers of cancer, Clin. Chem. 21: 860–863.PubMedGoogle Scholar
  53. Russell, D. H., and Snyder, S. H., 1968, Amine synthesis in rapidly growing tissues: ODC activity in regenerating rat liver, chick embryo, and various tumors. Proc. Natl. Acad. Sci. USA 60: 1420–1427.PubMedCrossRefGoogle Scholar
  54. Russell, D. H., and Snyder, S. H., 1969, Amine synthesis in regenerating rat liver: Extremely rapid turnover of ornithing decarboxylase, Mol. Pharmacol. 5: 254–262.Google Scholar
  55. Salser, J. S., and Balis, M. E., 1973, Distribution and regulation of deoxythymidine kinase activity in differentiating cells of mammalian intestines, Cancer Res. 33: 1889–1897.PubMedGoogle Scholar
  56. Salser, J. S., and Balis, M. E., 1974, Enzymatic studies of normal and malignant intestinal epithelium, Cancer 34: 889–895.PubMedCrossRefGoogle Scholar
  57. Salser, J. S., and Balis, M. E., 1976, Fetal thymidine kinase in tumors and colonic flat mucosa of man, Nature (London) 260: 261–263.CrossRefGoogle Scholar
  58. Setlow, R. B., Regan, J. D., German, J., and Carrier, W. L., 1969, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA, Proc. Natl. Acad. Sci. USA 64: 1035–1041.PubMedCrossRefGoogle Scholar
  59. Shafer, D. E., Lust, W. D., Sircar, B., and Goldberg, N. D., 1970, Elevated concentration of adenosine 3’,5’-cydic monophosphate in intestinal mucosa after treatment with cholera toxin, Proc. Natl. Acad. Sci. USA 67: 851–856.CrossRefGoogle Scholar
  60. Stafford, M. A., and Jones, O. W., 1972, The presence of “fetal” thymidine kinase in human tumors, Biochim. Biophys. Acta 277: 439–442.PubMedCrossRefGoogle Scholar
  61. Takeda, Y., Tominaga, T., Kitamura, M., Taguchi, T., Takeda, T., and Miwatani, T., 1975, Urinary polyamines in patients with gastric cancer and their change after gastrectomy, Gann 66: 455–447.Google Scholar
  62. Webster, H. L., and Harrison, D. D., 1969, Enzymic activities during the transformation of crypt to columnar intestinal cells, Exp. Cell Res. 56: 245–253.PubMedCrossRefGoogle Scholar
  63. Weiser, M. M., 1973a, Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation, J. Biol. Chem. 248: 320–324.Google Scholar
  64. Weiser, M. M., 1973b, Intestinal epithelial cell surface membrane synthesis, J. Biol. Chem. 248: 2536–2534.Google Scholar
  65. Weiser, M. M., and Quill, H., 1975, Intestinal villus and crypt cell responses to cholera toxin, Gastroenterology 69: 479–482.PubMedGoogle Scholar
  66. Williams-Ashman, H. G., Coppoc, G. L., and Weber, G., 1972, Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine, and spermine, Cancer Res. 32: 1924–1932.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • M. Earl Balis
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations