Advertisement

The Genetic Mechanism of Viruses

  • Lawrence S. Dillon

Abstract

The foregoing discussion of the phylogeny of tRNAs clearly indicates that the genetic mechanism had existed in living things prior to the advent of the prokaryotes. Thus the latter group per se throws very little light upon the origins and early evolution of the nucleic acids and other prominent features used in inheritance. To gain an understanding of those matters the search must be continued elsewhere: An exploration into the genetic processes in viruses may at least suggest models of the early events, even if not firm evidence of particular occurrence.

Keywords

Coat Protein Genetic Mechanism Vesicular Stomatitis Virus Genetic Process Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaslestad, H. G., Clark, H. F., Bishop, D. H. L., and Koprowski, H. 1971. Comparison of the RNA polymerases of two rhabdoviruses, Kern Canyon virus and vesicular stomatitis virus. J. Virol. 7: 726–735.PubMedGoogle Scholar
  2. Abelson, J., and Thomas, C. A. 1966. The anatomy of the T5 bacteriophage DNA molecule. J. Mol. Biol. 18: 262–287.CrossRefGoogle Scholar
  3. Abram, D., and Koffier, H. 1964. The in vitro. formation of flagella-like filaments and other structures from flagellin. J. Mol. Biol. 9: 168–185.PubMedCrossRefGoogle Scholar
  4. Acheson, N. H., Buetti, E., Scherrer, K., and Weil, R. 1971. Transcription of the polyoma virus genome: Synthesis and cleavage of late polyoma-specific RNA. Proc. Nat. Acad. Sci. USA. 68: 2231–2235.PubMedCrossRefGoogle Scholar
  5. Adams, J. M. 1972. Nucleotide sequence from the 5’-end to the first cistron of R17 bacteriophage ribonucleic acid. Biochemistry. 11: 976–988.PubMedCrossRefGoogle Scholar
  6. Adams, M. H., and Wade, E. 1954. Classification of bacterial viruses: The relationship of two Serratio. viruses to coli-dysentery phages T3, T7, and D44. J. Bact. 68: 320–325.PubMedGoogle Scholar
  7. Air, G. M., Sanger, F., and Coulson, A. R. 1976. Nucleotide and amino acid sequences of gene G of 4X174. J. Mol. Biol. 108: 519–533.PubMedCrossRefGoogle Scholar
  8. Almeida, J. D., and Waterson, A. P. 1970. Two morphological aspects of influenza virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 27–51.Google Scholar
  9. Aloni, Y. 1972. Extensive symmetrical transcription of SV40 DNA in virus-yielding cells. Proc. Nat. Acad. Sci. USA. 69: 2404–2409.PubMedCrossRefGoogle Scholar
  10. Aloni, Y. 1975. Methylated SV40 mRNAs. FEBS Lett. 54: 363–367.PubMedCrossRefGoogle Scholar
  11. Alper, T., Cramp, W. A., Haig, D. A., and Clarke, M. C. 1967. Does the agent of scrapie replicate without nucleic acid? Nature. 214: 764–766.PubMedCrossRefGoogle Scholar
  12. Alper, T., Haig, D. A., and Clarke, M. C. 1966. The exceptionally small size of the scrapie agent. Biochem. Biophys. Res. Comm. 22: 278–284.PubMedCrossRefGoogle Scholar
  13. Anderson, T. 1960. On the fine structure of the temperate bacteriophages P1, P2, and P22. Proc. Eur. Reg. Con!. Elect. Micro. 2: 10008–10012.Google Scholar
  14. Anraku, N., and Tomizawa, J. 1965. Joining of parental polynucleotides of phage T4 in the presence of 5-fluorideoxyuridine. J. Mol. Biol. 11: 501–508.PubMedCrossRefGoogle Scholar
  15. August, J. T., Banerjee, A. K., Eoyang, L., de Fernandez, M. T. F., Hori, K., Kuo, C. H., Rensing, U., and Shapiro, L. 1968. Synthesis of bacteriophage Qß RNA. Cold Spring Harbor Symp. Quant. Biol. 33: 73–81.PubMedCrossRefGoogle Scholar
  16. Auld, D. S., Kawaguchi, H., Livingston, D. M., and Vallee, B. L. 1974. Reverse transcriptase from avian myeloblastosis virus: A zinc metalloenzyme. Biochem. Biophys. Res. Comm. 57: 967–972.PubMedCrossRefGoogle Scholar
  17. Baas, P. D., and Jansz, H. S. 1972a. Asymmetric information transfer during X174 DNA replication. J. Mol. Biol. 63: 557–568.PubMedCrossRefGoogle Scholar
  18. Baas, P. D., and Jansz, H. S. 1972b. rtiX174 replicative form DNA replication, origin and direction. J. Mol. Biol. 63: 569–576.Google Scholar
  19. Bachenheimer, S. L., and Roizman, B. 1972. RNA synthesis in cells infected with herpes simplex virus. J. Virol. 10: 875–879.PubMedGoogle Scholar
  20. Baldwin, R. L., Bar and, P., Fritsch, A., Goldthwait, D. A., and Jacob, F. 1966. Cohesive sites on the DNAs from several temperate coliphages. J. Mol. Biol. 17: 343–357.PubMedCrossRefGoogle Scholar
  21. Baliga, B. S., Borek, E., Weinstein, I. B., and Srinivasan, P. R. 1969. Differences in the tRNAs of normal liver and Novikoff hepatoma. Proc. Nat. Acad. Sci. USA. 62: 899–905.PubMedCrossRefGoogle Scholar
  22. Ball, L. A. 1973. Mutual influence of the secondary structure and information content of a mRNA. J. Theor. Biol. 41: 243–247.PubMedCrossRefGoogle Scholar
  23. Baltimore, D. 1976. Viruses, polymerases, and cancer. Science. 192: 632–636.PubMedCrossRefGoogle Scholar
  24. Baltimore, D., Huang, A., Manly, K. F., Rekosh, D., and Stampfer, M. t971. The synthesis of protein by mammalian RNA viruses. In: Wolstenholme, G. E. W., and M. O’Connor, eds., Strategy of the Viral Genome., Edinburgh, Churchill Livingston, p. 101–110.Google Scholar
  25. Baltimore, D., Huang A., and Stampfer, M. 1970. RNA synthesis of vesicular stomatitis virus. Proc. Nat. Acad. Sci. USA. 66: 572–576.PubMedCrossRefGoogle Scholar
  26. Baltimore, D., and Smoler, D. 1971a. Primer requirement and template specificity of the RNA tumor virus DNA polymerase. Proc. Nat. Acad. Sci. USA. 68: 1507–1511.PubMedCrossRefGoogle Scholar
  27. Baltimore, D., and Smoler, D. 1971b. Template and primer requirements for the avian myeloblastosis DNA polymerase. In: Ribbons, D. W., J. F. Woessner, and J. Schultz, eds., Nucleic Acid Protein Interaction and Nucleic Acid Synthesis in Virus Infection. Vol. 2, Amsterdam, North-Holland Publishing Co., p. 328–332.Google Scholar
  28. Bancroft, J. B., Hiebert, E., Rees, M. W., and Markham, R. 1968. Properties of cowpea chlorotic mottle virus, its protein and nucleic acid. Virology. 34: 224–239.PubMedCrossRefGoogle Scholar
  29. Barrell, B. G., Coulson, A. R., and McClain, W. H. 1973. Nucleotide sequence of a glycine tRNA coded by bacteriophage T4. FEBS Lett. 37: 64–69.PubMedCrossRefGoogle Scholar
  30. Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974. Transfer RNA biosynthesis: The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.PubMedCrossRefGoogle Scholar
  31. Barrell, B. G., Weith, H. L., Donelson, J. E., and Robertson, H. D. 1975. Sequence analysis of the ribosome-protected bacteriophage X174 DNA fragment containing the gene G. initiation site. J. Mol. Biol. 92: 377–393.PubMedCrossRefGoogle Scholar
  32. Battula, N., and Loeb, L. A. 1975. Characterization of polynucleotides with errors in base-pairing synthesized by AMV DNA polymerase. J. Biol. Chem. 250: 4405 1409.Google Scholar
  33. Battula, N., and Loeb, L. A. 1976. On the fiedlity of DNA replication. J. Biol. Chem. 251: 982–986.PubMedGoogle Scholar
  34. Bautz, E. K. F., Kasai, T., Reilly, E., and Bautz, F. A. 1966. Regulation of mRNA synthesis in E. coli. after infection with bacteriophage T4. Proc. Nat. Acad. Sci. USA. 55: 1081–1088.PubMedCrossRefGoogle Scholar
  35. Bautz, E. K. F., and Reilly, E. 1966. Gene-specific mRNA: Isolation by the deletion method. Science. 151: 328–330.PubMedCrossRefGoogle Scholar
  36. Beijerinck, M. W. 1899. Über ein Contagium vivum fluidum als Ursache der Flecken-krankheit der Tabaksblätter. Zentr. Bakter. Parasit. 5: 27–35.Google Scholar
  37. Benjamin, T. L. 1966. Virus-specific RNA in cells productively infected or transformed by polyoma virus. J. Mol. Biol. 16: 359–373.PubMedCrossRefGoogle Scholar
  38. Bergoin, M., and Dales, S. 1971. Comparative observations on poxviruses of invertebrates and vertebrates. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 169–205.Google Scholar
  39. Bijlenga, R. K. L., Broek, R. v.d., and Kellenberger, E. 1974. The transformation of y-particles into T4 heads. I. Evidence for the conservative mode of this transformation. J. Supramol. Struct. 2: 45–59.PubMedCrossRefGoogle Scholar
  40. Billeter, M. A., Dahlberg, J. E., Goodman, H. M., Hindley, J., and Weissmann, C. 1969. Sequence of first 175 nocleotides from the 5’-terminus of Qß RNA synthesized in vitro. Nature. 224: 1083–1086.CrossRefGoogle Scholar
  41. Bils, R. F., and Hall, C. E. 1962. Electron microscopy of wound-tumor virus. Virology. 17: 123–130.PubMedCrossRefGoogle Scholar
  42. Bishop, D. H. L., and Roy, P. 1971. Kinetics of RNA synthesis by vesicular stomatitis virus particles. J. Mol. Biol. 58: 799–814.PubMedCrossRefGoogle Scholar
  43. Boedtker, H. 1959. Some physical properties of infective RNA isolated from TMV. Biochem. Biophys. Acta. 32: 519–531.PubMedCrossRefGoogle Scholar
  44. Bolle, A., Epstein, R. H., Salser, W., and Geiduschek, E. P. 1968. Transcription during bacteriophage T4 development. J. Mol. Biol. 31: 325–348.PubMedCrossRefGoogle Scholar
  45. Bolognesi, D. P. 1974. Structural components of RNA tumor viruses. Adv. Virus. Res. 19: 315–359.PubMedCrossRefGoogle Scholar
  46. Bolognesi, D. P., and Obara, T. 1970. Minor RNA and other components of host origin intrinsic to ALV particles. Bibl. Haematol. 36: 126–139.PubMedGoogle Scholar
  47. Bonar, R. A., Sverak, A., Bolognesi, D. P., Langlois, A. J., Beard, D., and Beard, J. W. 1967. RNA components of BAI strain A (myeloblastosis) avian tumor virus. Cancer Res. 27: 1138–1157.PubMedGoogle Scholar
  48. Bonhoeffer, F., and Gierer, A. 1963. On the growth mechanism of the bacterial chromosome. J. Mol. Biol. 7: 534–540.PubMedCrossRefGoogle Scholar
  49. Bordier, C., and Dubochet, J. 1974. Electron microscopic localization of the binding sites of E. coli. RNA polymerase in the early promoter region of T7 DNA. Eur. J. Biochem. 44: 617–624.PubMedCrossRefGoogle Scholar
  50. Borland, R., and Mahy, B. W. J. 1968. DNA-dependent RNA polymerase activity in cells infected with influenza virus. J. Virol. 2: 33–39.PubMedGoogle Scholar
  51. Botchan, P., Wang, J. C., and Echols, H. 1973. Effect of circularity and superhelicity on transcription from bacteriophage X DNA. Proc. Nat. Acad. Sci. USA. 70: 3077–3081.PubMedCrossRefGoogle Scholar
  52. Both, G. W., Banerjee, A. K., and Shatkin, A. J. 1975. Methylation-dependent translation of viral mRNAs in vitro. Proc. Nat. Acad. Sci. USA. 72: 1189–1193.CrossRefGoogle Scholar
  53. Boyce, R. P., Kraiselburd, E., Ryan, S., and Chessin, H. 1969. Ring opening of covalent X phage DNA circles after thermal induction of superinfected lysogens. Virology. 37: 679–681.PubMedCrossRefGoogle Scholar
  54. Bradley, D. E. 1967. Ultrastructure of bacteriophages and bacteriocins. Bact. Rev. 31: 230–314.PubMedGoogle Scholar
  55. Bradley, D. E. 1971. A comparative study of the structure and biological properties of bacteriophages. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 207–253.Google Scholar
  56. Brandner, G., and Mueller, N. 1974. Persistence of late SV40 genome transcription after inhibition of DNA replication by cytosine arabinoside. FEBS Lett. 42: 124–126.PubMedCrossRefGoogle Scholar
  57. Breindl, M., and Holland, J. J. 1975. Coupled in vitro. transcription and translation of vesicular stomatitis virus messenger RNA. Proc. Nat. Acad. Sci. USA. 72: 2545–2549.PubMedCrossRefGoogle Scholar
  58. Breitenfield, P. M., and Schäfer W. 1957. The formation of fowl plague virus antigens in infected cells, as studied with fluorescent antibodies. Virology. 4: 328–345.CrossRefGoogle Scholar
  59. Brenner, S., Jacob, F., and Meselson, M. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 190: 576–581.PubMedCrossRefGoogle Scholar
  60. Briand, J. P., Richards, K. E., Bouley, J. P., Witz, J., and Hirth, L. 1976. Structure of the amino-acid accepting 3’-end of high molecular weight eggplant mosaic virus RNA. Proc. Nat. Acad. Sci. USA. 73: 737–741.PubMedCrossRefGoogle Scholar
  61. Broers, A. M., Panessa, B. J., Gennaro, J. F. 1975. High-resolution scanning electron microscopy of bacteriophages 3C and T4. Science. 189: 637–639.PubMedCrossRefGoogle Scholar
  62. Brown, L. R., and Dowell, C. E. 1968a. Replication of coliphage M-13. I. Effects on host cells after synchronized infection. J. Virol. 2: 1290–1295.PubMedGoogle Scholar
  63. Brown, L. R., and Dowell, C. E. 1968b. Replication of coliphage M-13. II. Intracellular DNA forms associated with M-13 infection of mitomycin C-treated cells. J. Virol. 2: 1296–1307.PubMedGoogle Scholar
  64. Brown, N. L., and Smith, M. 1977. DNA sequence of a region of the 4,X174 genome coding for a ribosome binding site. Nature. 265: 695–698.PubMedCrossRefGoogle Scholar
  65. Brown, R. M. 1972. Algal viruses. Adv. Virus Res., 17: 243–277.PubMedCrossRefGoogle Scholar
  66. Brown, W. V., and Berthke, E. M. 1974. Textbook of Cytology. 2nd Ed., St. Louis, Missouri, C. V. Mosby Co.Google Scholar
  67. Buchan, A., and Watson, D. H. 1969. The immunological specificity of thymidine kinases in cells infected by viruses of the herpes group. J. Gen. Virol. 4: 461–463.PubMedCrossRefGoogle Scholar
  68. Buetti, E. 1974. Characterization of late polyoma mRNA. J. Virol. 14: 249–260.PubMedGoogle Scholar
  69. Bujard, H. 1969. Location of single-strand interruptions in the DNA of bacteriophage T5. Proc. Nat. Acad. Sci. USA. 62: 1167–1174.PubMedCrossRefGoogle Scholar
  70. Burnet, F. M. 1945. Virus as Organism., Cambridge, Harvard University Press.Google Scholar
  71. Butel, J. S., and Rapp, F. 1965. The effect of arabinofuranosylcytosine on the growth cycle of S V40. Virology. 27: 490–495.PubMedCrossRefGoogle Scholar
  72. Carnegie, J. W., Deeney, A. O. C., Olson, K. C., and Beaudreau, G. S. 1969. An RNA fraction from myeloblastosis virus having properties similar to tRNA. Biochim. Biophys. Acta. 190: 274–284.PubMedGoogle Scholar
  73. Caro, L. G. 1965. The molecular weight of X DNA. Virology. 25: 226–236.PubMedCrossRefGoogle Scholar
  74. Carriquiry, E., and Litvak, S. 1974. Further studies on the enzymatic aminoacylation of TMVRNA by histidine. FEBS Lett. 38: 287–291.PubMedCrossRefGoogle Scholar
  75. Carroll, R. B., Neet, K., and Goldthwait, D. A. 1975. Studies on the self-association of bac- teriophage T4 gene 32 protein by equilibrium sedimentation. J. Mol. Biol. 91: 275–291.PubMedCrossRefGoogle Scholar
  76. Cartwright, B., Smale, C. J., and Brown, F. 1970. Structural and biological relations in vesicular stomatitis virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses, New. York, Academic Press, p. 115–132.Google Scholar
  77. Casak, J. 1971. Arboviruses: Incorporation in a general system of virus classification. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 307–333.Google Scholar
  78. Casjens, S., Hohn, T., and Kaiser, A. D. 1972. Head assembly steps controlled by genes F. and W in bacteriophage X. J. Mol. Biol. 64: 551–563.PubMedCrossRefGoogle Scholar
  79. Casals, J. 1971. In: Maramorosch, K., and H. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 307–333.Google Scholar
  80. Cascino, A., Geiduschek, E. P., Gafferata, R. L., and Haskelkorn, R. 1971. T4 DNA replication and viral gene expression. J. Mol. Biol. 61: 357–367.PubMedCrossRefGoogle Scholar
  81. Chakraborty, P. P., Brandyopadhyaz, P., Huang, H. H., and Maitra, U. 1974. Fidelity of in vitro. transcription of T3 DNA by bacteriophage T3-induced RNA polymerase and by E. coli. RNA polymerase. J. Biol. Chem. 249: 6901–6909.PubMedGoogle Scholar
  82. Chamberlin, M., McGrath, J., and Waskell, L. 1970. New RNA polymerase from E. coli. infected with bacteriophage T7. Nature. 228: 227–231.PubMedCrossRefGoogle Scholar
  83. Champeil, P., and Brahams, J. 1974. Conformational properties of some viral DNAs. Eur. J. Biochem. 45: 253–259.PubMedCrossRefGoogle Scholar
  84. Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. J. G., and Klug, A. 1976. The structure of the protein disk of tobacco mosaic virus to 5 A resolution. Nature. 259: 20–24.PubMedCrossRefGoogle Scholar
  85. Chandler, R. L. 1963. Experimental scrapie in the mouse. Res. Vet. Sci. 4: 276–285.Google Scholar
  86. Chang, S. H., Hefti, E., Obijeski, J. F., and Bishop, D. H. L. 1974. RNA transcription by the virion polymerases of five rhabdoviruses. J. Virol. 13: 652–661.PubMedGoogle Scholar
  87. Chen, M. J., Locker, J., and Weiss, S. B. 1976. Physical mapping of bacteriophage T5 tRNAs. J. Biol. Chem. 251: 536–547.PubMedGoogle Scholar
  88. Chen, J. M., Shiau, R. P., Hwang, L.-T., Vaughan, J., and Weiss, S. B. 1975. Methionine and formylmethionine specific tRNAs coded by bacteriophage T5. Proc. Nat. Acad. Sci. USA. 72: 558–562.PubMedCrossRefGoogle Scholar
  89. Cho, H. J. 1976. Is the scrapie agent a virus? Nature. 262: 411–412.CrossRefGoogle Scholar
  90. Clark, S., Losick, R., and Pero, J. 1974. New RNA polymerase from B. subtilis. infected with phage PBS2. Nature. 252: 21–24.PubMedCrossRefGoogle Scholar
  91. Clarke, M. C., and Millson, G. C. 1976. The membrane location of scrapie infectivity. J. Gen. Virol. 31: 441–445.PubMedCrossRefGoogle Scholar
  92. Clements, J. B., and Sinsheimer, R. L. 1975. RNA metabolism in 4,X174-infected cells. J. Virol. 15: 151–160.PubMedGoogle Scholar
  93. Cohen, J. A., 1967. Chemistry and structure of nucleic acids of bacteriophages. Science. 158: 343–351.PubMedCrossRefGoogle Scholar
  94. Cohen, P. S., and Ennis, H. L. 1965. The requirement for potassium for bacteriophage T4 protein and DNA synthesis. Virology. 27: 282–289.PubMedCrossRefGoogle Scholar
  95. Cohen, S. S. 1948. The synthesis of bacterial viruses. J. Biol. Chem. 174: 281–293.PubMedGoogle Scholar
  96. Colonno, R. J., and Stone, H. O. 1975. Methylation of mRNA of Newcastle disease virus in vitro. by a virion-associated enzyme. Proc. Nat. Acad. Sci. USA. 72: 2611–2615.PubMedCrossRefGoogle Scholar
  97. Corner, M. M., Guthrie, C., and McClain, W. H. 1974. An ochre suppressor of bacteriophage T4 that is associated with a tRNA. J. Mol. Biol. 90: 665–676.CrossRefGoogle Scholar
  98. Compans, R. W., and Choppin, P. W. 1968. The nucleic acid of the parainfluenza virus SV5. Virology. 35: 289–296.PubMedCrossRefGoogle Scholar
  99. Compans, R. W., and Choppin, P. W. 1971. The structure and assembly of influenza and parainfluenza viruses. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 407–432.Google Scholar
  100. Compans, R. W., Dimmock, N. J., and Meier-Ewert, H. 1970. An electron microscopic study of the influenza virus-infected cell. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 87–108.Google Scholar
  101. Crawford, L. V. 1965. A study of human papilloma virus DNA. J. Mol. Biol. 13: 362–372.PubMedCrossRefGoogle Scholar
  102. Crick, J., and Brown, F. 1970. Small immunizing subunits in rabies virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Adademic Press, p. 133–140.Google Scholar
  103. Daniel, V., Sarid, S. and Littauer, U. Z. 1970. Bacteriophage induced tRNA in E. Coli. Science. 167: 1682–1688.Google Scholar
  104. Darlix, J. L., and Dausse, J. P. 1975. Localization of E. coli. RNA polymerase initiation sites on T7 DNA early promoter region. FEBS Lett., 50: 214–218.PubMedCrossRefGoogle Scholar
  105. Darlix, J. L., and Horaist, M. 1975. Existence and possible roles of transcriptional barriers in T7 DNA early region as shown by electron microscopy. Nature. 256: 288–292.PubMedCrossRefGoogle Scholar
  106. Dausse, J. P., Sentenac, A., and Fromageot, P. 1975. Interaction of RNA polymerase from E. coli with DNA. Eur. J. Biochem. 57: 569–578.Google Scholar
  107. Davidson, N., and Szybalski, W. 1971. Physical and chemical characteristics of X DNA. In: Hershey, A. D., ed., The Bacteriophage Lambda., Cold Spring Harbor, L. I., Cold Spring Harbor Laboratory, p. 45–82.Google Scholar
  108. Davis, R. W., and Hyman, R. W. 1971. A study in evolution: The DNA base sequence homology between coliphages T7 and T3. J. Mol. Biol. 62: 287–301.PubMedCrossRefGoogle Scholar
  109. Dawson, P., Skalka, A., and Simon, L. D. 1975. Bacteriophage X head morphogenesis: Studies on the role of DNA. J. Mol. Biol. 93: 167–180.PubMedCrossRefGoogle Scholar
  110. de Zoeten, G. A., and Schlegel, D. E. 1967a. Broadbean mottle virus in leaf tissue. Virology. 31: 173–176.PubMedCrossRefGoogle Scholar
  111. de Zoeten, G. A., and Schlegel, D. E. 1967b. Nucleolar and cytoplasmic uridine-3H incorporation in virus-infected plants. Virology. 32: 416–427.PubMedCrossRefGoogle Scholar
  112. Dottin, R. P., Cutler, L. S., and Pearson, M. L. 1975. Repression and autogenous stimulation in vitro by bacteriophage X repressor. Proc. Nat. Acad. Sci. USA 72: 804–808.PubMedCrossRefGoogle Scholar
  113. Dottin, R. P., and Pearson, M. L. 1973. Regulation by N gene protein of phage k of anthranilate synthetase synthesis in vitro. Proc. Nat. Acad. Sci. USA 70: 1078–1082.Google Scholar
  114. Dressler, D., and Wolfson, J. 1970. Rolling circle for X174 DNA replication. 3. Synthesis of supercoiled duplex rings. Proc. Nat. Acad. Sci. USA 67: 456–461.PubMedCrossRefGoogle Scholar
  115. Drohan, W. N., Shoyab, M., Wall, R., and Baluda, M. A. 1975. Interspersion of sequences in AMV RNA that rapidly hybridize with leukemic chicken cell DNA. J. Virol. 15: 550–555.PubMedGoogle Scholar
  116. Duesberg, P. H. 1968a. The RNAs of influenza virus. Proc. Nat. Acad. Sci. USA. 59: 930–937.PubMedCrossRefGoogle Scholar
  117. Duesberg, P. H. 1968b. Physical properties of Rous sarcoma virus. Proc. Nat. Acad. Sci. USA. 60: 1511–1518.PubMedCrossRefGoogle Scholar
  118. Duesberg, P. H., Martin, G. S., and Vogt, P. K. 1970. Glycoprotein components of avian and murine RNA tumor viruses. Virology. 41: 631–646.PubMedCrossRefGoogle Scholar
  119. Duesberg, P. H., and Robinson, W. S. 1967. On the structure and replication of influenza virus. J. Mol. Biol. 25: 383–406.CrossRefGoogle Scholar
  120. Dunn, J., and Studier, F. W. 1973a. T7/early RNAs are generated by site-specific cleavages. Proc. Nat. Acad. Sci. USA 70: 1559–1563.PubMedCrossRefGoogle Scholar
  121. Dunn, J., and Studier, F. W. 1973b. T7/early RNAs and E. coli. rRNAs are cut from large precursor RNAs in vivo. by ribonuclease III. Proc. Nat. Acad. Sci. USA. 70: 3296–3300.PubMedCrossRefGoogle Scholar
  122. Dunnebacke, T. H., and Kleinschmidt, A. K. 1967. RNA from reovirus as seen in protein mon olayers by electron microscopy. Z. Naturforsch. 22B: 159–164.Google Scholar
  123. Dyson, R. D., and Van Holde, K. E. 1967. An investigation of bacteriophage k, its protein ghosts and subunits. Virology. 33: 559–566.PubMedCrossRefGoogle Scholar
  124. Earhart, C. F. 1970. The association of host and phage DNA with the membrane of E. coli. Virology. 42: 429–436.Google Scholar
  125. Earhart, C. F., Sauri, D. J., Fletcher, G., and Wulff, J. L. 1973. Effect of inhibition of macromolecule synthesis on the association of bacteriophage T4 DNA with membrane. J. Virol. 11: 527–534.PubMedGoogle Scholar
  126. Edgell, M. H., Hutchinson, C. A., and Sinsheimer, R. L. 1969. The process of infection with bacteriophage 4X174. XXVIII. Removal of the spike proteins from the phage capsid. J. Mol. Biol. 42: 547–558.PubMedCrossRefGoogle Scholar
  127. Eiden, J. J., Quade, K., and Nichols, J. L. 1976. Interaction of tRNAT’P with Rous sarcoma virus 35 S RNA. Nature. 259: 245–247.PubMedCrossRefGoogle Scholar
  128. Eisen, H. A., Fuerst, C. R., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., and Jacob, F. 1966. Genetics and physiology of defective lysogeny in K12 (a). Virology. 30: 224–241.PubMedCrossRefGoogle Scholar
  129. Eisenberg, S., and Denhardt, D. T. 1974. The mechanism of replication of 0X174 single-stranded DNA. Biochem. Biophys. Res. Comm. 61: 532–537.PubMedCrossRefGoogle Scholar
  130. Elder, K. T., and Smith, A. E. 1973. Methionine tRNAs of avian myeloblastosis virus. Proc. Nat. Acad. Sci. USA. 70: 2823–2826.PubMedCrossRefGoogle Scholar
  131. Elder, K. T., and Smith, A. E., 1974. Methionine tRNAs associated with avian oncornavirus 70 S RNA. Nature. 247: 435–437.PubMedCrossRefGoogle Scholar
  132. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevally, R., Edgar, R. S., Sussman, M., Denhardt, G. H., Leilauçis, A. 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol. 28: 375–394.CrossRefGoogle Scholar
  133. Erickson, R. J. 1975. The binding of polynucleotides to the DNA polymerase of AMV. Arch. Biochem. Biophys. 167: 238–246.PubMedCrossRefGoogle Scholar
  134. Erickson, R. J., and Grosch, J. C. 1974. The inhibition of AMV DNA polymerase by synthetic polynucleotides. Biochemistry. 13: 1987–1993.PubMedCrossRefGoogle Scholar
  135. Erickson, R. J., Janik, B., and Sonuner, R. G. 1973. The inhibition of the AMV DNA polymerase by poly(U) fraction of varying chain lengths. Biochem. Biophys. Res. Comm. 52: 1475–1482.PubMedCrossRefGoogle Scholar
  136. Erikson, E., and Erikson, R. L. 1972. Transfer RNA-synthetase activity associated with AMV. J. Virol. 9: 231–233.PubMedGoogle Scholar
  137. Everitt, E., Sundquist, B., Pettersson, U., and Philipson, L. 1973. Isolation and topography of low molecular weight antigens from the virion of adenovirus type 2. Virology. 52: 130–147.PubMedCrossRefGoogle Scholar
  138. Faras, A. J., Taylor, J. M., Levinson, W. E., Goodman, H. M., and Bishop, J. M. 1973. RNA-directed DNA polymerase of Rous sarcoma virus. J. Mol. Biol. 79: 163–183.PubMedCrossRefGoogle Scholar
  139. Farber, F. E., and Rawls, W. E. 1975. Isolation of ribosome-like structures from Pichinde virus. J. Gen. Virol. 26: 21–31.PubMedCrossRefGoogle Scholar
  140. Fareed, G. C., Wilt, E. M., and Richardson, C. C. 1971. Enzymatic breakage and joining of DNA. J. Biol. Chem. 246: 925–932.PubMedGoogle Scholar
  141. Feix, G., Pollet, R., and Weissmann, C. 1968. Enzymatic synthesis of infectious viral RNA with noninfectious Q$ minus strands as template. Proc. Nat. Acad. Sci. USA. 59: 145–152.PubMedCrossRefGoogle Scholar
  142. Fenner, F. 1976. The classification and nomenclature of viruses. Intervirology. 6: 1–12.CrossRefGoogle Scholar
  143. Fidanian, H. M., Drohân, W. N., and Baluda, M. A. 1975. RNA of simian sarcoma-associated virus type I produced in human tumor cells. J. Virol. 15: 449–457.PubMedGoogle Scholar
  144. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Min Jou, W., Raeymaekers, A., Volckaert, G., Ysebaert, M., Van de Kerckhove, J., Nolf, F., and Van Montagu, M. 1975. A-protein gene of bacteriophage MS2. Nature. 256: 273–278.PubMedCrossRefGoogle Scholar
  145. Fiers, W., Contreras, R., Duerinck, F., Haegeman, C., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Van der Berghe, A., Volckaert, G., and Ysebaert, M. 1976. Complete nucleotide sequence of bacteriophage MS2RNA: primary and secondary structure of the replicase gene. Nature. 260: 500–507.PubMedCrossRefGoogle Scholar
  146. Fiers, W., Contreras, R., de Watcher, R., Haegemän, G., Merregaert, J., Min Jou, W., Vandenberghe, A., Volckaert, G., and Ysebaert, M. 1973. Structure and function of the RNA of bacteriophage MS2. Proc. 2nd. Duran-Reynals Symp., 1973, Barcelona, Spain, p. 35–50.Google Scholar
  147. Finch, J. T. 1965. Preliminary X-ray diffraction studies on tobacco rattle and barley striped mosaic viruses. J. Mol. Biol. 12: 612–619.CrossRefGoogle Scholar
  148. Finch, J. T., and Gibbs, A. J. 1970. The structure of the nucleocapsid filaments of the paramyxoviruses. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 109–114.Google Scholar
  149. Finch, J. T., and Klug, A. 1965. Structure of rabbit papilloma virus. J. Mol. Biol. 13: 1–12.PubMedCrossRefGoogle Scholar
  150. Flaks, J. G., and Cohen, S. S. 1959. Virus-induced acquisition of metabolic function. J. Biol. Chem., 234: 1501–1506.PubMedGoogle Scholar
  151. Flamand, A., and Bishop, D. H. L. 1974. In vivo. synthesis of RNA by vesicular stomatitis virus and its mutants. J. Mol. Biol. 87: 31–53.Google Scholar
  152. Fleckenstein, B., Bornkamm, G. W., and Ludwig, H. 1975. Repetitive sequences in complete and defective genomes of Herpesvirus saimiri. J. Virol. 15: 398–406.Google Scholar
  153. Fraenkel-Conrat, H., and Singer, B. 1957. Virus reconstitution: Combination of protein and nucleic acid from different strains. Biochim. Biophys. Acta. 24: 541–548.CrossRefGoogle Scholar
  154. Francke, B., and Roy, D. S. 1972. Cis-limited action of the gene A product of bacteriophage OX 174 and the essential bacterial site. Proc. Nat. Acad. Sci. USA. 69: 475–479.PubMedCrossRefGoogle Scholar
  155. Frankel, F. R. 1968. Evidence for long DNA strands in the replicating pool after T4 infection. Proc. Nat. Acad. Sci. USA. 59: 131–138.PubMedCrossRefGoogle Scholar
  156. Franklin, R. E., Klug, A., and Holmes, K. C. 1957. X-ray diffraction studies of the structure and morphology of TMV virus. Ciba Found. Symp. Nature Viruses., p. 39–51.Google Scholar
  157. Fraser, D. 1967. Viruses and Molecular Biology., New York, The Macmillan Co.Google Scholar
  158. Frearson, P. M., and Crawford, L. V. 1972. Polyoma virus basic proteins J. Gen. Virol. 14: 141–155.PubMedCrossRefGoogle Scholar
  159. Frenkel, N., and Roizman, B. 1972. Separation of the herpesvirus DNA on sedimentation in alkaline gradients. J. Virol. 10: 565–572.PubMedGoogle Scholar
  160. Frisby, D., Smith, J., Jeffers, V., and Porter, A. 1976. Size and location of poly(A) in encephalomyocarditis virus RNA. Nucl. Acids Res. 3: 2789–2810.PubMedGoogle Scholar
  161. Fujimura, R. K., and Roop, B. C. 1976. Characterization of DNA polymerase induced by bacteriophage T5 with DNA containing single strand breaks. J. Biol. Chem. 251: 2168–2175.PubMedGoogle Scholar
  162. Furlong, D., Swift, H., and Roizman, B. 1972. Arrangement of herpesvirus DNA in the core. J. Virol. 10: 1071–1074.PubMedGoogle Scholar
  163. Furuichi, Y. 1974. Methylation-coupled transcription by virus associated transcriptase of cytoplasmic polyhedrosis-virus containing double-stranded RNA. Nuc. Acids Res. 1: 809–822.CrossRefGoogle Scholar
  164. Furuichi, Y., and Miura, K.-I. 1975. A blocked structure at the 5’-terminus of mRNA from cytoplasmic polyhedrosis virus. Nature. 253: 374–375.PubMedCrossRefGoogle Scholar
  165. Furuichi, Y., Morgan, M., Muthukrishnan, S., and Shatkin, A. J. 1975. Reovirus mRNA contains a methylated blocked 5’-terminal structure: m7G(5)ppp(5)Gm pCp-. Proc. Nat. Acad. Sci. USA. 72: 362–366.PubMedCrossRefGoogle Scholar
  166. Furuichi, Y., Muthukrishnan, S., Tomasz, J., and Shatkin, A. J. 1976. Mechanism of formation of reovirus mRNA 5’-terminal blocked and methylated sequence, m7GpppGmpC. J. Biol. Chem. 251: 5043–5053.PubMedGoogle Scholar
  167. Gajdusek, D. C. 1967. Slow-virus infections of the nervous system. New England J. Med. 276: 392–400.CrossRefGoogle Scholar
  168. Gamow, R. I. 1969. Thermodynamic treatment of bacteriophage T4B adsorption kinetics. J. Virol. 4: 113–115.PubMedGoogle Scholar
  169. Gantt, R., Stromberg, K., and Julian, B. 1972. Absence of RNA methylase in the AMV core. J. Virol. 9: 1057–1058.PubMedGoogle Scholar
  170. Gefter, M. L., Hausmann, R., Gold, M., and Hurwitz, J. 1966. The enzymatic methylation of RNA and DNA. J. Biol. Chem. 241: 1995–2006.PubMedGoogle Scholar
  171. Geider, K., and Kornberg, A. 1974. Conversion of the M13 viral single strand to the doublestranded replicative forms by purified proteins. J. Biol. Chem. 249: 3999–4005.PubMedGoogle Scholar
  172. Gelfand, D. H., and Hayashi, M. 1969. Electrophoretic characterization of 4X174-specified proteins. J. Mol. Biol. 44: 501–516.PubMedCrossRefGoogle Scholar
  173. Gibbons, R. A., and Hunter, G. D. 1967. Nature of the scrapie agent. Nature. 215: 1041–1043.PubMedCrossRefGoogle Scholar
  174. Gibbs, A. J., and McIntyre, G. A. 1970. A method for assessing the size of a protein from its composition. J. Gen. Virol. 9: 51–67.PubMedCrossRefGoogle Scholar
  175. Gibson, W., and Roizman, B. 1971. Compartmentalization of spermine in herpes simplex virion. Proc. Nat. Acad. Sci. USA. 68: 2818–2821.PubMedCrossRefGoogle Scholar
  176. Gilbert, W., and Dressler, D. 1968. DNA replication: The rolling circle model. Cold Spring Harbor Symp. Quant. Biol. 33: 473–483.PubMedCrossRefGoogle Scholar
  177. Gilden, R. V., and Oroszlan, S. 1972. Group-specific antigens of RNA tumor viruses as markers for subinfectious expression of the RNA virus genome. Proc. Nat. Acad. Sci. USA. 69: 1021–1025.PubMedCrossRefGoogle Scholar
  178. Gillespie, D., and Gallo, R. C. 1975. RNA processing and RNA tumor virus origin and evolution. Science. 188: 802–811.PubMedCrossRefGoogle Scholar
  179. Glover, D. M. 1974. Coupling of polyoma DNA and RNA synthesis. Biochem. Biophys. Res. Comm. 57: 1137–1143.PubMedCrossRefGoogle Scholar
  180. Gold, M., Hausmann, R. L., Maitra, U., and Hurwitz, J. 1964. Effects of bacteriophage infection on the activity of the methylating enzymes. Proc. Nat. Acad. Sci. USA. 52: 292–297.PubMedCrossRefGoogle Scholar
  181. Gold, P., and Dales, S. 1968. Localization of nucleotide phosphohydrolase activity within vaccinia. Proc. Nat. Acad. Sci. USA. 60: 845–852.PubMedCrossRefGoogle Scholar
  182. Goldman, E., and Lodish, H. 1972. Specificity of protein synthesis by bacterial ribosomes and initiation factors: Absence of change after phage T4 infection. J. Mol. Biol. 67: 35–48.PubMedCrossRefGoogle Scholar
  183. Goldstein, N. O., Pardoe, I. U., and Burness, A. H. T. 1976. Requirement of an adenylic-acid- rich segment for the infectivity of encephalomyocarditis virus RNA. J. Gen. Virol. 31: 1–6.CrossRefGoogle Scholar
  184. Goodman, H. M., Billeter, M. A., Hindley, J., and Weissmann, C. 1970. The nucleotide sequence at the 5-terminus of the Qß RNA minus strand. Proc. Nat. Acad. Sci. USA. 67: 921–928.PubMedCrossRefGoogle Scholar
  185. Gottesman, M. E., and Weisberg, R. A. 1971. Prophage insertion and excision. In: Hershey, A.D., ed., The Bacteriophage. X, Cold Spring Harbor, L.I., Cold Spring Harbor Laboratory, p. 113–138.Google Scholar
  186. Graham, F. L., van der Eb, A. J., and Heijneker, H. L. 1974. Size and location of the transforming region in human adenovirus type 5 DNA. Nature., 251: 687–691.PubMedCrossRefGoogle Scholar
  187. Granboulan, N., and Girard, M. 1969. Molecular weight of poliovirus RNA. J. Virol. 4: 475–479.PubMedGoogle Scholar
  188. Green, M. 1970. Oncogenic viruses. Ann. Rev. Biochem. 39: 701–756.PubMedCrossRefGoogle Scholar
  189. Green, M., and Cartas, M. 1972. The genome of RNA tumor viruses contains poly(A) sequences. Proc. Nat. Acad. Sci. USA. 69: 791–794.PubMedCrossRefGoogle Scholar
  190. Green, M., Pina, M., Kimes, R., Wensink, P. C., MacHattie, L. A., and Thomas, C. A. 1967. Adenovirus DNA, I. Molecular weight and conformation. Proc. Nat. Acad. Sci. USA. 57: 1302–1309.PubMedCrossRefGoogle Scholar
  191. Green, R. G. 1935. On the nature of the filterable viruses. Science. 82: 443–445.PubMedCrossRefGoogle Scholar
  192. Green, R. W., Bolognesi, D. P., Schäfer, W., Pister, L., Hunsmann, G., and de Noronha, F. 1973. Polypeptides of mammalian oncornaviruses. Virology. 56: 565–579.PubMedCrossRefGoogle Scholar
  193. Griffith, J. S. 1967. Self-replication and scrapie. Nature. 215: 1043–1044.PubMedCrossRefGoogle Scholar
  194. Grippo, P., and Richardson, C. C. 1971. DNA polymerase of bacteriophage T7. J. Biol. Chem. 246: 6867–6873.PubMedGoogle Scholar
  195. Groner, Y., Pollack, Y., Berissi, H., and Revel, M. 1972a. Cistron specific translation control protein in E. coli. Nature New Biol. 239: 16–19.Google Scholar
  196. Groner, Y., Scheps, R., Kamen, R., Kolakofsky, D., and Revel, M. 1972b. Host subunit of Qß replicase is translation control factor i. Nature New Biol. 239: 19–20.PubMedGoogle Scholar
  197. Gross, L. 1970. Oncogenic Viruses. 2nd Ed., Oxford, Pergamon Press.Google Scholar
  198. Grunberger, D., Weinstein, I. B., and Mushinski, J. F. 1975. Deficiency of the Y base in a hepatoma phenylalanine tRNA. Nature. 253: 66–68.PubMedCrossRefGoogle Scholar
  199. Guha, A., and Szybalski, W. 1968. Fractionation of the complementary strands of coliphage T4 DNA based on the asymmetric distribution of the poly U and poly UG binding sites. Virology. 34: 608–618.PubMedCrossRefGoogle Scholar
  200. Guilley, H., Jonard, G., and Hirth, L. 1974. A TMV RNA nucleotide sequence specifically recognized by TMV protein. Biochimie. 56: 181–185.PubMedCrossRefGoogle Scholar
  201. Guilley, H., Janard, G., and Hirth, L. 1975. Sequence of 71 nucleotides at the 3-end of TMV RNA. Proc. Nat. Acad. Sci. USA. 72: 864–868.PubMedCrossRefGoogle Scholar
  202. Gulati, S. C., Kacian, D. L., and Spiegelman, S. 1974. Conditions for using DNA polymerase I as an RNA-dependent DNA polymerase. Proc. Nat. Acad. Sci. USA. 71: 1035–1039.PubMedCrossRefGoogle Scholar
  203. Gupta, R. S., and Schlessinger, D. 1975. Differential modes of chemical decay for early and late X mRNA. J. Mol. Biol. 92: 311–318.PubMedCrossRefGoogle Scholar
  204. Gussin, G. N. 1966. Three complementation groups in bacteriophage R17. J. Mol. Biol. 21: 435–453.PubMedCrossRefGoogle Scholar
  205. Guthrie, C., and McClain, W. H. 1973. Conditionally lethal mutants of bacteriophage T4 defective in production of a tRNA. J. Mol. Biol. 81: 137–155.PubMedCrossRefGoogle Scholar
  206. Hall, T. C., Shih, D. S., and Kaesberg, P. 1972. Enzyme-mediated binding of tyrosine to bromemosaic-virus RNA. Biochem. J. 129: 969–976.PubMedGoogle Scholar
  207. Haruna, I., Itoh, Y. H., Yamane, K., Miyake, T., Shiba, T., and Watanabe, I. 1971. Isolation and properties of RNA replicases induced by SP and FI phages. Proc. Nat. Acad. Sci. USA. 68: 1778–1779.PubMedCrossRefGoogle Scholar
  208. Haruna, I., and Spiegelman, S. 1965. Specific template requirements of RNA replicase. Proc. Nat. Acad. Sci. USA. 54: 579–587.PubMedCrossRefGoogle Scholar
  209. Harvey, C. L., Wright, R., and Mussbaum, A. L. 1973. Lambda phage DNA: Joining of a chemically synthesized cohesive end. Science. 179: 291–293.PubMedCrossRefGoogle Scholar
  210. Hassenlopp, P., Oudet, P., and Chambon, P. 1974. Animal DNA-dependent RNA polymerases. Studies on the binding of mammalian RNA polymerases AI and B to simian virus 40 DNA. Eur. J. Biochem. 41: 397–411.CrossRefGoogle Scholar
  211. Hatanaka, M., Twiddy, E., and Gilden, R. V. 1972. Protein kinase associated with RNA tumor viruses and other budding RNA viruses. Virology. 47: 536–538.PubMedCrossRefGoogle Scholar
  212. Hausmann, R. 1967. Synthesis of an S-adenosyl-methionine-cleaving enzyme in T3-infected E. coli. and its disturbance by co-infection with enzymatically incompetent bacteriophages. J. Virol. 1. :57–63.Google Scholar
  213. Hausmann, R., and Gold, M. 1966. The enzymatic methylation of RNA and DNA. J. Biol. Chem. 241: 1985–1994.PubMedGoogle Scholar
  214. Hausmann, R., and Gomez, B. 1967. Amber mutants of bacteriophages T3 and T7 defective in phage-directed DNA synthesis. J. Virol. 1: 779–792.PubMedGoogle Scholar
  215. Hay, J., Perera, P. A. J., Morrison, J. M., Gentry, G. A., and Subak-Sharpe, J. H. 1971. Herpes virus-specified proteins. In: Wolstenholme, G. E. W., and M. O’Connor, eds., Strategy of the Viral Genome., Edinburgh, Churchill Livingstone, p. 355–372.Google Scholar
  216. Hayashi, Y., and Hayashi, M. 1970. Fractionation of 0074 specific messenger RNA. Cold Spring Harb. Symp. Quant. Biol. 35: 171–177.CrossRefGoogle Scholar
  217. Hayashi, Y., Hayashi, M., and Spiegelman, S 1963. Restriction of in vivo. genetic transcription to one of the complementary strands of DNA. Proc. Nat. Acad. Sci. USA. 50: 664–672.PubMedCrossRefGoogle Scholar
  218. Hayes, W. 1968. Trends and methods in virus research. In: Society for General Microbiology, The Molecular Biology of Viruses., Cambridge, Cambridge University Press, p. 1–14.Google Scholar
  219. Heine, J. W., Spear, P. G., and Roizman, B. 1972. The proteins specified by herpes simplex virus. J. Virol. 9: 431–439.PubMedGoogle Scholar
  220. Hendrickson, H. E., and McCorquodale, D. J. 1971. The relationship between phage DNA synthesis and protein synthesis in T5-infected cells. Biochem. Biophys. Res. Comm. 43: 735–740.PubMedCrossRefGoogle Scholar
  221. Hendrix, R. W., and Casjens, S. R. 1974. Protein fusion: A novel reaction in bacteriophage X head assembly. Proc. Nat. Acad. Sci. USA. 71: 1451–1455.PubMedCrossRefGoogle Scholar
  222. Henry, T. J., and Pratt, D. 1969. The proteins of bacteriophage M13. Proc. Nat. Acad. Sci. USA. 62: 800–807.PubMedCrossRefGoogle Scholar
  223. Hercules, K., Schweiger, M., and Sauerbier, W. 1974. Cleavage by RNase III converts T3 and T7 early precursor RNA into translatable message. Proc. Nat. Acad. Sci. USA. 71: 840–844.PubMedCrossRefGoogle Scholar
  224. Hershey, A. D. 1955. An upper limit to the protein content of the germinal substance of bacteriophage T2. Virology. 1: 108–127.PubMedCrossRefGoogle Scholar
  225. Hershey, A. D., Dixon, J., and Chase, M. 1953. Nucleic acid economy in bacteria infected with bacteriophage T2. J. Gen. Physiol. 36: 777–789.PubMedCrossRefGoogle Scholar
  226. Hershey, A. D., Garen, A., Fraser, D. K., and Hudis, J. D. 1954. Growth and inheritance in bacteriophage. Yearbook Carn. Inst. Wash. 53: 210–241.Google Scholar
  227. Hirth, L. 1971. Comparative properties of rod-shaped viruses. In: Maramorosch, K., and E. Kur-stak, eds., Comparative Virology., New York, Academic Press, p. 335–360.Google Scholar
  228. Hofstettler, H., Monstein, H.-J., and Weissmann, C. 1974. The readthrough protein A, is essential for the formation of viable Qß particles. Biochim. Biophys. Acta. 374: 238–251.Google Scholar
  229. Hogness, D. S., Doerfler, W., Egan, J. B., and Black, L. W. 1967. The position and orientation of genes in X and Xdg DNA. In: Colter, J. S., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 91–110.Google Scholar
  230. Hogness, D. S., and Simmons, J. R. 1964. Breakage of Xdg DNA: Chemical and genetic characterization of each isolated half-molecule. J. Mol. Biol. 9: 411–438.PubMedCrossRefGoogle Scholar
  231. Hohn, B., Wurtz, M., Klein, B., Lustig, A., and Hohn, T. 1974. Phage X DNA packaging in vitro. J. Inframol. Struct. 2: 302–317.Google Scholar
  232. Hori, K., Eoyang, L., Banerjee, A. K., and August, J. T. 1967. Template activity of synthetic ribopolymers in the Qß RNA polymerase reaction. Proc. Nat. Acad. Sci. USA. 57: 1790–1797.PubMedCrossRefGoogle Scholar
  233. Horiuchi, K., and Matsuhashi, S. 1970. Three cistrons in bacteriophage Qß. Virology. 42: 49–60.PubMedCrossRefGoogle Scholar
  234. Horiuchi, K., Webster, R. E., and Matsuhashi, S. 1971. Gene products of bacteriophage Qß. Virology. 45: 429–439.PubMedCrossRefGoogle Scholar
  235. Home, R. W., Brenner, S., Waterson, A. P., and Wildy, P. 1959. The icosahedral form of an adenovirus. J. Mol. Biol. 1: 84–86.CrossRefGoogle Scholar
  236. Howatson, A. F. 1971. Oncogenic viruses: A survey of their properties. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 509–537.Google Scholar
  237. Howley, P. M., Mullarkey, M. F., Takemoto, K. K., and Martin, M. A. 1975. Characterization of human papovavirus BK DNA. J. Virol. 15: 173–181.PubMedGoogle Scholar
  238. Huang, A. S., and Wagner, R. R. 1966. Comparative sedimentation coefficients of RNA extracted from plaque-forming and defective particles of vesicular stomatitis virus. J. Mol. Biol. 22: 381–384.PubMedCrossRefGoogle Scholar
  239. Huang, A. S., Baltimore, D., and Stampfer, M. 1970. RNA synthesis of vesicular stomatitis virus. Virology. 42: 946–957.PubMedCrossRefGoogle Scholar
  240. Huang, A. S., Baltimore, D., and Bratt, M. 1971. RNA polymerase in virions of Newcastle disease virus. J. Viral. 7: 389–394.Google Scholar
  241. Huang, W. M., and Buchanan, J. M. 1974. Synergistic interactions of T4 early proteins concerned with their binding to DNA. Proc. Nat. Acad. Sci. USA. 71: 2226–2230.PubMedCrossRefGoogle Scholar
  242. Huberman, J. 1968. Visualization of replicating mammalian and T4 bacteriophage DNA. Cold Spring Harbor Symp. Quant. Biol. 33: 509–523.PubMedCrossRefGoogle Scholar
  243. Hull, R. 1970. Large RNA plant-infecting viruses. In: Barry, R. D., and B. W. J. Matey, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 153–164.Google Scholar
  244. Hummeler, K. 1971. Bullet-shaped viruses. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology, New York, Academic Press, p. 361–386.Google Scholar
  245. Humphries, E. H., and Temin, H. 1972. Cell cycle-dependent activation of Rous sarcoma virus-infected stationary chicken cells: Avian leukosis virus group-specific antigens and RNA. J. Virol. 10. :82–87.Google Scholar
  246. Huppert, J., Gresland, L., and Hillova, J. 1970. Newcastle disease virus RNA synthesis in cells infected with unirradiated or UV-irradiated virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 482–492.Google Scholar
  247. Hurst, R. E., and Incardona, N. L. 1969. Molecular weights of viruses from isopycnic centrifugation with Schlieren optics. Virology. 37: 62–73.PubMedCrossRefGoogle Scholar
  248. Hyde, J. M., Gafford, L. G., and Randall, C. C. 1967. Molecular weight determination of fowl-pox virus DNA by electron microscopy. Virology. 33: 112–120.PubMedCrossRefGoogle Scholar
  249. Hyman, L. 1940. The Invertebrates: Protozoa through Ctenophora., New York, McGraw-Hill Book Company Inc.Google Scholar
  250. Hyman, R. W. 1971. Physical mapping of T7 mRNA. J. Mol. Biol. 61: 369–376.PubMedCrossRefGoogle Scholar
  251. Isacson, P., and Koch, A. E. 1965. Association of host antigens with a parainfluenza virus. Virology. 27: 129–138.PubMedCrossRefGoogle Scholar
  252. Iwanowsky, D. 1892. Über die Mosaikkrankheit der Tabakspflanze. Bull. Acad. Imp. Sci. St. Petersburg, 3: 67–72.Google Scholar
  253. Iype, P. T., Abraham, K. A., and Bhargava. P. M. 1963. Further evidence for a positive role of acrosome in the uptake of labelled amino acids by bovine and avian spermatozoa. J. Reprod. Fertil. 5: 151–158.CrossRefGoogle Scholar
  254. Jacquemin-Sablon, A., and Richardson, C. C. 1970. Analysis of the interruptions in bacteriophage T5 DNA. J. Mol. Biol. 47: 477–494.PubMedCrossRefGoogle Scholar
  255. Jarrett, O., Pitts, J. D., Whalley, J. M., Clason, A. E., and Hay, J. 1971. Isolation of the nucleic acid of feline leukemia virus. Virology. 43: 317–320.PubMedCrossRefGoogle Scholar
  256. Johnson, P. H., and Sinsheimer, R. L. 1974. Structure of an intermediate in the replication of bacteriophage cfaX174 DNA. J. Mol. Biol. 83: 47–61.PubMedCrossRefGoogle Scholar
  257. Juarez, H., Juarez, D., and Hedgcoth, C. 1974. Seven lysine isoaccepting tRNAs from polyoma virus-transformed cells. Biochem. Biophys. Res. Comm. 61: 110–116.PubMedCrossRefGoogle Scholar
  258. Jungwirth, C., and Joklik, W. K. 1965. Studies on “early” enzymes in HeLa cells infected with vaccinia virus. Virology. 27: 80–93.PubMedCrossRefGoogle Scholar
  259. Kacian, D. L., Watson, K. F., Burney, A., and Spiegelman, S. 1971. Purification of the DNA polymerase of AMV. Biochim. Biophys. Acta. 246: 365–383.PubMedGoogle Scholar
  260. Kaiser, A. D., and Wu, R. 1968. Structure and function of DNA cohesive ends. Cold Spring Harbor Symp. Quant. Biol. 33: 729–734.PubMedCrossRefGoogle Scholar
  261. Kaiser, D. 1971. Lambda DNA replication. In: Hershey, A. D., ed., The Bacteriophage Lambda., Cold Spring Harbor, L.I., Cold Spring Harbor Laboratory, p. 195–210.Google Scholar
  262. Kaiser, D., and Dworkin, M. 1975. Gene transfer to a myxobacterium by E. coli. phage Pl. Science. 187: 653–654.PubMedCrossRefGoogle Scholar
  263. Kamen, R., Kondo, M., Römer, W., and Weissmann, C. 1972. Reconstitution of Qß replicase lacking subunit a with protein-synthesis interference factor i. Eur. J. Biochem. 31: 44–51.PubMedCrossRefGoogle Scholar
  264. Kang, C. Y., and Prevec, L. 1969. Proteins of vesicular stomatitis virus. J. Virol. 3: 404–413.PubMedGoogle Scholar
  265. Kasai, T., and Bautz, E. K. F. 1969. Regulation of gene-specific RNA synthesis in bacteriophage T4. J. Mol. Biol. 41: 401–418.PubMedCrossRefGoogle Scholar
  266. Kasai, T., Bautz, E. K. F., Guha, A., and Szybalski, W. 1968. Identification of the transcribing DNA strand for the rll. and endolysin genes of coliphage T4. J. Mol. Biol. 34: 709–712.PubMedCrossRefGoogle Scholar
  267. Kates, J. R., and McAuslan, B. R. 1967a. Messenger RNA synthesis by a “coated” viral genome. Proc. Nat. Acad. Sci. USA. 57: 314–320.PubMedCrossRefGoogle Scholar
  268. Kates, J. R., and McAuslan, B. R. 1967b. Poxvirus DNA-dependent RNA polymerase. Proc. Nat. Acad. Sci. USA. 58: 134–140.PubMedCrossRefGoogle Scholar
  269. Kates, J. R., and McAuslan, B. R. 1967c. Interrelation of protein synthesis and viral DNA synthesis. J. Virol. 1. :110–114.Google Scholar
  270. Katsura, I., and Kühl, P. W. 1974. A regulator protein for the length determination of bacteriophage X tail. J. Supramol. Struct. 2: 239–253.PubMedCrossRefGoogle Scholar
  271. Katsura, I., and Kühl, P. W. 1975a. Morphogenesis of the tail of bacteriophage X. II. In vitro. formation and properties of phage particles with extra long tails. Virology. 63: 238–251.PubMedCrossRefGoogle Scholar
  272. Katsura, I., and Kühl, P. W. 1975b. Morphogenesis of the tail of bacteriophage X. III. Morphogenetic pathway. J. Mol. Biol. 91: 257–273.PubMedCrossRefGoogle Scholar
  273. Katz, E., and Moss, B. 1970. Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: Inhibition by rifampicin. Proc. Nat. Acad. Sci. USA. 66: 677–684.PubMedCrossRefGoogle Scholar
  274. Katze, J. R. 1975. Alterations in SVT2 cell tRNAs in response to cell density and serum type. Biochim. Biophys. Acta. 383: 131–139.PubMedGoogle Scholar
  275. Keir, H. M. 1968. Virus-induced enzymes in mammalian cells infected with DNA viruses. In: Society for General Microbiology, Molecular Biology of Viruses., Cambridge, Cambridge University Press, p. 67–99.Google Scholar
  276. Keir, H. M., Subak-Sharpe, H., Shedden, W. I. H., Watson, D. H., and Wildy, P. 1966. Immunological evidence for a specific DNA polymerase produced after infection by herpes simplex virus. Virology. 30: 154–157.PubMedCrossRefGoogle Scholar
  277. Keith, J., and Fraenkel-Conrat, H. 1975. TMV RNA carries 5-terminal triphosphorylated guano-sine blocked by 5’-linked 7-methylguanosine. FEBS Lett. 57: 31–33.PubMedCrossRefGoogle Scholar
  278. Keith, J., Gleason, M., and Fraenkel-Conrat, H. 1974. Characterization of the end groups of RNA of Rous sarcoma virus. Proc. Nat. Acad. Sci. USA. 71: 4371–4375.PubMedCrossRefGoogle Scholar
  279. Kellenberger, E. 1961. Vegetative bacteriophage and the maturation of the virus particles. Adv. Virus Res. 8: 1–62.PubMedCrossRefGoogle Scholar
  280. Kellenberger, E. 1966. The genetic control of the shape of a virus. Sci. Am., 215. (Dec.): 32–39.PubMedCrossRefGoogle Scholar
  281. Kellenberger, E., and Edgar, R. S. 1971. Structure and assembly of phage particles. In: Hershey, A. D., ed., The Bacteriophage Lambda., Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, p. 271–295.Google Scholar
  282. Kelly, T. J., and Thomas, C. A. 1969. Intermediate in the replication of bacteriophage ‘17 DNA molecules. J. Mol. Biol. 44: 459–475.PubMedCrossRefGoogle Scholar
  283. Kieff, E. D., Bachenheimer, S. L., and Roizman, B. 1971. Size, composition, and structure of the DNA of herpes simplex subtypes 1 and 2. J. Virol. 8: 125–132.PubMedGoogle Scholar
  284. Kiger, J. A., and Sinsheimer, R. L. 1969. Fractionation of replicating k DNA on benzoylatednaphthoylated DEAF cellulose. J. Mol. Biol. 40: 467–490.PubMedCrossRefGoogle Scholar
  285. King, A. M. Q., and Wells, R. D. 1976. All intact subunit RNAs from Rous sarcoma virus contain poly(A). J. Biol. Chem. 251: 150–152.PubMedGoogle Scholar
  286. King, J. 1970. Steps in T4 tail core assembly. FEBS Symp. 21: 171–180.Google Scholar
  287. King, J., and Wood, W. B. 1969. Assembly of bacteriophage T4 tail fibers. J. Mol. Biol. 39: 583–602.PubMedCrossRefGoogle Scholar
  288. Kingsbury, D. W. 1966. Newcastle disease virus RNA. J. Mol. Biol. 18: 204–214.PubMedCrossRefGoogle Scholar
  289. Klagsbrun, M. 1971. Changes in the methylation of tRNA in vaccinia infected HeLa cells. Virology. 44: 153–167.PubMedCrossRefGoogle Scholar
  290. Klenk, H. D., and Choppin, P. W. 1969. Chemical composition of the parainfluenza virus SV5. Virology. 37: 155–157.PubMedCrossRefGoogle Scholar
  291. Kleppe, K., van de Sande, J. H., and Khorana, H. G. 1970. Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc. Nat. Acad. Sci. USA. 67: 68–73.PubMedCrossRefGoogle Scholar
  292. Klug, A. 1965. Structure of viruses of the papilloma-polyoma type. J. Mol. Biol. 13: 749–756.CrossRefGoogle Scholar
  293. Knippers, R., Whalley, J. M., and Sinsheimer, R. L. 1969. The process of infection with bacteriophage rbX174. Proc. Nat. Acad. Sci. USA. 64: 275–282.PubMedCrossRefGoogle Scholar
  294. Knolle, P., and Hohn, T. 1975. Morphogenesis of RNA phages. In: Cold Spring Harbor Laboratory, RNA Phages., Cold Spring Harbor, N.Y., p. 147–201.Google Scholar
  295. Knolle, P., and Kaudewitz, P. 1963. Effect of RNase pre-treatment of cells of E. coli. K12 on plaque yields from subsequent infection with RNA phage fr. Biochem. Biophys. Res. Comm. 11: 383–387.CrossRefGoogle Scholar
  296. Knopf, K.-W., and Bujard, H. 1975. Structure and function of the genome of coliphage T5. Eur. J. Biochem. 53: 371–385.PubMedCrossRefGoogle Scholar
  297. Korant, B. D., and Pootjies, C. F. 1970. Physiochemical properties of Agrobacterium tumefaciens. phage LV-1 and its DNA. Virology. 40: 48–54.PubMedCrossRefGoogle Scholar
  298. Korn, D., and Weissbach, A. 1963. The effect of lysogenic induction on the deoxyribonucleases of E. coli. K12 X. J. Biol. Chem. 238: 3390–3394.PubMedGoogle Scholar
  299. Kühl, P. W., and Katsura, I. 1975. Morphogenesis of the tail of bacteriophage X. Virology. 63: 221–237.PubMedCrossRefGoogle Scholar
  300. Kuno, S., and Lehman, I. R. 1962. Gentiobiose, a constituent of DNA from coliphage T6. J. Biol. Chem. 237: 1266–1270.PubMedGoogle Scholar
  301. Köppers, B., and Sumper, M. 1975. Minimal requirements for template recognition by bacteriophage Q/3 replicase: Approach to general RNA-dependent RNA synthesis. Proc. Nat. Acad. Sci. USA. 72: 2640–2643.CrossRefGoogle Scholar
  302. Labaw, L. W. 1951. The origin of phosphorus in E. coli. bacteriophages. J. Bact. 62: 169–173.PubMedGoogle Scholar
  303. Labaw, L. W. 1953. The origin of phosphorus in the Ti, T5, T6, and ‘F7 bacteriophages of E. coli. J. Bact. 66: 429–436.Google Scholar
  304. LaColla, P., and Weissbach, A. 1975. Vaccinia virus infection of HeLa cells. J. Virol. 15: 305–315.PubMedGoogle Scholar
  305. Lai, M. M. C., and Duesberg, P. H. 1972. Adenylic acid-rich sequence in RNAs of Rous sarcoma virus and Rauscher mouse leukaemia virus. Nature. 235: 383–386.PubMedCrossRefGoogle Scholar
  306. Lamy, D., Jonard, G., Guilley, H., and Hirth, L. 1975. Comparison between the 3’OH end RNA sequence of two strains of TMV which may be aminoacylated. FEBS Lett. 60: 202–204.PubMedCrossRefGoogle Scholar
  307. Lane, L. C. 1974. The bromoviruses. Adv. Virus Res. 19: 152–220.Google Scholar
  308. Lane, L. C., and Kaesberg, P. 1971. Multiple genetic components in bromegrass mosaic virus. Nature New Biol. 232: 40–43.PubMedCrossRefGoogle Scholar
  309. Lanni, F., and Lanni, Y. T. 1966. Genetic suppressors of phage T5 amber mutants. J. Bact. 92: 521–523.PubMedGoogle Scholar
  310. Lanni, Y. T. 1968. First-step-transfer DNA of bacteriophage T5. Bact. Rev. 32: 227–242.PubMedGoogle Scholar
  311. Lanni, Y. T. 1969. Functions of two genes in the first-step-transfer DNA of bacteriophage T5. J. Mol. Biol. 44: 173–184.PubMedCrossRefGoogle Scholar
  312. Lanni, Y. T., and Szybalski, W. 1969. Transcription patterns for coliphage T5. Bact. Proc. 1969: 192.Google Scholar
  313. Laver, W. G. 1970. Isolation of an arginine-rich protein from particles of adenovirus type 2. Virology. 41: 488–500.PubMedCrossRefGoogle Scholar
  314. Lebeurier, G., Nicolaieff, A., and Richards, K. E. 1977. Inside-out model for self-assembly of tobacco mosaic virus. Proc. Nat. Acad. Sci. USA. 75. :149–153.Google Scholar
  315. Lee Huang, S., and Ochoa, S. 1971. Messenger discriminating species of initiation factor F3. Nature New Biol. 234: 236–239.Google Scholar
  316. Lee Huang, S., and Ochoa, S. 1973. Purification and properties of two messenger-discriminating species of E. coli. initiation factor 3. Arch. Biochem. Biophys. 156: 84–96.CrossRefGoogle Scholar
  317. Lehman, I. R., and Pratt, E. A. 1960. On the structure of the glucosylated hydroxymethyl cytosine nucleotides of coliphages T2, T4, and T6. J. Biol. Chem. 235: 3254–3259.PubMedGoogle Scholar
  318. Leis, J. P., Berkower, I., and Hurwitz, J. 1973. Mechanism of action of ribonuclease H isolated from AMV and E. coli. Proc. Nat. Acad. Sci. USA. 70: 466–470.CrossRefGoogle Scholar
  319. Leis, J. P., and Hurwitz, J. 1972. Isolation and characterization of a protein that stimulates DNA synthesis from AMV. Proc. Nat. Acad. Sci. USA. 69: 2331–2335.PubMedCrossRefGoogle Scholar
  320. Leis, J. P., Schincariol, A., Ishizaki, R., and Hurwitz, J. 1975. RNA-dependent DNA polymerase activity of RNA tumor viruses. J. Virol. 15: 484–487.PubMedGoogle Scholar
  321. Levinson, W. E., Varmus, H. E., Garapin, A. C., and Bishop, J. M. 1972. DNA of Rous sarcoma virus: Its nature and significance. Science. 175: 76–78.PubMedCrossRefGoogle Scholar
  322. Levitt, J., and Becker, Y. 1967. The effect of cytosine arabinoside on the replication of herpes simplex virus. Virology. 31: 129–134.PubMedCrossRefGoogle Scholar
  323. Lindquist, B. H., and Sinsheimer, R. L. 1967a. Process of infection with bacteriophage 4X174. XIV. Studies on macromolecular synthesis during infection with a lysis-defective mutant. J. Mol. Biol. 28: 87–94.CrossRefGoogle Scholar
  324. Lindquist, B. H., and Sinsheimer, R. L. 1967b. The process of infection with bacteriophage X174. XV. Bacteriophage DNA synthesis in abortive infections with a set of conditional lethal mutants. J. Mol. Biol. 30: 69–80.CrossRefGoogle Scholar
  325. Lindstrom, D. M., and Dulbecco, R. 1972. Strand orientation of SV40 transcription in productively infected cells. Proc. Nat. Acad. Sci. USA. 69: 1517–1520.PubMedCrossRefGoogle Scholar
  326. Litvak, S., Tarragó, A., Tarragó-Litvak, L., and Allende, J. E. 1973. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nature New Biol. 241: 88–90.PubMedGoogle Scholar
  327. Loh, P. C., and Shatkin, A. J. 1968. Preparation and properties of the internal capsid components of reovirus. J. Gen. Virol. 3: 233–257.CrossRefGoogle Scholar
  328. Loh, P. C., and Soergel, M. 1967. Macromolecular synthesis in cells infected with reovirus type 2 and the effect of Ara-C. Nature. 214: 622–623.CrossRefGoogle Scholar
  329. Luftig, R. B., and Haselkorn, R. 1968. Comparison of blue-green algae virus LPP-1 and the morphologically related viruses G111 and coliphage T7. Virology. 34: 675–678.PubMedCrossRefGoogle Scholar
  330. Luftig, R. B., and Kilham, S. S. 1971. An electron microscope study of Rauscher leukemia virus. Virology. 46: 277–297.PubMedCrossRefGoogle Scholar
  331. Luria, S. E., and Darnell, J. E. 1967. General Virology, 2nd Ed., New York, John Wiley & Sons. MacFarlane, E. S. 1969. Properties of the in vitro. soluble RNA methylase activity of hamster tumors induced by adenovirus 12. Can. J. Microbiol. 15: 189–192.Google Scholar
  332. MacHattie, L. A., Ritchie, D. A., Thomas, C. A., and Richardson, C. C. 1967. Terminal repetition in permuted T2 bacteriophage DNA molecules. J. Mol. Biol. 23: 355–364.PubMedCrossRefGoogle Scholar
  333. Mahadik, S. P., Dharmgrongartama, B., and Srinivasan, P. R. 1972. An inhibitory protein of E. coli. RNA polymerase in bacteriophage T3-infected cells. Proc. Nat. Acad. Sci. USA. 69: 162–166.PubMedCrossRefGoogle Scholar
  334. Mahadik, S. P., Dharmgrongartama, B., and Srinivasan, P. R. 1974. Regulation of host RNA synthesis in bacteriophage T3-infected cells. J. Biol. Chem. 249: 1787–1791.PubMedGoogle Scholar
  335. Mahy, B. W. J. 1970. The replication of fowl plaque virus RNA. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 392–415.Google Scholar
  336. Makover, S. 1968. A preferred origin for the replication of X DNA. Cold Spring Harbor Symp. Quant. Biol. 33: 621–622.PubMedCrossRefGoogle Scholar
  337. Mandel, J.-L., and Chambon, P. 1974a. Studies on the reaction parameters of transcription in vitro. of simian virus 40 DNA by mammalian RNA polymerases AI and B. Eur. J. Biochem. 41: 367–378.PubMedCrossRefGoogle Scholar
  338. Mandel, J.-L., and Chambon, P. 1974b. Analysis of the RNAs synthesized on simian virus 40 superhelical DNA by mammalian RNA polymerases AI and B. Eur. J. Biochem. 41: 379–395.PubMedCrossRefGoogle Scholar
  339. Mandel, M., and Berg, A. 1968. Cohesive sites and helper phage function of P2, k, and 186s DNAs. Proc. Nat. Acad. Sci. USA. 60: 265–268.PubMedCrossRefGoogle Scholar
  340. Marchin, G. L., Müller, U. R., and Al-Khateeb, G. H. 1974. The effect of tRNA on virally modified valyl tRNA synthetase of E. coli. J. Biol. Chem. 249: 4705–4711.Google Scholar
  341. Marvin, D. A., and Hohn, B. 1969. Filamentous bacterial viruses. Bact. Rev. 33: 172–209.PubMedGoogle Scholar
  342. Marvin, D. A., and Wachtel, E. J. 1975. Structure and assembly of filamentous bacterial viruses. Nature. 253: 19–23.PubMedCrossRefGoogle Scholar
  343. Marvin, D. A., Wiseman, R. L., and Wachtel, E. J. 1974. Molecular architecture of the class II (Pfl, Xf) virion. J. Mol. Biol., 82: 121–138.PubMedCrossRefGoogle Scholar
  344. Mathews, C. K. 1971. Bacteriophage Biochemistry., New York, Van Nostrand Reinhold Co.Google Scholar
  345. McAuslan, B. R. 1971. Enzymes specified by DNA-containing animal viruses. In: Wolstenholme, G. E. W., and M. O’Connor, eds., Strategy of the Viral Genome., Edinburgh, Churchill Livingstone, p. 25–38.Google Scholar
  346. McAuslan, B. R., Herde, P., Pett, D., and Rose, J. 1965. Nucleases of virus-infected animal cells. Biochem. Biophys. Res. Comm. 20: 586–591.PubMedCrossRefGoogle Scholar
  347. McClain, W. H., Guthrie, C., and Barrell, B. G. 1972. Eight tRNAs induced by infection of E. coli. with phage T4. Proc. Nat. Acad. Sci. USA. 69: 3703–3707.PubMedCrossRefGoogle Scholar
  348. McClain, W. H., Guthrie, C., and Barrell, B. G. 1973. The psut. amber suppressor gene of bacteriophage T4: Identification of its amino acid and tRNA. J. Mol. Biol. 81: 157–171.PubMedCrossRefGoogle Scholar
  349. McCorquodale, D. J., and Buchanan, J. M. 1968. Patterns of protein synthesis in T5-infected E. coli. J. Biol. Chem. 243: 2550–2559.Google Scholar
  350. McCorquodale, D. J., and Lanni, Y. T. 1970. Patterns of protein synthesis in E. coli. infected by amber mutants in the first-step-transfer DNA of T5. J. Mol. Biol. 48: 133–144.PubMedCrossRefGoogle Scholar
  351. McGregor, S., and Mayor, H. D. 1971. Chemical and hydrodynamic analysis of the rhinovirion. J. Virol. 7: 41–46.PubMedGoogle Scholar
  352. Mechler, B., and Arber, W. 1969. Parental fd DNA is efficiently transferred into progeny bacteriophage particles even at low multiplicity of infection. J. Mol. Biol. 45: 443–450.PubMedCrossRefGoogle Scholar
  353. Miller, R. C., and Kozinsky, A. W. 1970. Newly synthesized proteins in the T4 protein-DNA complex. J. Virol. 5: 502–506.PubMedGoogle Scholar
  354. Mills, D. R., Peterson, R. L., and Spiegelman, S. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Nat. Acad. Sci. USA. 58: 217–224.PubMedCrossRefGoogle Scholar
  355. Millward, S., and Graham, A. F. 1970. Structural studies on reovirus: Discontinuities in the genome. Proc. Nat. Acad. Sci. USA 65: 422–429.PubMedCrossRefGoogle Scholar
  356. Millward, S., and Graham, A. F. 1971. Structure and transcription of the genomes of double-stranded RNA viruses. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 387–406.Google Scholar
  357. Min Jou, W. and Fiers, W. 1976. Studies on bacteriophage MS2 XXXIII. Comparison of the nucleotide sequences in related bacteriophage RNAs. J. Mol. Biol. 106: 1047–1060.PubMedCrossRefGoogle Scholar
  358. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W. 1972. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 237: 82–88.CrossRefGoogle Scholar
  359. Minagawa, T. 1961. Some characteristics of the internal protein phage T2. Virology. 13: 515–527.PubMedCrossRefGoogle Scholar
  360. Miura, K., Watanabe, K., Sugiura, M., and Shatkin, A. J. 1974. The 5-terminal nucleotide sequences of double-stranded RNA of human reovirus. Proc. Nat. Acad. Sci. USA. 71: 3979–3983.PubMedCrossRefGoogle Scholar
  361. Miyake, T., Haruna, I., Shiba, T., Itoh, Y. H., Yamane, K., and Watanabe, I. 1971. Grouping of RNA phages based on the template specificity of their RNA replicases. Proc. Nat. Acad. Sci. USA. 68: 2022–2024.PubMedCrossRefGoogle Scholar
  362. Mölling, K., Bolognesi, D. P., Bauer, H., Busen, W., Plassman, H. W., and Hausen, P. 1971. Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nature New Biol. 234: 240–243.PubMedCrossRefGoogle Scholar
  363. Montagnier, L. 1968. The replication of viral RNA. In: Crawford, L. V., and M. G. P. Stocker, eds., The Molecular Biology of Viruses., Cambridge, Cambridge University Press, p. 125–147.Google Scholar
  364. Montagnier, L., and Sanders, F. K. 1963a. Sedimentation properties of infective RNA extracted from encephalomyocarditis virus. Nature 197. :1178–1181.Google Scholar
  365. Montagnier, L., and Sanders, F. K. 1963b. Replicative form of encephalomyocarditis virus RNA. Nature 199:664–667.Google Scholar
  366. Moore, C. H., Barron, F. F., Bohnert, D., and Weissmann, C. 1971. Possible origin of a minor virus specific protein (Al) in Qß particles. Nature New Biol. 234: 204–206.PubMedCrossRefGoogle Scholar
  367. Moroni, C. 1972. Structural proteins of Rauscher leukemia virus and Harvey sarcoma virus. Virology. 47: 1–7.PubMedCrossRefGoogle Scholar
  368. Morris, C. F., Sinha, N. K., and Alberts, B. M. 1975. Reconstruction of bacteriophage T4 DNA replication apparatus from purified components. Proc. Nat. Acad. Sci. USA. 72: 4800–4804.PubMedCrossRefGoogle Scholar
  369. Moss, B., Rosenblum, E. N., and Gershowitz, A. 1975. Characterization of a poly(A) polymerase from vaccinia virions. J. Biol. Chem. 250: 4722–4729.PubMedGoogle Scholar
  370. Mudd, J. A., and Summers, D. F. 1970a. Protein synthesis in vesicular stomatitis virus-infected HeLa cells. Virology. 42: 328–340.PubMedCrossRefGoogle Scholar
  371. Mudd, J. A., and Summers, D. F., 1970b. Polysomal RNA of vesicular stomatitis virus-infected HeLa cells. Virology. 42: 958–968.PubMedCrossRefGoogle Scholar
  372. Müller, U. R., and Marchin, G. L. 1975. Temporal appearance of bacteriophage T4-modified valyl tRNA synthetase in E. coli. J. Viral. 15: 238–243.Google Scholar
  373. Munyon, W., Paoletti, E., Ospina, J., and Grace, J. T. 1968. Nucleotide phosphohydrolase in purified vaccinia virus. J. Virol. 2: 167–172.PubMedCrossRefGoogle Scholar
  374. Murialdo, H., and Siminovitch, L. 1971. The morphogenesis of bacteriophage X. In: Hershey, A. D., ed., The Bacteriophage Lambda., Cold Spring Harbor, New York, Cold Spring Harbor Laboratory, p. 711–723.Google Scholar
  375. Murialdo, H. and Siminovitch, L., 1972. Identification of gene products and control of the expression of the morphogenetic information. Virology. 48: 785–823.PubMedCrossRefGoogle Scholar
  376. Murray, K., and Murray, U. E. 1973. Terminal nucleotide sequences of DNA from temperate coliphages. Nature New Biol. 243: 134–139.PubMedCrossRefGoogle Scholar
  377. Nakajima, H., and Obara, J. 1967. Physicochemical studies of Newcastle disease virus. Arch. Ges. Virusforsch. 20: 287–295.PubMedCrossRefGoogle Scholar
  378. Nayak, D. P., and Baluda, M. A. 1967. Isolation and partial characterization of nucleic acid of influenza virus. J. Virol. 1: 1217–1223.PubMedGoogle Scholar
  379. Nermut, M. V., Frank, H., and Schäfer, W. 1972. Properties of mouse leukemia viruses. Virology. 49: 345–358.PubMedCrossRefGoogle Scholar
  380. Newman, J. F. E., and Brown, F. 1970. RNA of vesicular stomatitis virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 360–368.Google Scholar
  381. Niles, E. G., Coulon, S. W., and Summers, W. C. 1974. Purification and physical characterization of T7 RNA polymerase from T7-infected E. coli. B. Biochemistry. 93: 3904–3912.CrossRefGoogle Scholar
  382. Norrby, E. 1966. The relationship between the soluble antigens and the virion of adenovirus type 3. Virology. 28: 236–248.PubMedCrossRefGoogle Scholar
  383. Norrby, E. 1969. The structural and functional diversity of adenovirus capsid components. J. Gen. Virol. 5: 221–236.PubMedCrossRefGoogle Scholar
  384. Norrby, E. 1971. Adenoviruses. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 105–134.Google Scholar
  385. Nowinski, R. C., Sarker, N. H., Old, L. J., Moore, D. H., Scheer, D. I., and Kilgers, J. 1971. Characteristics of the structural components of the mouse mammary tumor virus. Virology. 46: 21–38.PubMedCrossRefGoogle Scholar
  386. Obara, T., Bolognesi, D. P., and Bauer, H. 1971. Ribosomal RNA in avian leukosis virus particles. /nt. J. Cancer. 7: 535–541.CrossRefGoogle Scholar
  387. Öberg, B., and Philipson, L. 1972. Binding of histidine to TMV RNA. Biochem. Biophys. Res. Comm. 48: 927–932.PubMedCrossRefGoogle Scholar
  388. Öberg, B., Saborio, J., Persson, T., Everitt, E., and Philipson, L. 1975. Identification of the in vitro translation products of adenovirus mRNA by immunoprecipitation. J. Virol. 15: 199–207.PubMedGoogle Scholar
  389. Oda, K., and Joklik, W. K. 1967. Hybridization and sedimentation studies on “early” and “late” vaccinia mRNA. J. Mol. Biol. 27: 395–419.PubMedCrossRefGoogle Scholar
  390. Offord, R. E. 1966. Electron microscopic observations on the substructure of tobacco rattle virus. J. Mol. Biol. 17: 370–375.PubMedCrossRefGoogle Scholar
  391. Ohe, K. 1972. Virus-coded origin of low-molecular weight RNA from KB cells infected with adenovirus type 2. Virology. 47: 726–733.PubMedCrossRefGoogle Scholar
  392. Ohe, K., and Weissman, S. M. 1970. Nucleotide sequence of an RNA from cells infected with adenovirus 2. Science. 167: 879–881.PubMedCrossRefGoogle Scholar
  393. Ohno, T., Nozu, Y., and Okada, Y. 1971. Polar reconstitution of TMV. Virology. 44: 510–516.CrossRefGoogle Scholar
  394. Ortwerth, B. J., and Liu, L. P. 1973. Correlation between a specific isoaccepting lysyl tRNA and cell division in mammalian tissues. Biochemistry. 12: 3978–3984.PubMedCrossRefGoogle Scholar
  395. Ortwerth, B. J., Yonuschot, G. R., and Carlson, J. V. 1973. Properties of tRNA from various tissues. Biochemistry. 12: 3985–3991.PubMedCrossRefGoogle Scholar
  396. Otto, B., and Reichard, P. 1975. Replication of polyoma DNA in isolated nuclei. J. Virol. 15: 259–267.PubMedGoogle Scholar
  397. Paddock, G. V., and Abelson, J. 1973. Sequence of T4, T2, and T6 bacteriophage species I RNA and specific cleavage by an E. coli. endonuclease. Nature New Biol. 246: 2–5.PubMedCrossRefGoogle Scholar
  398. Paddock, G. V., and Abelson, J. 1975a. Nucleotide sequence determination of bacteriophage T4 species I RNA. J. Biol. Chem. 250: 4185–4206.PubMedGoogle Scholar
  399. Paddock, G. V., and Abelson, J. 1975b. Nucleotide sequence determination of bacteriophage T2 and T6 species I RNA. J. Biol. Chem. 250: 4207–4219.PubMedGoogle Scholar
  400. Pal, B. K., and Roy-Burman, P. 1975. Phosphoproteins: Structural components of oncornaviruses. J. Virol. 15: 540–549.PubMedGoogle Scholar
  401. Palmenberg, A., and Kaesberg, P. 1973. Amber mutant of bacteriophage Qß capable of causing overproduction of Qß replicase. J. Virol. 11: 603–605.PubMedGoogle Scholar
  402. Palmenberg, A., and Kaesberg, P. 1974. Synthesis of complementary strands of heterologous RNAs with Qß replicase. Proc. Nat. Acad. Sci. USA. 71: 1371–1375.PubMedCrossRefGoogle Scholar
  403. Parkinson, J. S. 1968. Genetics of the left arm of the chromosomes of bacteriophage X. Genetics. 59: 311–325.PubMedGoogle Scholar
  404. Pattison, I. H., and Jones, K. M. 1967. The possible nature of the transmissible agent of scrapie. Vet. Rec. 80: 2–9.PubMedCrossRefGoogle Scholar
  405. Paul, H. L. 1961. Physikalische und chemische untersuchungen am broad bean Mottle-Virus. Z. Naturforsch. 1316: 786–791.Google Scholar
  406. Pedersen, I. R. 1971. Lymphocytic choriomeningitis virus RNAs. Nature New Biol. 234: 112–114.PubMedGoogle Scholar
  407. Pedersen, I. R. 1973. Different classes of RNA isolated from lymphocytic choriomeningitis virus. J. Virol. 11: 416–423.PubMedGoogle Scholar
  408. Pereira da Silva, L. H., and Jacob, F. 1967. Induction of C11 and O functions in early defective X phages. Virology. 33: 618–624.CrossRefGoogle Scholar
  409. Peters, G. G., and Hayward, R. S. 1974a. The 3-terminal sequence of coliphage T7 “early” RNA. Biochem. Biophys. Res. Comm. 61: 759–766.CrossRefGoogle Scholar
  410. Peters, G. G., and Hayward, R. S. 1974b. Dinucleotide sequences in the regions of T7 DNA coding for termination of early transcription. Eur. J. Biochem. 48: 199–208.PubMedCrossRefGoogle Scholar
  411. Pett, D. M., Estes, M. K., and Pagano, J. S. 1975. Structural proteins of SV40. J. Virol. 15: 379–385.PubMedGoogle Scholar
  412. Pettersson, U., Philipson, L., and Höglund, S. 1968. Purification and characterization of adenovirus type 2 fiber antigen. Virology. 35: 204–215.PubMedCrossRefGoogle Scholar
  413. Pfefferkorn, E. R., and Hunter, H. S. 1963. The source of the RNA and phospholipid of Sindbis virus. Virology. 20: 446–456.PubMedCrossRefGoogle Scholar
  414. Philipson, L., and Petterson, U. 1973. Structure and function of virion proteins of adenoviruses. Prog. Exp. Tumor Res. 18: 1–55.PubMedGoogle Scholar
  415. Philipson, L., Wall, R., Glickman, G., and Darnell, J. E. 1971. Addition of poly(A) to virus- specific RNA during adenovirus replication. Proc. Nat. Acad. Sci. USA. 68: 2806–2809.PubMedCrossRefGoogle Scholar
  416. Phillips, L. A., Park, J. J., and Hollis, V. W. 1974. Polyriboadenylate sequences at the 3’-termini of RNA obtained from mammalian leukemia and sarcoma viruses. Proc. Nat. Acad. Sci. USA. 71: 4366–4370.PubMedCrossRefGoogle Scholar
  417. Pinkerton, T. C., Paddock, G., and Abelson, J. 1972. Bacteriophage T4 tRNALe. Nature New Biol. 240: 88–90.PubMedCrossRefGoogle Scholar
  418. Pinkerton, T. C., Paddock, G., and Abelson, J. 1973. Nucleotide sequence determinations of bacteriophage T4 leucine tRNA. J. Biol. Chem. 248: 6348–6365.PubMedGoogle Scholar
  419. Pirrotta, V. 1975. Sequence of the OR operator of phage X. Nature. 254: 114–117.PubMedCrossRefGoogle Scholar
  420. Poglazov, B. F. 1970. Self-assembly of T-even bacteriophages in morphogenesis. FEBS Symp. 21: 181–193.Google Scholar
  421. Pons, M. W. 1967. Some characteristics of double-stranded influenza virus RNA. Arch. Ges. Virusforsch. 22: 203–209.PubMedCrossRefGoogle Scholar
  422. Pons, M. W. 1972. Studies on the replication of influenza virus RNA. Virology. 47: 823–832.PubMedCrossRefGoogle Scholar
  423. Pons, M. W., and Hirst, G. K. 1968. Polyacrylamide gel electrophoresis of influenza virus RNA. Virology. 34: 385–388.PubMedCrossRefGoogle Scholar
  424. Porter, A., Carey, N., and Fellner, P. 1974. Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature. 248: 675–678.PubMedCrossRefGoogle Scholar
  425. Prage, L. and Pettersson, U. 1971. Purification and properties of an arginine-rich core protein from adenovirus type 2 and type 3. Virology. 45: 364–373.PubMedCrossRefGoogle Scholar
  426. Prage, L., Pettersson, U., Höglund, S., Lonberg-Holm, K., and Philipson, L. 1970. Sequential degradation of the adenovirus type 2 virion. Virology. 42: 341–358.PubMedCrossRefGoogle Scholar
  427. Prevec, L., and Graham, A. F. 1966. Reovirus-specific polyribosomes in infected L-cells. Science. 154: 522–524.PubMedGoogle Scholar
  428. Pribnow, D. 1975. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Nat. Acad. Sci. USA. 72: 784–788.PubMedCrossRefGoogle Scholar
  429. Price, R., and Penman, S. 1972. A distinct RNA polymerase activity synthesizing, and 4 S RNA in nuclei from adenovirus 2-infected HeLa cells. J. Virol. 9: 621–626.PubMedGoogle Scholar
  430. Pricer, W. E., and Weissbach, A. 1967: The synthesis of DNA exonucleases associated with the formation of temperate inducible bacteriophages. J. Biol. Chem. 242: 1701–1704.PubMedGoogle Scholar
  431. Pritchett, R. F., Hayward, S. D., and Kieff, E. D. 1975. DNA of Epstein-Barr virus. J. Virol. 15: 556–569.PubMedGoogle Scholar
  432. Putnam, F. W., Miller, D., Palm, L., and Evans, E. A. 1952. Biochemical studies of virus reproduction. J. Biol. Chem. 199: 177–191.Google Scholar
  433. Radding, C. M., Szpirer, J., and Thomas, R. 1967. The structural gene for X exonuclease. Proc. Nat. Acad. Sci. USA. 57: 277–283.PubMedCrossRefGoogle Scholar
  434. Radloff, R. J., and Kaesberg, P. 1973. Electrophoretic and other properties of bacteriophage Qß. J. Virol. 11: 116–125.PubMedGoogle Scholar
  435. Randerath, E., Chia, L.-L.S.Y., Morris, H. P., and Randerath, K. 1974. Transfer RNA base composition studies in Morris hepatomas and rat liver. Cancer Res. 34: 643–653.PubMedGoogle Scholar
  436. Ray, D. S., Bscheider, H. P., and Hofschneider, P. H. 1966. Replication of the single-stranded DNA of the male-specific bacteriophage M13. J. Mol. Biol. 21: 473–484.PubMedCrossRefGoogle Scholar
  437. Ray, D. S., and Schekman, R. W. 1969. Replication of bacteriophage M13. III. Identification of the intracellular single-stranded DNA. J. Mol. Biol. 43: 645–649.PubMedCrossRefGoogle Scholar
  438. Ray, P. N., and Pearson, M. L. 1974. Evidence for post-transcriptional control of the morphogenetic gene of bacteriophage X. J. Mol. Biol. 85: 163–175.PubMedCrossRefGoogle Scholar
  439. Ray, P. N., and Pearson, M. L. 1975. Functional inactivation of bacteriophage X morphogenetic gene mRNA. Nature. 253: 647–650.PubMedCrossRefGoogle Scholar
  440. Razin, A., Sadat, J. W., and Sinsheimer, R. L. 1973. In vivo. methylation of replicating bacteriophage 0174 DNA. J. Mol. Biol. 78: 417–425.Google Scholar
  441. Rensing, U. F. E., and August, J. T. 1969. The 3’-terminus and the replication of phage RNA. Nature. 224: 853–856.PubMedCrossRefGoogle Scholar
  442. Rensing, U. F. E., and Schoenmakers, J. G. G., 1973. A sequence of 50 nucleotides from coli-phage R17 RNA. Eur. J. Biochem. 33: 8–18.PubMedCrossRefGoogle Scholar
  443. Rho, H. M., Grandgenett, D. P., and Green, M. 1975. Sequence relatedness between the subunits of AMV reverse transcriptase. J. Biol. Chem. 250: 5278–5280.PubMedGoogle Scholar
  444. Ríman, J., and Beaudreau, G. S. 1970. Viral DNA-dependent DNA polymerase and the properties of thymidine labelled material in virions of an oncogenic RNA virus. Nature. 228: 427430.Google Scholar
  445. RIman, J., Korb, J., and Michlovâ, A. 1972. Specific ribosomes, components of an oncogenic RNA virus. FEBS Symp. 22: 99–114.Google Scholar
  446. Ritchie, D. A., Thomas, C. A., MacHattie, L. A., and Wensink, P. C. 1967. Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules. J. Mol. Biol. 23: 365–376.PubMedCrossRefGoogle Scholar
  447. Riva, S., and Geiduschek, E. P. 1969. Replication-coupled transcription in T4 development. Fed. Proc. 28: 660.Google Scholar
  448. Robberson, D. L., Crawford, L. V., Syrett, C., and James, A. W. 1975. Unidirectional replication of a minority of polyoma virus and SV40 DNAs. J. Gen. Virol. 26: 59–69.PubMedCrossRefGoogle Scholar
  449. Roberts, J. W. 1969. Promoter mutation in vitro. Nature. 223: 480–482.PubMedCrossRefGoogle Scholar
  450. Robertson, H. D. 1975. Isolation of specific ribosome binding sites from single-stranded DNA. J. Mol. Biol. 92: 363–375.PubMedCrossRefGoogle Scholar
  451. Roizman, B. and Roane, P. R. 1964. The multiplication of herpes simplex virus. Virology., 22: 262–269.PubMedCrossRefGoogle Scholar
  452. Roizman, B., and Spear, P. G. 1971. Herpesviruses: Current information on the composition and structure. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 135–168.Google Scholar
  453. Rosenkranz, H. S. 1973. RNA in coliphage T5. Nature. 242: 327–329.PubMedCrossRefGoogle Scholar
  454. Ross, J., Tronick, S. R., and Scolnick, E. M. 1972. Poly(A) rich RNA in the 70 S RNA of murine leukemia-sarcoma virus. Virology. 49: 230–235.PubMedCrossRefGoogle Scholar
  455. Rott, R., Drzeniek, R., and Frank, H. 1970. On the structure of influenza viruses. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 75–85.Google Scholar
  456. Rouvière, J., Lederberg, S., Granboulan, P., and Gros, F. 1969. Structural sites of RNA synthesis in E. coli. J. Mol. Biol. 46: 413–430.Google Scholar
  457. Roy, P., Clark, H. F., Madore, H. P., and Bishop, D. H. L. 1975. RNA polymerase associated with virions of pike fry rhabdovirus. J. Virol. 15: 338–347.PubMedGoogle Scholar
  458. Roy-Burman, P. 1971. DNA polymerase associated with feline leukemia and sarcoma viruses: properties of the enzyme and its product. Int. J. Cancer. 7: 409–415.PubMedCrossRefGoogle Scholar
  459. Roy-Burman, Pal, B. K., Gardner, M. B., and McAllister, R. M. 1974. Structural polypeptides of primate derived type C RNA tumor viruses. Biochem. Biophys. Res. Comm. 56: 543–551.Google Scholar
  460. Rubenstein, I. 1968. Heat-stable mutants of T5 phage. Virology. 36: 356–376.PubMedCrossRefGoogle Scholar
  461. Rubin, H., and Colby, C. 1968. Early release of growth inhibition in cells infected with Rous sarcoma cells. Proc. Nat. Acad. Sci. USA. 60: 482–488.PubMedCrossRefGoogle Scholar
  462. Rueckert, R. R., 1971. Picornaviral architecture. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 256–306.Google Scholar
  463. Rymo, L., Parsons, J. T., Coffin, J. M., and Weissmann, C. 1974. In vitro. synthesis of Rous sarcoma virus-specific RNA is catalyzed by a DNA-dependent RNA polymerase. Proc. Nat. Acad. Sci. USA. 71: 2782–2786.Google Scholar
  464. Saigo, K., and Uchida, H. 1974. Connection of the right-hand terminus of DNA to the proximal end of the tail in bacteriophage X. Virology. 61: 524–536.PubMedCrossRefGoogle Scholar
  465. Sakurai, T., Mikaye, T., Shiba, T., and Watanabe, I. 1968. Isolation of a possible fourth group of RNA phage. Jpn. J. Microb. 12: 544–546.Google Scholar
  466. Sambrook, J., Sugden, B., Keller, W., and Sharp, P. A. 1973. Transcription of SV40. Proc. Nat. Acad. Sci. USA. 70: 3711–3715.PubMedCrossRefGoogle Scholar
  467. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., Slocombe, P. M., and Smith, M. 1977. Nucleotide sequence of bacteriophage X174 DNA. Nature. 265: 687–695.PubMedCrossRefGoogle Scholar
  468. Sano, H., and Feix, G. 1974. RNA ligase activity of DNA ligase from phage T4 infected E. coli. Biochemistry. 13: 5110–5115.Google Scholar
  469. Sarkar, N. H., Nowinski, R. C., and Moore, D. H. 1971. Helical nucleocapsid structure of the oncogenic RNA viruses (Oncornaviruses). J. Virol. 8: 564–572.PubMedGoogle Scholar
  470. Sarkar, N. H., Sarkar, S., and Kozloff, L. M. 1964. Tail components of T2 bacteriophage. Biochemistry. 3: 511–516.PubMedCrossRefGoogle Scholar
  471. Sarov, I., and Becker, Y. 1967. Studies on vaccinia virus DNA. Virology. 33: 369–375.PubMedCrossRefGoogle Scholar
  472. Sato, T., Friend, C., and de Harven, E. 1971. Ultrastructural changes in Friend erythroleukemia cells treated with dimethyl sulfoxide. Cancer Res. 31: 1402–1417.PubMedGoogle Scholar
  473. Sauer, G. 1971. Apparent differences in transcriptional control in cells productively infected and transformed by SV40. Nature New Biol. 231: 135–138.PubMedCrossRefGoogle Scholar
  474. Savage, T., Roizman, B., and Heine, J. W. 1972. The proteins specified by herpes simplex virus. J. Gen. Virol. 17: 31–48.PubMedCrossRefGoogle Scholar
  475. Schäfer, W., Lange, J., Bolognesi, D. P., de Noronha, F., Post, J., and Richard, C. 1971. Isolation and characterization of two group-specific antigens from feline leukemia virus. Virology. 44: 73–82.PubMedCrossRefGoogle Scholar
  476. Schäfer, W., Lange, J., Fischinger, P. J., Frank, H., Bolognesi, D. P., and Pister, L. 1972. Properties of mouse leukemia viruses. Virology. 47: 210–228.PubMedCrossRefGoogle Scholar
  477. Scherberg, N. H., and Weiss, S. B. 1970. Detection of bacteriophage T4- and T5-coded tRNAs. Proc. Nat. Acad. Sci. USA. 67: 1164–1171.PubMedCrossRefGoogle Scholar
  478. Scherberg, N. H., and Weiss, S. B. 1972. T4 tRNAs: Codon recognition and translational properties. Proc. Nat. Acad. Sci. USA. 69: 1114–1118.PubMedCrossRefGoogle Scholar
  479. Schiff, N., Miller, M. J., and Wahba, A. J. 1974. Purification and properties of chain IF-3 from T4-infected and uninfected E. coli. MRE600. J. Biol. Chem. 249: 3797–3802.PubMedGoogle Scholar
  480. Schochetman, G., and Schlom, J. 1975. RNA subunit structure of Mason-Pfizer monkey virus. J. Virol. 15: 423–427.PubMedGoogle Scholar
  481. Schröder, C. H., Erben, E., and Kaerner, H.-C. 1973. A rolling circle model of the in vivo. replication of bacteriophage ¢X174 replicative form DNA. J. Mol. Biol. 79:599–613.PubMedCrossRefGoogle Scholar
  482. Schröder, C. H., and Kaerner, H. C. 1972. Replication of bacteriophage 4X174 replicative form DNA in vivo. J. Mol. Biol. 71: 351–362.Google Scholar
  483. Schuster, R. C., and Weissbach, A. 1968. Evidence for a new endonuclease synthesized by X bacteriophage. J. Virol. 2: 1096–1101.Google Scholar
  484. Seal, G., and Loeb, L. A. 1976. Enzyme activities associated with DNA polymerases from RNA tumor viruses. J. Biol. Chem. 251: 975–981.PubMedGoogle Scholar
  485. Sebring, E. D., and Salzman, N. P. 1967. Metabolic properties of early and late vaccinia virus mRNA. J. Virol. 1: 550–558.PubMedGoogle Scholar
  486. Seidman, J. G., Comer, M. M., and McClain, W. H. 1974. Nucleotide alterations in the bacteriophage T4 glutamine tRNA that affect ochre suppressor activity. J. Mol. Biol. 90: 677–689.PubMedCrossRefGoogle Scholar
  487. Sela, I. 1972. Tobacco enzyme-cleaved fragments of TMV-RNA specifically accepting serine and methionine. Virology. 49: 90–94.PubMedCrossRefGoogle Scholar
  488. Sela, I., and Antignus, Y. 1971. Spectrophotometric determination of nucleic acids and nucleoproteins at the far-UV region. Anal. Biochem. 43: 217–226.PubMedCrossRefGoogle Scholar
  489. Semai, J., and Kummert, J. 1971. Sequential synthesis of double-stranded and single-stranded RNA by cell-free extracts of barley leaves infected with brome mosaic virus. J. Gen. Virol. 10: 79–89.CrossRefGoogle Scholar
  490. Serwer, P. 1976. Internal proteins of bacteriophage T7. J. Mol. Biol. 107: 271–291.PubMedCrossRefGoogle Scholar
  491. Sgaramella, V., and H. G. Khorana. 1972. A further study of the T4 ligase-catalyzed joining of DNA at base-paired ends. J. Mol. Biol., 72: 493–502.CrossRefGoogle Scholar
  492. Sharma, O. K., Mays, L. L., and Borek, E. 1975. Functional differences in protein synthesis between rat liver tRNA and tRNA from Novikoff hepatoma. Biochemistry. 14: 509–514.PubMedCrossRefGoogle Scholar
  493. Shatkin, A. J., Sipe, J. D., and Loh, P. 1968. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J. Virol. 2: 986–991.PubMedGoogle Scholar
  494. Sheldon, R., and Kates, J. 1974. Mechanism of poly(A) synthesis by vaccinia virus. J. Virol. 14: 214–224.PubMedGoogle Scholar
  495. Shiba, T., and Miyake, T. 1975. New type of infectious complex of E. coli. RNA phage. Nature. 254: 157–158.PubMedCrossRefGoogle Scholar
  496. Shih, D. S., and Kaesberg, P. 1973. Translation of brome mosaic viral RNA in a cell-free system derived from wheat embryo. Proc. Nat. Acad. Sci. USA. 70: 1799–1803.PubMedCrossRefGoogle Scholar
  497. Shih, D. S., Kaesberg, P., and Hall, T. C. 1974. Messenger and aminoacylation functions of brome mosaic virus RNA after chemical modification of the 3-terminus. Nature. 249: 353–355.PubMedCrossRefGoogle Scholar
  498. Shildkraut, C. L., Wierzchowski, K. L., Marmur, J., Green, D. M., and Doty, P. 1962. A study of the base sequence homology among the T series of bacteriophages. Virology. 18: 43–55.CrossRefGoogle Scholar
  499. Showe, M. K., and Kellenberger, E. 1975. Control mechanisms in virus assembly. In: Burke, D. C., and W. C. Russel, eds., Control Processes in Virus Multiplication., Cambridge, Cambridge University Press, p. 407–438.Google Scholar
  500. Siegel, R. B., and Summers, W. C. 1970. The process of infection with coliphage T7. J. Mol. Biol. 49: 115–123.PubMedCrossRefGoogle Scholar
  501. Siegert, W., Bauer, G., and Hofschneider, P. H. 1973. Direct evidence for messenger activity of influenza virion RNA. Proc. Nat. Acad. Sci. USA. 70: 2960–2963.PubMedCrossRefGoogle Scholar
  502. Siegert, W., and Hofschneider, P. H. 1973. A direct approach to study the messenger properties of influenza-virion RNA. FEBS Lett. 34: 145–146.PubMedCrossRefGoogle Scholar
  503. Simon, L. D., and Anderson, T. F. 1967. The infection of E. coli. by T2 bacteriophages as seen in the electron microscope. Virology. 32: 298–305.PubMedCrossRefGoogle Scholar
  504. Simon, M. N., and Studier, F. W. 1973. Physical mapping of the early region of bacteriophage T7 DNA. J. Mol. Biol. 79: 249–265.PubMedCrossRefGoogle Scholar
  505. Simpson, R. W., and Hirst, G. K. 1968. Temperature-sensitive mutants of influenza A virus. Virology. 35: 41–49.PubMedCrossRefGoogle Scholar
  506. Sinsheimer, R. L. 1968. Bacteriophage 4X174 and related viruses. Progr. Nucl. Acid Res. Mol. Biol. 8: 115–169.CrossRefGoogle Scholar
  507. Sinsheimer, R. L., Hutchison, C. A., and Linguist, B. H. 1967. Bacteriophage 4)X174: Viral functions. In: Colter, J. S., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 175–192.Google Scholar
  508. Sinsheimer, R. L., Knippers, R., and Komano, T. 1968. Stages in the replication of bacteriophage 4,X174 DNA in vivo. Cold Spring Harbor Symp. Quant. Biol. 33: 443–447.CrossRefGoogle Scholar
  509. Sirover, M. A., and Loeb, L. A. 1974. Infidelity of DNA synthesis: A general property of RNA tumor viruses. Biochem. Biophys. Res. Comm. 61: 360–364.CrossRefGoogle Scholar
  510. Skalka, A. 1969. Nucleotide distribution and functional orientation in the DNA of phage d80. J. Virol. 3: 150–156.PubMedGoogle Scholar
  511. Skalka, A., Burgi, E., and Hershey, A. D. 1968. Segmental distribution of nucleotides in the DNA of bacteriophage X. J. Mol. Biol. 34: 1–16.PubMedCrossRefGoogle Scholar
  512. Skare, J., Niles, E. G., and Summer, W. C. 1974. Localization of the leftmost initiation site for T7 late transcription in vivo. and in vitro. Biochemistry. 13: 3912–3916.Google Scholar
  513. Skogerson, L., Roufa, D., and Leder, P. 1971. Characterization of the initial peptides of Qß RNA polymerase and control of its synthesis. Proc. Nat. Acad. Sci. USA. 68: 276–279.PubMedCrossRefGoogle Scholar
  514. Smith, G. R., and Hedgpeth, J. 1975. Oligo(A) not coded by DNA generating 3’-terminal heterogeneity in a X phage RNA. J. Biol. Chem. 250: 4818–4821.PubMedGoogle Scholar
  515. Smith, K. O., Gehle, W. D., and Trousdale, M. D. 1965. Architecture of the adenovirus capsid. J. Bact. 90: 254–261.PubMedCrossRefGoogle Scholar
  516. Smith, M., Brown, N. L., Air, G. M., Barrell, B. G., Coulson, A. R., Hutchison, C. A., and Sanger, F. 1977. DNA sequence at the C termini of the overlapping genes A and B in bacteriophage 4X174. Nature. 265: 702–705.PubMedCrossRefGoogle Scholar
  517. Smith, M., and Skalka, A. 1966. Some properties of DNA from phage-infected bacteria. J. Gen. Physiol. 49: 127–142.PubMedCrossRefGoogle Scholar
  518. Smith, R. E., Zweerink, H. J., and Joklik, W. K. 1969. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 39: 791–810.PubMedCrossRefGoogle Scholar
  519. Snyder, L., and Geiduschek, E. P. 1968. In vitro synthesis of T4 late mRNA. Proc. Nat. Acad. Sci. USA. 59: 459–466.PubMedCrossRefGoogle Scholar
  520. Sokol, F., Clark, H. F., Wiktor, T. J., McFalls, M. L., Bishop, D. H. L., and Obijeski, J. F. 1974. Structural phosphoproteins associated with ten rhabdoviruses. J. Gen. Virol. 24: 433–455.PubMedCrossRefGoogle Scholar
  521. Sokol, F., and Koprowski, H. 1975. Structure-function relationships and mode of replication of animal rhabdoviruses. Proc. Nat. Acad. Sci. USA. 72: 933–936.PubMedCrossRefGoogle Scholar
  522. Sonnabend, J. A., Martin, E. M., and Mécs, E. 1967. Viral specific RNAs in infected cells. Nature. 213: 365–367.PubMedCrossRefGoogle Scholar
  523. Spear, P. G., and Roizman, B. 1970. The proteins specified by herpes simplex virus. IV. The site of glycosylation and accumulation of viral membrane proteins. Proc. Nat. Acad. Sci. USA. 66: 730–737.PubMedCrossRefGoogle Scholar
  524. Spear, P. G., and Roizman, B. 1972. The proteins specified by herpes simplex virus. V. Purification of structural proteins of the herpesvirion. J. Virol. 9: 143–159.PubMedGoogle Scholar
  525. Spiegelman, G. B., and H. R. Whiteley. 1974a. Purification of RNA polymerase from SP82-infected B. subtilis. J. Biol. Chem., 249: 1476–1482.Google Scholar
  526. Spiegelman, G. B., and Whiteley, H. R. 1974b. In vivo. and in vitro. transcription by ribonucleic acid polymerase from SP82-infected B. subtilis. J. Biol. Chem. 249: 1483–1489.Google Scholar
  527. Spiegelman, S., Burny, A., Das, M. R., Keyder, J., Schlom, J., Travnicek, M., and Watson, K. 1970. Synthetic DNA-RNA hybrids and RNA-RNA duplexes as templates for the polymerases of oncogenic RNA viruses. Nature. 228: 430–432.PubMedCrossRefGoogle Scholar
  528. Spiegelman, S., Pace, N. R., Mills, D. R., Levisohn, R., Eikhorn, T. S., Taylor, M. M., Peterson, R. L., and Bishop, D. H. L. 1968. The mechanism of RNA replication. Cold Spring Harbor Symp. Quant. Biol. 33: 101–124.PubMedCrossRefGoogle Scholar
  529. Spiegelman, S., Watson, K. F., and Kacian, D. L. 1971. Synthesis of DNA complements of natural RNAs: A general approach. Proc. Nat. Acad. Sci. USA. 68: 2843–2845.PubMedCrossRefGoogle Scholar
  530. Spremulli, L. L., Haralson, M. A., and Ravel, J. M. 1974. Effect of T4 infection on initiation of protein synthesis and messenger specificity of IF-3. Arch. Biochem. Biophys. 165: 581–587.PubMedCrossRefGoogle Scholar
  531. Springgate, C. F., Battula, N., and Loeb, L. A. 1973. Infidelity of DNA synthesis by reverse transcriptase. Biochem. Biophys. Res. Comm. 52: 400–406.CrossRefGoogle Scholar
  532. Stahl, F. W., Murray, N. E., Nakata, A., and Crasemann, J. M. 1966. Intergenic cis-trans. position effects in bacteriophage T4. Genetics. 54: 223–232.PubMedGoogle Scholar
  533. Stahl, S., Paddock, G. and Abelson, J. 1973. T4 bacteriophage tRNAGIY. Biochem. Biophys. Res. Comm. 54: 567–569.PubMedCrossRefGoogle Scholar
  534. Staudenbauer, W. L. 1974. Involvement of DNA polymerases I and III in the replication of bacteriophage M-13. Eur. J. Biochem. 49: 249–256.PubMedCrossRefGoogle Scholar
  535. Stavis, R. L., and August, J. T. 1970. The biochemistry of RNA bacteriophage replication. Ann. Rev. Biochem. 39: 527–560.PubMedCrossRefGoogle Scholar
  536. Steitz, J. A. 1968. Identification of the A protein from bacteriophage R17. J. Mol. Biol. 33: 923–936.PubMedCrossRefGoogle Scholar
  537. Steitz, J. A. 1970. The reconstitution of RNA bacteriophages. FEBS Symp. 21: 203–212.Google Scholar
  538. Stone, A. B. 1970. General inhibition of E. coli. macromolecular synthesis by high multiplicities of bacteriophage ¢X174. J. Mol. Biol. 47: 215–229.PubMedCrossRefGoogle Scholar
  539. Storer, G. B., Shepherd, M. G., and Kalmakoff, J. 1973. Enzyme activities associated with cytoplasmic polyhedrosis virus from Bombyx mori. Intervirology. 2: 87–94.Google Scholar
  540. Stott, E. J., and Killington, R. A. 1972. Rhinoviruses. Ann. Rev. Microbiol. 26: 503–524.CrossRefGoogle Scholar
  541. Strand, M., and August, J. T. 1976. Structural proteins of RNA tumor viruses. J. Biol. Chem. 251: 559–564.PubMedGoogle Scholar
  542. Strauss, E. G., and Kaesberg, P. 1970. Acrylamide gel electrophoresis of bacteriophage Qß. Virology. 42: 437–452.PubMedCrossRefGoogle Scholar
  543. Studier, F. W. 1969. The genetics and physiology of bacteriophage T7. Virology., 39: 562–574.PubMedCrossRefGoogle Scholar
  544. Studier, F. W. 1972. Bacteriophage T7. Science. 176.; 367–376.PubMedCrossRefGoogle Scholar
  545. Studier, F. W. 1973. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. Mol. Biol., 79: 237–248.PubMedCrossRefGoogle Scholar
  546. Studier, F. W., and Hausmann, R. 1969. Integration of two sets of T7 mutants. Virology., 39: 587–588.PubMedCrossRefGoogle Scholar
  547. Studier, F. W., and Maizel, J. V. 1969. T7-directed protein synthesis. Virology. 39: 575–586.PubMedCrossRefGoogle Scholar
  548. Stussi, C., Guilley, H., Lebeurier, G., and Hirth, L. 1972. Some recent advances in the comprehension of in vitro. morphogenesis of TMV. Biochimie. 54: 287–296.PubMedCrossRefGoogle Scholar
  549. Subak-Sharpe, H. 1968. Virus-induced changes in translation mechanisms. In: The Society for General Microbiology, The Molecular Biology of Viruses., Cambridge, Cambridge University Press, p. 47–66.Google Scholar
  550. Summers, D. F., Roumiantzeff, M., and Maizel, J. V. 1971. The translation and processing of poliovirus proteins. In: Wolstenholme, G. E. W., and M. O’Connor, eds., Strategy of the Viral Genome., Edinburgh, Churchill Livingstone, p. 111–124.Google Scholar
  551. Summers, W. C., and Siegel, R. B. 1970. Transcription of late phage RNA by T7 RNA polymerase. Nature. 228: 1160–1162.PubMedCrossRefGoogle Scholar
  552. Swetley, P., and Watanabe, Y. 1974. Cell cycle dependent transcription of SV40 DNA in SV40transformed cells. Biochemistry. 13: 4122–4126.CrossRefGoogle Scholar
  553. Syvanen, M. 1975. Processing of bacteriophage X DNA during its assembly into heads. J. Mol. Biol. 91: 165–174.PubMedCrossRefGoogle Scholar
  554. Szabo, C., Dharmgrongartama, B., and Moyer, R. W. 1975. The regulation of transcription in bacteriophage T5-infected E. coli. Biochemistry. 14: 989–997.Google Scholar
  555. Szabo, C., and Moyer, L. W. 1975. Purification and properties of a bacteriophage T5-modified form of E. coli. RNA polymerase. J. Virol. 15: 1042–1046.PubMedGoogle Scholar
  556. Szekely, M., and Loviny, T. 1975.5’-terminal phosphorylation and secondary structure of double-stranded RNA from a fungal virus. J. Mol. Biol. 93: 79–87.Google Scholar
  557. Tai, H. T., Smith, C. A., Sharp, P. A., and Vinograd, J. 1972. Sequence heterogeneity in closed SV40 DNA. J. Virol. 9: 317–325.PubMedGoogle Scholar
  558. Takahashi, I., and Marmur, J. 1963. Replacement of thymodylic acid by deoxyuridylic acid in the DNA of a transducing phage for B. subtilis. Nature. 197: 794–795.CrossRefGoogle Scholar
  559. Takahashi, S. 1974. The rolling-circle replicative structure of a bacteriophage X DNA. Biochem. Biophys. Res. Comm. 61: 607–613.CrossRefGoogle Scholar
  560. Takemoto, K. K., Mattern, C. F. T., and Murakami, W. T. 1971. The papovavirus group. In: Maramorosch, K., and E. Kurstak, eds., Comparative Virology., New York, Academic Press, p. 81–104.Google Scholar
  561. Taketo, A. 1973. Sensitivity of E. coli. to viral nucleic acid. Mol. Gen. Genet. 122: 15–22.PubMedCrossRefGoogle Scholar
  562. Tal, J., Craig, E. A., and Raskas, H. J. 1975. Sequence relationships between adenovirus 2 early RNA and viral RNA size classes synthesized at 18 hours after infection. J. Virol. 15: 137–144.PubMedGoogle Scholar
  563. Tannock, G. A., Gibbs, A. J., and Cooper, P. D. 1970. A re-examination of the molecular weight of poliovirus RNA. Biochem. Biophys. Res. Comm. 38: 298–304.PubMedCrossRefGoogle Scholar
  564. Tanyashin, V. I. 1968. Use of phenol fractionation for the isolation of the replicative form of DNA T5 phage. Biokhimiya. 33: 713–720.Google Scholar
  565. Taube, S. E., McGuire, P. M., and Hodge, L. D. 1974. RNA synthesis specific for an integrated adenovirus genome during the cell cycle. Nature. 250: 416–418.PubMedCrossRefGoogle Scholar
  566. Temin, H. M. 1964. Nature of the provirus of Rous sarcoma. Nat. Cancer Inst. Monogr., 17: 557–570.Google Scholar
  567. Temin, H. M. 1967. Studies on carcinogenesis by avian sarcoma viruses. J. Cell Physiol. 69: 53–64.CrossRefGoogle Scholar
  568. Temin, H. M., and Baltimore, D. 1972. RNA-directed DNA synthesis and RNA tumor viruses. Adv. Virus Res. 17: 129–186.PubMedCrossRefGoogle Scholar
  569. Teramoto, Y. A., Puentes, M. J., Young, L. J. T., and Cardiff, R. D. 1973. Structure of the mouse mammary tumor virus: Polypeptides and glycoproteins. J. Virol. 13: 411–418.Google Scholar
  570. Thach, S. S., Dobbertin, D., Lawrence, C., Golini, F., and Thach, R. E. 1974. Structure of replication complexes of encephalomyocarditis virus. Proc. Nat. Acad. Sci. USA. 71: 2549–2553.PubMedCrossRefGoogle Scholar
  571. Thermes, C., Daegelen, P., de Franciscis, V., and Bordy, E. 1976. In vitro. system for induction of delayed early RNA of bacteriophage T4. Proc. Nat. Acad. Sci. USA. 73: 2569–2573.Google Scholar
  572. Thomas, C. A., and MacHattie, L. A. 1964. Circular T2 DNA molecules. Proc. Nat. Acad. Sci. USA. 52: 1297–1301.PubMedCrossRefGoogle Scholar
  573. Thomas, C. A., and Rubenstein, I. 1964. The arrangements of nucleotide sequences in T2 and T5 bacteriophage DNA molecules. Biophys. J. 4: 93–106.PubMedCrossRefGoogle Scholar
  574. Thouvenel, J. C., Guilley, H., Stussi, C., and Hirth, L. 1971. Evidence for polar reconstitution of TMV. FEBS Lett. 16: 204–206.PubMedCrossRefGoogle Scholar
  575. Tikhonenko, A. S. 1961. Comparative study of the morphology of phage particles by means of shadowing and negatives staining in phosphotungstic acid. Biofizika. 6: 410–413.PubMedGoogle Scholar
  576. Tikhonenko, A. S. 1970. Ultrastructure of Bacterial Viruses. Trans. from Russian by B. Haigh. New York, Plenum Press.Google Scholar
  577. Tikhonenko, A. S., and Zavarzina, N. B. 1966. Morphology of a lytic agent of Chlorella pyrenoidosa. Mikrobiologiya. 35: 850–853.Google Scholar
  578. Tobey, R. A. 1964. Mengo virus replication. II. Isolation of polyribosomes containing the infecting viral genome. Virology. 23: 23–29.PubMedCrossRefGoogle Scholar
  579. Tomich, P. K., Chiu, C. S., Wovcha, M. G., and Greenberg, C. R. 1974. Evidence for a complex regulating the in vivo. activities of early enzymes induced by bacteriophage T4. J. Biol. Chem. 249: 7613–7622.PubMedGoogle Scholar
  580. Tomich, P. K., and Greenberg, G. R. 1973. On the effect of a dCMP hydroxymethylase mutant of bacteriophage T4 showing enzyme activity in extracts. Biochem. Biophys. Res. Comm. 50: 1032–1038.PubMedCrossRefGoogle Scholar
  581. Tomizawa, J., and Ogawa, T. 1968. Replication of phage X DNA. Cold Spring Harbor Symp. Quant. Biol. 33: 525–532.CrossRefGoogle Scholar
  582. Tooze, J., ed. 1973. The Molecular Biology of Tumour Viruses., Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.Google Scholar
  583. Trdvniek, M. 1969. Some properties of amino-acceptor RNA isolated from avian tumour virus bai strain A (avian myeloblastosis). Biochim. Biophys. Acta. 182: 427–439.Google Scholar
  584. Trâvnícek, M., and Ríman, J. 1973. Occurrence of aminoacyl-tRNA synthetase in an RNA oncogenic virus. Nature New Biol. 241: 60–62.PubMedGoogle Scholar
  585. Tronick, S. R., Scolnick, E. M., and Parks, W. P. 1972. Reversible inactivation of the DNA polymerase of Rauscher leukemia virus. J. Virol. 50: 885–888.Google Scholar
  586. Tsuruo, T., Hirayama, K., and Ukita, T. 1975. Three DNA polymerases of rat ascites hepatoma cells: Properties of the enzymes and effect of RNA synthesis on the reactions. Biochim. Biophys. Acta. 383: 274–281.PubMedGoogle Scholar
  587. Tsuruo, T., Satoh, H., and Ukita, T. 1972a. DNA polymerases of ascites hepatoma cells. I. Purification and properties of a DNA polymerase from soluble fraction. Biochem. Biophys. Res. Comm. 48: 769–775.PubMedCrossRefGoogle Scholar
  588. Tsuruo, T., Tornita, Y., Satoh, H., and Ukita, T. 1972b. DNA polymerases of ascites hepatoma cells. II. Purification and properties of DNA polymerases from nuclear membrane-chromatin fraction. Biochem. Biophys. Res. Comm. 48: 776–782.PubMedCrossRefGoogle Scholar
  589. Tsuruo, T., and Ukita, T. 1974. Purification and further characterization of three DNA polymerases of rat ascites hepatoma cells. Biochim. Biophys. Acta. 353: 146–159.PubMedGoogle Scholar
  590. Urushibara, T., Furiuchi, Y., Nishimura, C., and Miura, K.-I. 1975. A modified structure at the 5’-terminus of mRNA of vaccinia virus. FEBS Lett. 49: 385–389.PubMedCrossRefGoogle Scholar
  591. Valentine, R. C., Engelhardt, D. L., and Zinder, N. D. 1964. Host-dependent mutants of the bacteriophage f2. Virology. 23: 159–163.PubMedCrossRefGoogle Scholar
  592. Valentine, R. C., and Pereira, H. G. 1965. Antigens and structure of the adenovirus. J. Mol. Biol. 13: 13–20.PubMedCrossRefGoogle Scholar
  593. Valentine, R. C., and Wedel, H. 1965. The extracellular stages of RNA bacteriophage infection. Biochem. Biophys. Res. Comm. 21: 106–112.PubMedCrossRefGoogle Scholar
  594. Vandekerckhove, J., and Van Montagu, M. 1974. Sequence analysis of fluorescamine-stained peptides and proteins purified on a nanomole scale. Applications to proteins of bacteriophage MS2. Eur. J. Biochem. 44: 279–288.PubMedCrossRefGoogle Scholar
  595. Vandenberghe, A., Min Jou, W., and Fiers, W. 1975. 3’-terminal nucleotide sequence (n =. 361) of bacteriophage MS2 RNA. Proc. Nat. Acad. Sci. USA. 72: 2559–2561.Google Scholar
  596. van der Eb, A. J., van Kesteren, L. W., and van Bruggen, E. F. J. 1969. Structural properties of adenovirus DNAs. Biochim. Biophys. Acta. 182: 530–541.PubMedGoogle Scholar
  597. Van der Marel, P., Tasseron-de Jong, J., and Bosch, L. 1975. The proteins associated with mRNA from uninfected and adenovirus type 5-infected KB cells. FEBS Lett. 51: 330–334.PubMedCrossRefGoogle Scholar
  598. van Mansfeld, A. D. M., Vereijken, J. M., and Jansz, H. S. 1976. The nucleotide sequence of a DNA fragment, 71 base pairs in length, near the origin of DNA replication of bacteriophage 4iX174. Nucl. Acids Res. 3: 2827–2844.PubMedGoogle Scholar
  599. Varshaysky, A. J., Bakayev, V. V., Chumackov, P. M., and Georgiev, G. P. 1976. Minichromosome of SV40-presence of histone H1. Nucl. Acids Res. 3: 2101–2113.Google Scholar
  600. Vasquez, C., Granboulan, N., and Franklin, R. M. 1966. Structure of the RNA bacteriophage R17. J. Bact. 92: 1779–1786.PubMedGoogle Scholar
  601. Verma, I. M., Meuth, N. L., Bromfield, E., Manly, K., and Baltimore, D. 1971. Covalently linked RNA-DNA molecule as initial product of RNA tumour virus DNA polymerase Nature New Biol. 233: 131–134.PubMedGoogle Scholar
  602. Vigier, P. 1974. Replication and integration of the genome of oncornaviruses. In: Kurstak, E. and K. Maramorosch, eds., Viruses, Evolution, and Cancer., New York, Academic Press, p. 209–233.Google Scholar
  603. Wagner, R. R., and Schnaitman, C. A. 1970. Proteins of vesicular stomatitis virus. In: Barry, R. D., and B. W. J. Mahy, eds., The Biology of Large RNA Viruses., New York, Academic Press, p. 655–672.Google Scholar
  604. Wagner, R. R., Schnaitman, T., and Snyder, R. M. 1969a. Structural proteins of vesicular stoma-titis viruses. J. Virol. 3: 395–403.PubMedGoogle Scholar
  605. Wagner, R. R., Schnaitman, T., Snyder, R. M., and Schnaitman, C. A. 1969b. Protein composition of the structural components of vesicular stomatitis virus. J. Virol. 3: 611–618.PubMedGoogle Scholar
  606. Wagner, R. R., Snyder, R. M., and Yamazaki, S. 1970. Proteins of vesicular stomatitis virus: Kinetics and cellular sites of synthesis. J. Virol. 5: 548–558.PubMedGoogle Scholar
  607. Wahl, R., and Kozloff, L. M. 1962. The nucleoside triphosphate content of various bacteriophages. J. Biol. Chem. 237: 1953–1960.PubMedGoogle Scholar
  608. Wainfan, E. 1968. Development of tRNA methylating enzymes with altered properties during heat induction of E. coli. K12 (X C1857). Virology. 35: 282–288.PubMedCrossRefGoogle Scholar
  609. Walls, P. A., and Pootjes, C. F. 1975. Host-phage interaction in Agrobacterium tumefaciens. J. Virol. 15: 372–378.Google Scholar
  610. Walsh, M. L., and Cohen, P. S. 1974a. Polyribosome metabolism in bacteriophage T4 infected E. coli. General properties. Arch. Biochem. Biophys. 162: 369–373.PubMedCrossRefGoogle Scholar
  611. Walsh, M. L., and Cohen, P. S. 1974b. Polyribosome metabolism in bacteriophage T4 infected E. coli. Isolation and characterization of two classes of polyribosomes. Arch. Biochem. Biophys. 162: 374–384.PubMedCrossRefGoogle Scholar
  612. Walter, G., Seifert, W., and Zillig, W. 1968. Modified DNA-dependent RNA polymerase from E. coli. infected with bacteriophage T4. Biochem. Biophys. Res. Comm. 30: 240–247.PubMedCrossRefGoogle Scholar
  613. Walz, A., and Pirrotta, V. 1975. Sequence of the Pr promoter of phage X. Nature254. :118–121.Google Scholar
  614. Wang, J. C., and Kaiser, A. D. 1973. Evidence that the cohesive ends of mature X DNA are generated by the gene A. product. Nature New Biol. 241: 16–17.Google Scholar
  615. Wang, J. C., and Schwartz, H. 1967. Noncomplementarity in base sequences between the cohesive ends of coliphages 186 and X and the formation of interlocked rings between the two DNAs. Biopolymers. 5: 953–966.PubMedCrossRefGoogle Scholar
  616. Wang, L., and Duesberg, P. H. 1973. DNA polymerase of murine sarcoma-leukemia virus. J. Virol. 12: 1512–1521.PubMedGoogle Scholar
  617. Ward, R. L., and Stevens, J. G. 1975. Lifetimes of mRNA molecules directing the synthesis of viral proteins in herpes simplex virus-infected cells. J. Virol. 15: 81–89.PubMedGoogle Scholar
  618. Warner, H. R., and Barnes, J. E. 1966. Evidence for a dual role for the bacteriophage T4-induced deoxycytidine triphosphate nucleotidohydrolase. Proc. Nat. Acad. Sci. USA. 56: 1233–1240.PubMedCrossRefGoogle Scholar
  619. Watanabe, I., Miyake, T., Sakurai, T., Shiba, T., and Ohno, T. 1967. Isolation and grouping of RNA phages. Proc. Jpn. Acad. 43: 204–209.Google Scholar
  620. Watanabe, Y., and Graham, A. F. 1967. Structural units of reovirus RNA and their possible functional significance. J. Virol. 1: 665–677.PubMedGoogle Scholar
  621. Waters, L. C. 1975. Transfer RNAs associated with the 70 S RNA of AKR murine leukemia virus. Biochem. Biophys. Res. Comm. 65: 1130–1136.PubMedCrossRefGoogle Scholar
  622. Waters, L. C., Yang, W. K., Mullin, B. C., and Nichols, J. L. 1975. Purification of tryptophan tRNA from chick cells and its identity with “spot 1” RNA of Rous sarcoma virus. J. Biol. Chem. 250: 6627–6629.PubMedGoogle Scholar
  623. Watson, J. D., 1971. The structure and assembly of murine leukemia virus. Virology. 45: 586–597.PubMedCrossRefGoogle Scholar
  624. Watson, J. D., and Littlefield, J. W. 1960. Some properties of DNA from Shope papilloma virus. J. Mol. Biol. 2: 161–165.CrossRefGoogle Scholar
  625. Weber, H., and Weissmann, C. 1970. The 3’-termini of bacteriophage Qß plus and minus strands. J. Mol. Biol. 51: 215–224.PubMedCrossRefGoogle Scholar
  626. Weber, K. 1967. Amino acid sequence studies on the tryptic peptides of the coat protein of the bacteriophage R17. Biochemistry. 6: 3144–3154.PubMedCrossRefGoogle Scholar
  627. Weber, K., and Konigsberg, W. 1967. Amino acid sequence of the f2 coat protein. J. Biol. Chem. 242: 3563–3578.Google Scholar
  628. Wei, C. M., and Moss, B. 1975. Methylated nucleotides block 5’-terminus of vaccinia virus messenger RNA. Proc. Nat. Acad. Sci. USA. 72: 318–322.PubMedCrossRefGoogle Scholar
  629. Weiner, A. M., and Weber, K. 1971. Natural and read-through at the UGA termination signal of Qß coat protein cistron. Nature New Biol. 234: 206–209.PubMedGoogle Scholar
  630. Weiss, E., and Kiesow, L. A. 1966. Incomplete citric acid cycle in agents of the psittacosis-trachoma group (Chlamydia). Bact. Proc. 1966: 85.Google Scholar
  631. Weiss, E., Myers, W. F., Dressler, H. R., and Chun-Hoon, H. 1964. Glucose metabolism by agents of the psittacosis-trachoma group. Virology. 22: 551–562.PubMedCrossRefGoogle Scholar
  632. Weiss, R. A. 1970. Studies on the loss of growth inhibition in cells infected with Rous sarcoma virus. Int. J. Cancer. 6: 333–341.PubMedCrossRefGoogle Scholar
  633. Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H. 1973. Structure and function of phage RNA. Ann. Rev. Biochem. 42: 303–328.PubMedCrossRefGoogle Scholar
  634. Weissmann, C., and Ochoa, S. 1967. Replication of phage RNA. Progr. Nucl. Acid. Res. Mol. Biol. 6: 353–399.CrossRefGoogle Scholar
  635. Weith, H. L., and Gilham, P. T. 1969. Polynucleotide sequence analysis by sequential base elimi nation: 3’-terminus of phage Qß RNA. Science. 166: 1004–1005.PubMedCrossRefGoogle Scholar
  636. Werner, R. 1968a. Initiation and propagation of growing points in DNA of phage T4. Cold Spring Harbor Symp. Quant. Biol. 33: 501–508.PubMedCrossRefGoogle Scholar
  637. Werner, R. 1968b. Distribution of growing points in DNA of bacteriophage T4. J. Mol. Biol. 33. :679–692.Google Scholar
  638. Westphal, H., and Kiehn, E. D. 1970. The in vitro. product of SV40 DNA transcription and its specific hybridization with DNA of SV40-transformed cells. Cold Spring Harbor Symp. Quant. Biol. 35: 819–822.CrossRefGoogle Scholar
  639. Wieldier, S., and Hurwitz, J. 1974. Conversion of X174 viral DNA to double-stranded form by purified E. coli. proteins. Proc. Nat. Acad. Sci. USA. 71: 4120–4124.CrossRefGoogle Scholar
  640. Wildy, P., Russell, W. C., and Home, R. W. 1960. The morphology of herpes viruses. Virology. 12: 204–222.PubMedCrossRefGoogle Scholar
  641. Wilson, J. H., and Kells, S. 1972. Bacteriophage T4 tRNA. I. Isolation and characterization of two phage-coded nonsense suppressors. J. Mol. Biol. 69: 39–56.PubMedCrossRefGoogle Scholar
  642. Wilson, J. H., Kim, J. S., and Abelson, J. B., 1972. Clustering of the genes for the T4 tRNAs. J. Mol. Biol. 71: 547–556.PubMedCrossRefGoogle Scholar
  643. Winocour, E. 1965. Attempts to detect an integrated polyoma genome by nucleic acid hybridization. Virology. 25: 276–288.PubMedCrossRefGoogle Scholar
  644. Witter, R., Frank, H., Moennig, V., Hunsmann, G., Lange, J., and Schäfer, W. 1973. Properties of mouse leukemia viruses. Virology. 54: 330–345.PubMedCrossRefGoogle Scholar
  645. Wittmann-Liebold, B., and Wittmann, H. G. 1967. Coat proteins of strains of two RNA viruses: Comparison of their amino acid sequences. Mol. Gen. Genetics. 100: 358–363.CrossRefGoogle Scholar
  646. Wong-Staal, F., Gillespie, D., and Gallo, R. C. 1976. Proviral sequences of baboon endogenous type C RNA virus in DNA of human leukaemic tissues. Nature. 262: 190–195.PubMedCrossRefGoogle Scholar
  647. Wood, W. B., Edgar, R. S., King, J., Lielausis, I., and Henninger, M. 1968. Bacteriophage assembly. Fed. Proc. 27: 1160–1166.PubMedGoogle Scholar
  648. Wu, R., and Taylor, E. 1971. Complete nucleotide sequence of the cohesive ends of bacteriophage X DNA. J. Mol. Biol. 57: 491–512.PubMedCrossRefGoogle Scholar
  649. Yamamoto, M., and Uchida, H. 1973. Organization and function of bacteriophage T4 tail. 1. Isolation of heat-sensitive T4 tail mutants. Virology. 52: 234–245.PubMedCrossRefGoogle Scholar
  650. Yamamoto, M., and Uchida, H. 1975. Organization and function of the tail of bacteriophage T4. II. Structural control of the tail contraction. J. Mol. Biol. 92: 207–223.PubMedCrossRefGoogle Scholar
  651. Yamamoto, N., and Anderson, T. F. 1961. Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology. 14: 430–439.PubMedCrossRefGoogle Scholar
  652. Yamazaki, H., Bancroft, J. B., and Kaesburg, P. 1961. Biophysical studies of broad bean mottle virus. Proc. Nat. Acad. Sci. USA. 47: 979–983.PubMedCrossRefGoogle Scholar
  653. Yogo, Y., Teng, M. H., and Wimmer, E. 1974. Poly(U) in poliovirus minus RNA is 5’-terminal. Biochem. Biophys. Res. Comm. 61: 1101–1109.PubMedCrossRefGoogle Scholar
  654. Yogo, Y., and Wimmer, E. 1975. Poly(U) and poly(A) as components of the purified poliovirus replicative intermediate. J. Mol. Bio. 92: 467–477.CrossRefGoogle Scholar
  655. Young, E. T., and Sinsheimer, R. L. 1967. Vegetative bacteriophage X DNA. I. Infectivity in a spheroplast assay. J. Mol. Biol. 30: 147–164.PubMedCrossRefGoogle Scholar
  656. Young, E. T., and Sinsheimer, R. L. 1968. Vegetative X DNA. III. Pulse-labeled components. J. Mol. Biol. 33: 49–60.PubMedCrossRefGoogle Scholar
  657. Zetter, B. R., and Cohen, P. S. 1974. Post-transcriptional regulation of T4 enzyme synthesis. Arch. Biochem. Biophys. 162: 560–567.PubMedCrossRefGoogle Scholar
  658. Zlotnik, I., and Rennie, J. C. 1965. Experimental transmission of mouse passaged scrapie to goats, sheep, rats and hamsters. J. Comp. Path. 75: 147–157.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations