Advertisement

Reactive Sites and the Evolution of Transfer RNAs

  • Lawrence S. Dillon

Abstract

Before the evolutionary relations of tRNAs can be examined, those specific sites in tRNA molecular structure that are of possible importance in a particular function need examination, in order to distinguish functional and evolutionary influences. Among the activities in which a given nucleotide may be especially significant are included the maintenance of a secondary or tertiary structure, recognition by the ligase, and attachment to the ribosome, as well as those codon—anticodon interactions that have already received attention (Chapter 7; Section 7.2).

Keywords

Tobacco Mosaic Virus tRNA Molecule Modify Nucleoside Turnip Yellow Mosaic Virus Unpaired Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapters 7 and 8: Primary Structure of tRNAs

  1. Barrell, B. G., Coulson, A. R., and McClain, W. H. 1973. Nucleotide sequence of a glycine tRNA coded by bacteriophage T4. FEBS Lett. 37: 64–69.PubMedCrossRefGoogle Scholar
  2. Hill, C. W., Combriato, G., Stemhart, W., Riddle, D. L., and Carbon, J. 1973. The nucleotide sequence of the GGG-specific glycine tRNA of E. coli. and Salmonella typhimurium. J. Biol. Chem. 248: 4252–4262.Google Scholar
  3. Hill, C. W., Squires, C., and Carbon, J. 1970. Structural genes for two glycine tRNA species. J. Mol. Biol. 52: 557–569.PubMedCrossRefGoogle Scholar
  4. Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absense of ribothymidine in specific tRNAs. I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.PubMedCrossRefGoogle Scholar
  5. Riddle, D. L., and Carbon, J. 1973. Frameshift suppression: A nucleotide addition in the anticodon of a glycine tRNA. Nature New Biol. 242: 230–234.PubMedGoogle Scholar
  6. Roberts, R. J. 1972: Structures of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–46.CrossRefGoogle Scholar
  7. Roberts, R. J. 1974. Staphylococcal tRNAs. II. Sequence analysis of isoaccepting glycine tRNA IA and IB from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4787–4796.PubMedGoogle Scholar
  8. Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting glycine tRNAs from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.PubMedGoogle Scholar
  9. Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.PubMedGoogle Scholar
  10. Stahl, S., Paddock, G., and Abelson, J. 1973. T4 bacteriophage tRNA°1. Biochem. Biophys. Res. Comm. 54: 567–569.PubMedCrossRefGoogle Scholar
  11. Stewart, T. S., Roberts, R. J., and Strominger, J. L. 1971. Novel species of RNA. Nature. 230: 36–38.PubMedCrossRefGoogle Scholar
  12. Yoshida, M. 1973. The nucleotide sequence of tRNAch from yeast. Biochem. Biophys. Res. Comm. 50: 779–784.PubMedCrossRefGoogle Scholar
  13. Zachau, H. G. 1969. Transfer ribonucleic acids. Angew. Chem. (Int. Ed.). 8: 711–727.CrossRefGoogle Scholar
  14. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswrick, J. R., and Zamir, A. 1965a. Structure of a ribonucleic acid. Science., 147: 1462–1465.PubMedCrossRefGoogle Scholar
  15. Holley, R. W., Everett, G. A., Madison, J. T., and Zamir, A. 1965b. Nucleotide sequences in the yeast alanine tRNA. J. Biol. Chem. 240: 2122–2127.PubMedGoogle Scholar
  16. Merrill, C. R. 1968. Reinvestigation of the primary structure of yeast alanine tRNA. Biopolymers. 6: 1727–1735.CrossRefGoogle Scholar
  17. Murao, K., Hasegawa, T., and Ishikura, H. 1976. 5-methoxyuridine: A new minor constituent located in the first position of the anticodon of tRNAma, tRNAThr, and tRNAval from B. subtilis. Nucl. Acids Res. 3:2851–2857.Google Scholar
  18. Penswick, J. R., Martin, R., and Dirheimer, G. 1975. Evidence supporting a revised sequence for yeast alanine tRNA. FEBS Lett. 50: 28–31.PubMedCrossRefGoogle Scholar
  19. Takemura, S., and Ogawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 323–333.Google Scholar
  20. Takemura, S., Ogawa, K., and Nakazawa, K. 1972. Nucleotide sequence of alanine tRNA, from Torulopsis utilis. FEBS Lett. 25: 29–32.CrossRefGoogle Scholar
  21. Takemura, S., Ogawa, K., and Nakazawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 313–322.Google Scholar
  22. Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys. Res. Comm. 60: 1215–1221.PubMedCrossRefGoogle Scholar
  23. Yoshida, M., Kaziro, Y., and Ukita, T. 1968. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA. Biochim. Biophys. Acta. 166: 646–655.PubMedGoogle Scholar
  24. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1971. Structure of asparate-tRNA from brewer’s yeast. Nature New Biol. 230: 125–126.PubMedCrossRefGoogle Scholar
  25. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972a. The primary structure of aspartate tRNA from brewer’s yeast. Complete digestion with pancreatic ribonuclease and T, ribonuclease. Biochim. Biophys. Acta. 259: 198–209.PubMedGoogle Scholar
  26. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972b. The primary structure of aspartateGoogle Scholar
  27. tRNA from brewer’s yeast. II. Partial digestions with pancreatic ribonuclease and T1 ribonuclease and derivation of complete sequence. Biochim. Biophys. Acta. 259: 210–222.Google Scholar
  28. Harada, F., and Nishimura, S. 1972. Possible anticodon sequences of tRNA’, tRNAAS“, and tRNAAaP from E. coli. B. Universal presence of nucleoside Q in the first position of the anticodon of these transfer ribonucleic acids. Biochemistry. 11: 301–308.PubMedCrossRefGoogle Scholar
  29. Harada, F., Yamaizumi, K., and Nishimura, S. 1972. Oligonucleotide sequences of RNase T1 and pancreatic RNase digests of E. coli. aspartic acid tRNA. Biochem. Biophys. Res. Comm. 49: 1605–1609.PubMedCrossRefGoogle Scholar
  30. Keith, G., Gangloff, J., Ebel, J. P., and Dirheimer, G. 1970. Etablissement de la séquence de nucléotides de l’aspartate-t-RNA de levure de bière. C. R. Acad. Sci. Paris., 271: 613–616.Google Scholar
  31. Kobayashi, T., Irie, T., Yoshida, M., Takeishi, K., and Ukita, T. 1974. The primary structure of yeast glutamic acid tRNA specific to the GAA codon. Biochim. Biophys. Acta. 366: 168–181.PubMedGoogle Scholar
  32. Munninger, K. O., and Chang, S. H. 1972. A fluorescent nucleoside from glutamic acid tRNA of E. coli. K12. Biochem. Biophys. Res. Comm. 46: 1837–1842.PubMedCrossRefGoogle Scholar
  33. Ohashi, Z., Murao, K., Yahagi, T., von Minden, D. L., McCloskey, J. A., and Nishimura, S. 1972. Characterization of C+ located in the first position of the anticodon of E. coli. tRNAMet as N4-acetylcytidine. Biochim. Biophys. Acta. 262: 209–213.Google Scholar
  34. Ohashi, Z., Saneyoshi, M., Harada, F., Hara, H., and Nishimura, S. 1970. Presumed anticodon structure of glutamic acid tRNA from E. coli: A possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem. Biophys. Res. Comm. 40: 866–872.CrossRefGoogle Scholar
  35. Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.PubMedGoogle Scholar
  36. Yoshida, M., Takeishi K., and Ukita, T. 1970. Anticodon structure of GAA-specific glutamic acid tRNA from yeast. Biochem. Biophys. Res. Comm. 39: 852–857.PubMedCrossRefGoogle Scholar
  37. Yoshida, M., Takeishi, K., and Ukita, T. 1971. Structural studies on a yeast glutamic acid tRNA specific to GAA codon. Biochim. Biophys. Acta. 228: 153–166.PubMedGoogle Scholar
  38. Bayev, A. A., Venkstern, T. V., Mirzabekov, A. D., Krutilina, A. I., Li, L., and Axelrod, V. D. 1967. Primary structure of the valine tRNA. Mol. Biol. 1: 754–758.Google Scholar
  39. Bonnet, J., Ebel, J. P., and Dirheimer, G. 1971. Primary structure of tRNA)a’, from brewer’s yeast. FEBS Lett. 15: 286–290.PubMedCrossRefGoogle Scholar
  40. Bonnet, J., Ebel, J. P., Dirheimer, G., Shershneva, L. P., Krutilina, A. I., Venkstern, T. V., and Bayer, A. A. 1974. The corrected nucleotide sequence of valine tRNA from baker’s yeast. Biochimie. 56: 1211–1213.PubMedCrossRefGoogle Scholar
  41. Harada, F., Kimura, F., and Nishimura, S. 1969. Nucleotide sequence of valine tRNA from E. coli. B. Biochim. Biophys. Acta. 195: 590–592.PubMedGoogle Scholar
  42. Harada, F., Kimura, F., and Nishimura, S. 1971. Primary sequence of tRNA’, from E. coli. B. Biochemistry. 10: 3269–3283.PubMedCrossRefGoogle Scholar
  43. Kimura-Harada, F., Saneyoshi, M., and Nishimura, S. 1971. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 13: 335–338.Google Scholar
  44. Mirzavekov, A. D., Lastit, D., Leoina, E. S., Undritsov, I. M., and Baev, A. A. 1972. The acceptor activity of dissected baker’s yeast tRNA°a1: Localization of two possible recognition sites of valyl-tRNA ligase. Mol. Biol. 6: 69–84.PubMedGoogle Scholar
  45. Mizutani, T., Miyazaki, M., and Takemura, S. 1968. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 64: 839–848.Google Scholar
  46. Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. tRNA I. Biochem. Biophys. Res. Comm. 38: 657–662.PubMedCrossRefGoogle Scholar
  47. Piper, P. W. 1975b. The primary structure of the major cytoplasmic valine tRNA of mouse myeloma cells. Eur. J. Biochem. 51: 295–304.PubMedCrossRefGoogle Scholar
  48. Piper, P. W., and Clark, B. F. 1974a. The nucleotide sequences of cytoplasmic methionine and valine tRNAs from mouse myeloma cells. FEBS Lett. 47: 56–59.PubMedCrossRefGoogle Scholar
  49. Takada-Gurrier, C., Grosjean, H. G., Dirheimer, G., and Keith, G. 1976. The primary structure of tRNA2a’ from B. stearothermophilus. FEBS Lett. 62: 1–3.CrossRefGoogle Scholar
  50. Takemura, S., Mizutani, T., and Miyazaki, M. 1968a. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 63: 277–278.Google Scholar
  51. Takemura, S., Mizutani, T., and Miyazaki, M. 1968b. The primary structure of valine-I tRNA from Torulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1. J. Biochem. 64: 827–837.PubMedGoogle Scholar
  52. Yaniv, M., and Barrell, B. G. 1969. Nucleotide sequence of E. coli. B tRNAva’. Nature. 222: 278–279.PubMedCrossRefGoogle Scholar
  53. Yaniv, M., and Barrell, B. G. 1971. Sequence relationship of three valine acceptor tRNAs from E. coli. Nature New Biol. 233: 113–114.Google Scholar
  54. Zachau, H. G. 1972. Transfer ribonucleic acids. In: Bosch, L., ed., The Mechanism of Protein Synthesis and its Regulation., Amsterdam, North-Holland Publishing Co., p. 173–217.Google Scholar
  55. Blank, H. U., and Sö11, D. 1971. The nucleotide sequence of two leucine tRNA species from E. coli. K12. Biochem. Biophys. Res. Comm. 43: 1192–1197.PubMedCrossRefGoogle Scholar
  56. Dube, S. K., Marcker, K. A., and Yudelevich, A. 1970. The nucleotide sequence of a leucine tRNA from E. coli. FEBS Lett. 9: 168–170.CrossRefGoogle Scholar
  57. Harada, F., Sato, S., and Nishimura, S. 1972. Unusual CCA-stem structure of E. coli. B tRNA1 s FEBS Lett. 19: 352–355.Google Scholar
  58. Singer, C. E., and Smith, G. R. 1972. Histidine regulation in Salmonella typhimurium. XIII. Nucleotide sequence of histidine tRNA. J. Biol. Chem. 247: 2983–3000.Google Scholar
  59. Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 73–74.CrossRefGoogle Scholar
  60. Comer, M. M., Foss, K., and McClain, W. H. 1975. A mutation of the wobble nucleotide of a bacteriophage T4 tRNA. J. Mol. Biol. 99: 283–293.PubMedCrossRefGoogle Scholar
  61. Folk, W. R., and Yaniv, M. 1972. Coding properties and nucleotide sequences of E. coli. glutamine tRNAs. Nature New Biol. 237: 165–166.PubMedGoogle Scholar
  62. Seidman, J. G., Corner, M. M., and McClain, W. H. 1974. Nucleotide alterations in the bacteriophage T4 glutamine tRNA that affect ochre suppressor activity. J. Mol. Biol. 90: 677–689.PubMedCrossRefGoogle Scholar
  63. Murao, K., Tanabe, T., Ishii, F., Namiki, M., and Nishimura, S. 1972. Primary sequence of arginine tRNA from E. coli. Biochem. Biophys. Res. Comm., 47: 1332–1337.CrossRefGoogle Scholar
  64. Weissenbach, J., Martin, R., and Dirheimer, G. 1972. Nucleotide sequence of tRNAiltrg from brewer’s yeast. FEBS Lett. 28: 353–355.PubMedCrossRefGoogle Scholar
  65. Weissenbach, J., Martin, R., and Dirheimer, C. 1975a. The primary structure of tRNAr from brewer’s yeast. Eur. J. Biochem. 56: 521–526.PubMedCrossRefGoogle Scholar
  66. Weissenbach, J., Martin, R., and Dirheimer, G., 1975. Partial digestion with Ti RNase and primary sequence of yeast tRNAllrg. Eur. J. Biochem. 56: 527–532.PubMedCrossRefGoogle Scholar
  67. Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974.. Transfer RNA biosynthesis: The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.Google Scholar
  68. Seidman, J. G., Barrell, B. G., and McClain, W. H. 1975. Five steps in the conversion of a large precusor RNA into bacteriophage proline and serine tRNAs. J. Mol. Biol. 99: 733–760.PubMedCrossRefGoogle Scholar
  69. Madison, J. T., and Boguslawski, S. J. 1974. Partial digestion of a yeast lysine tRNA and reconstruction of the nucleotide sequence. Biochemistry. 13: 524–527.PubMedCrossRefGoogle Scholar
  70. Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1972. Nucleotide sequence of a lysine tRNA from baker’s yeast. Science. 176: 687–689.PubMedCrossRefGoogle Scholar
  71. Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1974. Oligonucleotide composition of a yeast lysine tRNA. Biochemistry. 13: 518–523.PubMedCrossRefGoogle Scholar
  72. Smith, C. J., Ley, A. N., D’Obrenan, P., and Mitra, S. K. 1971. The structure and coding specificity of a lysine tRNA from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem., 246: 7817–7829.PubMedGoogle Scholar
  73. Smith, C. J., Teh, H. S., Ley, A. N., and D’Obrenan, P. 1973. The nucleotide sequences of the major and minor lysine tRNAs from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem. 248: 4475–4485.PubMedGoogle Scholar
  74. Harada, F., and Nishimura, S. 1974. Purification and characterization of AUA specific isoleucine tRNA from E. coli. B. Biochemistry. 13: 300–307.PubMedCrossRefGoogle Scholar
  75. Takemura, S., Murakami, M., and Miyazaki, M. 1969a. Nucleotide sequence of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 489–491.Google Scholar
  76. Takemura, S., Murakami, M., and Miyazaki, M., 1969b. The primary structure of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 553–566.Google Scholar
  77. Yarus, M., and Barre11, B. G. 1971. The sequence of nucleotides in tRNAne from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.PubMedCrossRefGoogle Scholar
  78. Cory, S., and Marcker, K. A. 1970. The nucleotide sequence of methionine tRNAM. J. Biochem. 12: 177–194.Google Scholar
  79. Cory, S., Marcker, K. A., Dube, S. K., and Clark, B. F. C. 1968. Primary structure of a methionine tRNA from E. coli. Nature. 220: 1039–1040.Google Scholar
  80. Dube, S. K., and Marcker, K. A. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 256–262.PubMedCrossRefGoogle Scholar
  81. Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S. 1968. Nucleotide sequence of Nformyl-methionyl-transfer RNA. Nature. 218: 233–234.CrossRefGoogle Scholar
  82. Dube, S. K. Marcker, K. A., Clark, B. F. C., and Cory, S. 1969. The nucleotide sequence of Nformyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 244–255.Google Scholar
  83. Ecarot-Charrier, B., and Cedergren, R. J. 1976. The preliminary sequence of tRNAFet from Anacystis nidulans. compared with other initiator tRNAs. FEBS Lett. 63: 287–290.PubMedCrossRefGoogle Scholar
  84. Egan, B. Z., Weiss, J. F., and Kelmers, A. D. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E.coli. K-12MO. Biochem. Biophys. Res. Comm. 55: 320–327.PubMedCrossRefGoogle Scholar
  85. Gruhl, H., and Feldmann, H. 1975. The primary structure of a noninitiating methionine specific tRNA from brewer’s yeast. FEBS Lett. 57: 145–148.PubMedCrossRefGoogle Scholar
  86. Högenauer, G., Turnowsky, F., and Unger, F. M. 1972. Codon-anticodon interaction of methionine specific tRNAs. Biochem. Biophys. Res. Comm. 46: 2100–2106.PubMedCrossRefGoogle Scholar
  87. Ishikura, H., Yamada, Y., Murao, K., Saneyoshi, M., and Nishimura, S. 1969. The presence of N- [9-(β-D-ribofuranosyl)purine-6yl-carbomoyl]threonine in serine, methionine, and lysine tRNAs from E. coli. Biochem. Biophys. Res. Comm. 37: 990–995.CrossRefGoogle Scholar
  88. Koiwai, O., and Miyazaki, M. 1976. The primary structure of non-initiator tRNAMgit from baker’s yeast. J. Biochem. 80: 951–959.PubMedGoogle Scholar
  89. Petrissant, G., and Boisnard, M. 1974. Particularités structurales du méthionine tRNA,M„et de foie de lapin. Biochimie. 56: 787–789.PubMedCrossRefGoogle Scholar
  90. Piper, P. W. 1975a. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. Eur. J. Biochem. 51: 283–293.PubMedCrossRefGoogle Scholar
  91. Piper, P. W., and Clark, B. F. C. 1974b. Primary structure of a mouse myeloma cell initiator tRNA. Nature. 247: 516–518.PubMedCrossRefGoogle Scholar
  92. Simsek, M., and RajBhandary, U. L. 1972. The primary structure of yeast initiator tRNA. Biochem. Biophys. Res. Comm. 49: 508–515.PubMedCrossRefGoogle Scholar
  93. Simsek, M., RajBhandary, U. L., Boisnard, M. and Petrissant G. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator tRNAs. Nature. 247: 518–520.PubMedCrossRefGoogle Scholar
  94. Yamada, Y., and Ishikura, H. 1975. Nucleotide sequence of initiator tRNA from B. subtilis. FEBS Lett. 54: 155–158.CrossRefGoogle Scholar
  95. Ish-Horowicz, D., and Clark, B. F. C. 1973. The nucleotide sequence of a serine tRNA from E. coli. J. Biol. Chem. 248: 6663–6673.Google Scholar
  96. Rogg, H., Müller, P., and Staehelin, M. 1975. Nucleotide sequences of rat liver serine tRNA. Eur. J. Biochem. 53: 115–127.CrossRefGoogle Scholar
  97. Yamada, Y., and Ishikura, H. 1973. Nucleotide sequence of tRNA3er from E. coli. FEBS Lett. 29: 231–234.CrossRefGoogle Scholar
  98. Clarke, L., and Carbon, J. 1974. The nucleotide sequence of a threonine tRNA from E. coli. J. Biol. Chem. 249: 6874–6885.Google Scholar
  99. Kuntzel, B., Weissenbach, J. and Dirheimer, G. 1972. The sequence of nucleotides in tRNAftig from brewer’s yeast. FEBS Lett. 25: 189–191.PubMedCrossRefGoogle Scholar
  100. Kuntzel, B., Weissenbach, J., and Dirheimer, G. 1974. Structure primaire des tRNAfirg de levure de bière. Biochimie. 56: 1069–1087.PubMedCrossRefGoogle Scholar
  101. Blobstein, S. H., Grunberger D., Weinstein, I. B., and Nakanishi, K. 1973. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine tRNA. Biochemistry. 12: 188–193.PubMedCrossRefGoogle Scholar
  102. Dudock, B. S., and G. Katz. 1969. Large oligonucleotide sequences in wheat germ phenylalanine tRNA. J. Biol. Chem., 244: 3069–3074.PubMedGoogle Scholar
  103. Dudock, B. S., Katz, G., Taylor, E. K., and Holley, R. W. 1969. Primary structure of wheat germ phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.PubMedCrossRefGoogle Scholar
  104. Everett, G. A., and Madison, J. T. 1976. Nucleotide sequence of tRNAPhe from pea (Pisum sativum., Alaska). Biochemistry. 15: 1016–1021.PubMedCrossRefGoogle Scholar
  105. Guerrier-Takada, C., Dirheimer, G., Grosjean, H., and Keith, G. 1975. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 60: 286–289.CrossRefGoogle Scholar
  106. Harbers, K., Thiebe, R., and Zachau, H. G. 1972. Preparation and characterization of fragments from yeast tRNAPhe. Eur. J. Biochem. 26: 132–143.PubMedCrossRefGoogle Scholar
  107. Keith, G., Ebel, J. P., and Dirheimer, G. 1974. The primary structure of two mammalian tRNAsPhe: Identity of calf liver and rabbit liver tRNAsPhe. FEBS Lett. 48: 50–52.PubMedCrossRefGoogle Scholar
  108. Keith, G., Picaud, F., Weissenbach, J., Ebel, J. P., Petrissant, G., and Dirheimer, G. 1973. The primary structure of rabbit liver tRNAPhe and its comparison with known tRNAPhe sequences. FEBS Lett. 31: 345–347.PubMedCrossRefGoogle Scholar
  109. Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three-dimensional structure of yeast phenylalanine tRNA: Folding of the polynucleotide chain. Science. 179: 285–288.PubMedCrossRefGoogle Scholar
  110. Kim, S. H.,. Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974. Three-dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.Google Scholar
  111. Nakanishi, K., Furutachi, N., Funamizu, M., Grunberger, D., and Weinstein, I. B. 1970. Structure of the fluorescent Y base from yeast phenylalanine tRNA. J. Am. Chem. Soc. 92: 7617–7619.PubMedCrossRefGoogle Scholar
  112. Philippsen, P., and Zachau, H. G. 1971. Fragments of yeast tRNAPhe and tRNASer prepared by partial digestion with spleen phosphodiesterase. FEBS Lett. 15: 69–74.PubMedCrossRefGoogle Scholar
  113. Pongo, O., Bald, R., and Reinwald, E. 1973. On the structure of yeast tRNAPhe: Complementaryoligonucleotide binding studies. Eur. J. Biochem. 32: 117–125.CrossRefGoogle Scholar
  114. RajBhandary, U. L., Chang, S. H., Sneider, J., and Davis, D. 1968. Yeast phenylalanine tRNA: Partial digestion with ribonuclease T1, and derivation of the total primary structure. J. Biol. Chem. 243: 598–608.Google Scholar
  115. RajBhandary, U. L., Chang, S. H., Stuart, A., Faulkner, R. D., Hoskinson, R. M., and Khorana, H. G. 1967. The primary structure of yeast phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 57: 751–758.CrossRefGoogle Scholar
  116. Rosenfeld, A., Stevens, C. L., and Printz, M. P. 1970. Studies on the secondary structure of phenylalanyl tRNA. Biochemistry. 9: 4971–4980.PubMedCrossRefGoogle Scholar
  117. Takemura, S., Kasai, H., and Goto, M. 1974. Nucleotide sequence of the anticodon region of Torulopsis. phenylalanine tRNA. J. Biochem. 75: 1169–1172.PubMedGoogle Scholar
  118. Uziel, M., and Gassen, H. G. 1969. Structure of tRNAPke. Fed. Proc. 28: 409.Google Scholar
  119. Wong, Y. P., Kearns, D. R., Shulman, R. G., Yamane, T., Chang, S., Chirskyian, J. G., and Fresco, J. R. 1973. High resolution NMR study of base pairing in the native and denatured conformers of tRNA. J. Mol. Biol. 74: 403–406.PubMedCrossRefGoogle Scholar
  120. Altman, S., and Smith, J. D. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233: 35–39.PubMedGoogle Scholar
  121. Doctor, B. P., Loebel, J. E., and Kellog, D. A. 1966. Studies on the species specificity of yeast and E. coli. tyrosine tRNA2. Cold Spring Harbor Symp. Quant. Biol. 31: 543–548.PubMedCrossRefGoogle Scholar
  122. Doctor, B. P., Loebel, J. E., Sodd, M. A. and Winter, D. B. 1969. Nucleotide sequence of E. coli. tyrosine tRNA. Science. 163: 693–695.PubMedCrossRefGoogle Scholar
  123. Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.PubMedCrossRefGoogle Scholar
  124. Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.Google Scholar
  125. Harada, F., Gross, H. J., Kimura, F., Chang, S. H., Nishimura, S., and RajBhandary, U. L. 1968. 2-methylthio N6-(12-isopentenyl) adenosine: A component of E. coli. tyrosine tRNA. Biochem. Biophys. Res. Comm. 33: 299–306.Google Scholar
  126. Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.Google Scholar
  127. Hachimoto, S., Takemura, S., and Miyazaki, M. 1972. Partial digestion with ribonuclease T, and derivation of the complete sequence of tRNATYr from Torulopsis utilis. J. Biochem. 72: 123–134.Google Scholar
  128. Madison, J. T., Everett, G. A., and Kung, H. 1966a. Nucleotide sequence of a yeast tyrosine tRNA. Science. 153: 531–534.PubMedCrossRefGoogle Scholar
  129. Madison, J. T. Everett, G. A., Kung, H. 1966b. On the nucleotide sequence of yeast tyrosine tRNA. Cold Spring Harbor Symp. Quant. Biol. 31: 409–416.CrossRefGoogle Scholar
  130. Madison, J. T., Everett, G. A., Kung, H. 1967. Oligonucleotides from yeast tyrosine tRNA. J. Biol. Chem. 242: 1318–1323.PubMedGoogle Scholar
  131. Madison, J. T., and Kung, 11.-K. 1967. Large oligonucleotides isolated from yeast tyrosine tRNA after partial digestion with ribonuclease T1. Science. 242: 1324–1330.Google Scholar
  132. Seno, T., and Nishimura, S. 1971. Cleavage of E. coli. tyrosine tRNA2 in S-region and its effects on the structure and function of the reconstituted molecules. Biochim. Biophys. Acta. 228: 141–152.PubMedGoogle Scholar
  133. Takemura, S., Hashimoto, S., and Miyazaki, M. 1972. Complete digestion of tyrosine tRNA from Torulopsis utilis. with pancreatic and T1 ribonucleases. J. Biochem. 72: 111–121.PubMedGoogle Scholar
  134. Ginsberg, T., Rogg, H., and Staehelin, M. 1971. Nucleotide sequences of rat liver serine-tRNA. Eur. J. Biochem. 21: 249–257.PubMedCrossRefGoogle Scholar
  135. Hentzen, D., and Garet, J. P. 1976. Anticodon loop sequences of tRNAccA and tRNA cA from the posterior silkgland of Bombyx mori. L. Biochem. Biophys. Res. Comm. 71: 241–248.PubMedCrossRefGoogle Scholar
  136. Ishikura, H., Yamada, Y., and Nishimura, S. 1971a. The nucleotide sequence of a serine tRNA from E. coli. FEBS Lett. 16: 68–70.CrossRefGoogle Scholar
  137. Ishikura, H., Yamada, Y., and Nishimura, S. 1971b. Structure of serine tRNA from E. coli. Biochim. Biophys. Acta. 228: 471–481.Google Scholar
  138. McClain, W. H., Barrell, B. G., and Seidman, J. G. 1975. Nucleotide alterations in bacteriophage T4 serine tRNA that affect the conversion of precursor RNA into tRNA. J. Mol. Biol. 99: 717–732.PubMedCrossRefGoogle Scholar
  139. Rogg, H., and Staehelin, M. 1971a. Nucleotide sequences of rat liver serine-tRNA. 1. Products of digestion with pancreatic ribonuclease. Eur. J. Biochem. 21: 235–242.PubMedCrossRefGoogle Scholar
  140. Rogg, H., and Staehelin, M. 1971b. Nucleotide sequence of rat liver serine-tRNA. 2. The products of digestion with ribonuclease T1. Eur. J. Biochem. 21: 243–248.PubMedCrossRefGoogle Scholar
  141. Staehelin, M. 1971. The primary structure of tRNA. Experientia., 27: 1–11.PubMedCrossRefGoogle Scholar
  142. Staehelin, M., Rogg, H., Baguley, B. C., Ginsberg, T., and Wehrli, W. 1968. Structure of a mammalian serine tRNA. Nature. 219: 1363–1365.PubMedCrossRefGoogle Scholar
  143. Zachau, H. G., Dütting, D., and Feldmann, H. 1966a. Nucleotidsequenzen zweier serinspezifischer Transfer-Ribonucleinsäuren. Angew. Chem., 78: 392–393.CrossRefGoogle Scholar
  144. Zachau, H. G., Dütting, D., and Feldmann, H. 1966b. Serine specific tRNAs. Hoppe-Seyler’s Z. Phys. Chem. 347: 229–235.Google Scholar
  145. Hirsch, D. 1970. Tryptophan tRNA of E. coli. Nature. 228: 57.Google Scholar
  146. Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.CrossRefGoogle Scholar
  147. Keith, G., Roy, A., Ebel, J. P., and Dirheimer, G. 1971. The nucleotide sequences of two tryptophan-tRNAs from brewer’s yeast. FEBS Lett. 17: 306–308.PubMedCrossRefGoogle Scholar
  148. Maugh, T. H. 1974. Rous sarcoma virus: A new role for tRNA. Science. 186: 41.PubMedCrossRefGoogle Scholar
  149. Chang, S. H., Kuo, S., Hawkins, E., and Miller, N. R., 1973. The corrected nucleotide sequence of yeast leucine tRNA. Biochem. Biophys. Res. Comm. 51: 951–955.PubMedCrossRefGoogle Scholar
  150. Chang, S. H., and Miller, N. 1971. The nucleotide sequence of yeast leucine tRNA. Fed. Proc. 30: 1101.Google Scholar
  151. Kowalski, S., Yamane, T., and Fresco, J. R. 1971. Nucleotide sequence of the “denaturable” leucine tRNA from yeast. Science. 172: 385–387.PubMedCrossRefGoogle Scholar
  152. Pinkerton, T. C., Paddock, G., and Abelson, J. 1972. Bacteriophage T4 tRNA Leu. Nature New Biol. 240: 88–90.PubMedCrossRefGoogle Scholar
  153. Pinkerton, T. C., Paddock, G., and Abelson, J. 1973. Nucleotide sequence determination of bacteriophage T4 leucine tRNA. J. Biol. Chem. 248: 6348–6365.PubMedGoogle Scholar
  154. Holness, N.J., and Atfield, G. 1974. Nucleotide sequence of tRNAcys from baker’s yeast. FEBS Lett. 46: 268–270.PubMedCrossRefGoogle Scholar
  155. Holness, N. J., and Atfield, G. 1976a. The extraction and purification of a cysteine tRNA from baker’s yeast. Biochem. J. 153: 429–435.PubMedGoogle Scholar
  156. Holness, N. J., and Atfield, G. 1976b. The nucleotide sequence of cysteine tRNA from baker’s yeast. Biochem. J. 153: 447–454.PubMedGoogle Scholar
  157. Abraham, D. J. 1971. Proposed detailed structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.PubMedCrossRefGoogle Scholar
  158. Allende, J. E., and Allende, C. C. 1971. Detection ?nd isolation of complexes between aminoacyltRNA synthetases and their substrates. Meth. Enzym. 20: 210–220.CrossRefGoogle Scholar
  159. Bhargava, P. M. 1971. Aminoacyl-tRNA synthetase recognition code-words in yeast tRNAs-a proposal. J. Theor. Biol. 29: 447–469.CrossRefGoogle Scholar
  160. Bina-Stein, M., and Crothers, D. M. 1974. Conformational changes of tRNA. Biochemistry. 13: 2771–2775.PubMedCrossRefGoogle Scholar
  161. Blanquet, S., Fayat, G., Poiret, M., and Waller, J. P. 1975. The mechanism of action of methionyl-RNA synthetase from E. coli. Eur. J. Biochem. 51: 567–571.Google Scholar
  162. Bolton, P. H., and Kearns, D. R. 1975. NMR evidence for common tertiary structure base pairs in yeast and E. coli. tRNA. Nature. 255: 347–349.PubMedCrossRefGoogle Scholar
  163. Briand, J. P., Jonard, G., Guilley, H., Richards, K., and Hirth, L. 1977. Nucleotide sequence (n = 159) of the amino-acid-accepting 3’-OH extremity of TYMV RNA. Eur. J. Biochem., 72: 453–463.PubMedCrossRefGoogle Scholar
  164. Briand, J. P., Richards, K. E., Bouley, J. P., Witz, J., and Hirth, L. 1976. Structure of the amino-acid accepting 3’-end of high-molecular-weight eggplant mosaic virus RNA. Proc. Nat. Acad. Sci. USA. 73: 737–741.PubMedCrossRefGoogle Scholar
  165. Budzik, G. P., Lam, S. S. M., Schoemaker, H. J. P., and Schimmel, P. R. 1975. Two photo cross-linked complexes of isoleucine specific tRNA with aminoacyl tRNA synthetases. J. Biol. Chem. 250: 4433–4439.PubMedGoogle Scholar
  166. Carbon, J., and Curry, J. B. 1968. Genetically and chemically derived missense suppressor tRNAs with altered enzymatic aminoacylation rates. J. Mol. Biol. 38: 201–216.PubMedCrossRefGoogle Scholar
  167. Carbon, J., and Fleck, E. W. 1974. Genetic alteration of structure and function in glycine tRNA of E. coli: Mechanism of suppression of the tryptophan synthetase A78 mutation. J. Mol. Biol. 85: 371–391.PubMedCrossRefGoogle Scholar
  168. Caron, M., Brisson, N., and Dugas. H. 1976. Evidence for a conformational change in tRNAPhe upon aminoacylation. J. Biol. Chem. 251: 1529–1530.PubMedGoogle Scholar
  169. Cedergren, R. J., Cordeau, J. R., and Robillard, P. 1972. On the phylogeny of tRNAs. J. Theor. Biol. 37: 209–220.PubMedCrossRefGoogle Scholar
  170. Celis, J. E., Hooper, M. L., and Smith, J. D. 1973. Amino acid acceptor stem of E. coli. suppressor tRNATYr is a site of synthetase recognition. Nature New Biol. 244: 261–264.PubMedGoogle Scholar
  171. Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. Mol. Biol. 11: 489–525.CrossRefGoogle Scholar
  172. Chambers, R. W., Aoyagi, S., Furukawa, Y., Zawadzka, H., and Bhanot, O. S. 1973. Inactivation of valine acceptor activity by a CU missense change in the anticodon of yeast valine tRNA. J. Biol. Chem. 248: 5549–5551.PubMedGoogle Scholar
  173. Chapeville, F., Lipmann, F., von Ehrenstein, G., Weisblum, B., Ray, W. J., and Benzes, S. 1962. On the role of soluble RNA in coding for amino acids. Proc. Nat. Acad. Sci. USA. 48: 1086–1092.PubMedCrossRefGoogle Scholar
  174. Chapeville, F., and Rouget, P. 1972. Aminoacyl-tRNA synthetases. Frontiers Biol. 27: 5–32.Google Scholar
  175. Chatterjee, S. K. and Kaji, H. 1970. Conformational changes of tRNA on aminoacylation. Biochim. Biophys. Acta. 224: 88–98.PubMedGoogle Scholar
  176. Chinali, G., Sprinzl, M., Parmeggioni, A., and Cramer, F. 1974. Participation in protein biosynthesis of tRNA bearing altered 3’-terminal ribosyl residues. Biochemistry. 13: 3001–3010.PubMedCrossRefGoogle Scholar
  177. Cole, P. E., and Crothers, D. M. 1972. Conformational changes of tRNA. Biochemistry. 11: 4368–4374.PubMedCrossRefGoogle Scholar
  178. Cole, P. E., Yang, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Equilibrium phase diagrams. Biochemistry. 11: 4358–4368.PubMedCrossRefGoogle Scholar
  179. Cramer, F. 1971. Three-dimensional structure of tRNA. Progr. Nucl. Acid Res. Mol. Biol. 11: 391–421.CrossRefGoogle Scholar
  180. Dayhoff, M. O., and McLaughlin, P. J. 1972. Early evolution: Transfer RNA. In: Dayhoff, M. O., ed., Atlas of Protein Sequence and Structure. Vol. 5. National Biomedical Research Foundation, Washington, D.C., p. 111–118.Google Scholar
  181. Delaney, P., Bierbaum, J., and Ofengand, J. 1974. Conformational changes in thiouridine region of E. coli. tRNA as assessed by photochemically induced cross-linking. Arch. Biochem. Biophys. 161: 260–267.CrossRefGoogle Scholar
  182. Dube, S. K. 1973. Evidence for “three-point” attachment of tRNA to methionyl tRNA synthetase. Nature New Biol. 243: 103–105.PubMedCrossRefGoogle Scholar
  183. Eisinger, J., and Gross, N. 1975. Conformers, dimers, and anticodon complexes of tRNAr (E. coli). Biochemistry. 14: 4031–4040.CrossRefGoogle Scholar
  184. Elder, K. T., and Smith, A. E. 1973. Methionine tRNA of avian myeloblastosis virus. Proc. Nat. Acad. Sci. USA. 70: 2823–2826.PubMedCrossRefGoogle Scholar
  185. Evans, J. A., and Nazario, M. 1974. Neurospora. arginyl tRNA ligase binding and dissoaciation of tRNA. Biochemistry. 13: 3092–3098.Google Scholar
  186. Fasiolo, F., Befort, N., Boulanger, Y., and Ebel, J. P. 1970. Purification et quelques propriétés de la phénylalanyl-tRNA synthétase de levure de boulangerie. Biochim. Biophys. Acta. 217: 305–318.PubMedGoogle Scholar
  187. Fasiolo, F., and Ebel, J. P. 1974. Yeast phenylalanyl tRNA synthetase. Eur. J. Biochem. 49: 257–263.PubMedCrossRefGoogle Scholar
  188. Fasiolo, F., Renny, P., Pouyet, J., and Ebel, J. P. 1974. Yeast phenylanlanyl-tRNA synthetase. Eur. J. Biochem. 50: 227–236.PubMedCrossRefGoogle Scholar
  189. Gamble, R. C., and Schimmel, P. R. 1974. Transfer RNA conformation in solution investigated by isotope labeling. Proc. Nat. Acad. Sci. USA. 71: 1356–1360.PubMedCrossRefGoogle Scholar
  190. Gangloff, J., Dirheimer, G., and Gangloff, M. L. 1973. Studies on aspartyl-tRNA synthetase from baker’s yeast. Biochim. Biophys. Acta. 294: 263–272.Google Scholar
  191. Glick, J. M., and Leboy, P. S. 1977. Purification and properties of tRNA (adenine-1)-methyltransferase from rat liver. J. Biol. Chem. 252: 4790–4795.PubMedGoogle Scholar
  192. Gros, C., Lemaire, G., Rapenbusch, R. V., and Labouesse, B. 1972. The subunit structure of tryptophanyl tRNA synthetase from beef pancreas. J. Biol. Chem. 247: 2931–2943.PubMedGoogle Scholar
  193. Gross, H. J. 1973. Transfer RNA: Evidence for decreasing size variation during evolution. J. Mol. Evol. 2: 339–342.PubMedCrossRefGoogle Scholar
  194. Guilley, H., Jonard, G., and Hirth, L. 1975. Sequence of 71 nucleotides at the 3’-end of tobacco. mosaic virus RNA. Proc. Nat. Acad. Sci. USA. 72: 864–868.PubMedCrossRefGoogle Scholar
  195. Haines, J. A., and Zamecnik, P. C. 1967. Chemical modification of aminoacyl ligases and the effect on formation of aminoacyl-tRNAs. Biochim. Biophys. Acta. 146: 227–238.PubMedGoogle Scholar
  196. Hanke, T., Bartmann, P., Hennecke, H., Kosakowski, H. M., Jaenicke, R., Holler, E., and Boeck, A. 1974. L-phenylalanyl-tRNA synthetase of E. coli. K-10; A reinvestigation of molecular weight and subunit structure. Eur. J. Biochem. 43: 601–607.PubMedCrossRefGoogle Scholar
  197. Harpold, M. A., and Calvin, M. 1973. A simple model of the amino acid acceptor terminus of a tRNA. Biochim. Biophys. Acta. 308: 117–128.PubMedGoogle Scholar
  198. Hashimoto, S., Kawata, M., and Takemura, S. 1972a. Reconstitution of an active acceptor com- plex which lacks the anticodon of Torulopsis. tyrosine tRNA. J. Biochem. 72: 1339–1349.PubMedGoogle Scholar
  199. Hashimoto, S., Takemura, S., and Miyazaki, M. 1972b. Partial digestion with ribonuclease Ti and derivation of the complete sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 72: 123–134.Google Scholar
  200. Hashimoto, S., Takemura, S., Yabuki, S., Konishi, K., and Samejima, T. 1972c. Physicochemical studies on conformation of a complex reconstituted from half molecules of Torulopsis utilis. tyrosine tRNA. J. Biochem. 72: 1185–1195.PubMedGoogle Scholar
  201. Hecht, S. M., Kozarich, J. W., and Schmidt, F. J. 1974. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. Proc. Nat. Acad. Sci. USA. 71: 4317–4321.PubMedCrossRefGoogle Scholar
  202. Heider, H., Gottschalk, E., and Cramer, F. 1971. Isolation and characterization of seryl-tRNA synthetase from yeast. Eur. J. Biochem. 20: 144–152.PubMedCrossRefGoogle Scholar
  203. Hennecke, H., and Böck, A. 1975. Altered a subunits in phenylalanyl-tRNA synthetases from p.fluorophenylalanine-resistant strains of E. coli. Eur. J. Biochem. 55: 431–437.Google Scholar
  204. Hirshfield, I. N., and Bloemers, H. P. J. 1969. The biochemical characterization of two mutant arginyl tRNA synthetases from E. coli. K-12. J. Biol. Chem. 244: 2911–2916.PubMedGoogle Scholar
  205. Holler, E., Hammer-Rober, B., Hanke, T., and Bartmann, P. 1975. The catalytic mechanism of amino acid: tRNA ligases. Biochemistry. 14: 2496–2503.PubMedCrossRefGoogle Scholar
  206. Holmquist, R., and Jukes, T. H. 1973. No evidence for a common evolutionary origin of 5 S rRNA and tRNA. Nature New Biol. 245: 127.PubMedCrossRefGoogle Scholar
  207. Isham, K. R., and Stulberg, M. P. 1974. Modified nucleosides in under-methylated phenylalanine tRNA from E. coli. Biochim. Biophys. Acta. 340: 177–182.Google Scholar
  208. Jones, C. R., and Kearns, D. R. 1974. Investigations of the structure of yeast tRNAPhe by nuclear magnetic resonance: Paramagnetic rare earth ion probes of structure. Proc. Nat. Acad. Sci. USA. 71: 4237–4240.PubMedCrossRefGoogle Scholar
  209. Jukes, T. H., and Holmquist, R. 1972. Evolution of tRNA molecules as a repetitive process. Biochem. Biophys. Res. Comm. 49: 212–216.PubMedCrossRefGoogle Scholar
  210. Kim, S. H. 1975. Symmetry recogniton hypothesis model for tRNA binding to aminoacyl tRNA synthetase. Nature. 256: 679–681.PubMedCrossRefGoogle Scholar
  211. Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three dimensional structure of yeast phenylalanine tRNA; folding of the polynucleotide chain. Science. 179: 285–288.PubMedCrossRefGoogle Scholar
  212. Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974a. Three dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.PubMedCrossRefGoogle Scholar
  213. Kim, S. H., Sussman, J. L., Suddath, F. L., Quigley, G. J., McPherson, A., Wang, A. H., Seeman, N. C., and Rich, A. 1974b. The general structure of tRNA molecules. Proc. Nat. Acad. Sci. USA. 71: 4970–4974.PubMedCrossRefGoogle Scholar
  214. Kiselev, L. L., and Favorova, O. O. 1974. Aminoacyl-tRNA synthetases: Some recent results and achievements. Adv. Enzymol. 40: 141–238.Google Scholar
  215. Koch, G. L. E., Boulanger, Y., and Hartley, B. S. 1974. Repeating sequences in aminoacyl-tRNA synthetases. Nature. 249: 316–320.PubMedCrossRefGoogle Scholar
  216. Lamy, D., Jonard, G., Guilley, H., and Hirth, L. 1975. Comparison between the 3’OH end RNAGoogle Scholar
  217. sequence of two strains of TMV which may be aminoacylated. FEBS Lett. 60:202–204.Google Scholar
  218. Lapointe, J., and Söll, D. 1972a. Glutamyl tRNA synthetase of E. coli. I. Purification and properties. J. Biol. Chem. 247: 4966–4974.PubMedGoogle Scholar
  219. Lapointe, J., and Söll, D. 1972b. Glutamyl tRNA synthetase of E. coli. II. Interaction with intact glutamyl tRNA. J. Biol. Chem. 247: 4975–4981.PubMedGoogle Scholar
  220. Lawrence, F. 1973. Effect of adenosine on methionyl-tRNA synthetase. Eur. J. Biochem. 40: 493–500.PubMedCrossRefGoogle Scholar
  221. Lawrence, F., Blanquet, S., Poiret, M., Robert-Gero, M., and Waller, J. P. 1973. Ion requirements and kinetic parameter of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes. Eur. J. Biochem. 36: 234–243.PubMedCrossRefGoogle Scholar
  222. Lawrence, F., Shire, D. J., and Waller, J. P., 1974. The effect of adenosine analogues on the ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Eur. J. Biochem. 41: 73–81.PubMedCrossRefGoogle Scholar
  223. Lemaire, G., Gros, C., Epely, S., Kaminski, M., and Labouesse, B. 1975. Multiple forms of tryptophanyl-tRNA synthetase from beef pancreas. Eur. J. Biochem. 51: 237–252.PubMedCrossRefGoogle Scholar
  224. Lengyel, P., and Söll, D. 1969. Mechanism of protein biosynthesis. Bacteriol. Rev. 33: 264–301.PubMedGoogle Scholar
  225. Levitt, M. 1969. Detailed molecular model for tRNA. Nature. 224: 759–763.PubMedCrossRefGoogle Scholar
  226. Maelicke, A., Sprinzl, M., van der Haar, F., Khwaja, T. A., and Cramer, F. 1974. Structural studies on phenylalanine tRNA from yeast with the spectroscopic label formycin. Eur. J. Biochem. 43: 617–625.PubMedCrossRefGoogle Scholar
  227. Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absence of ribothymidine in specific eukaryotic tRNAs I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.PubMedCrossRefGoogle Scholar
  228. Marcu, K., et al. 1974. Personal communication.Google Scholar
  229. Mehler, A. H., and Mitra, S. K. 1967. The activation of arginyl tRNA synthetase by tRNA. J. Biol. Chem. 242: 5495–5499.PubMedGoogle Scholar
  230. Muench, K. H., Lipscomb, M. S., Lee, M., and Kuehl, G. V. 1975. Homologous cysteine-containing sequences in tryptophanyl-tRNA synthetases from E. coli. and human placentas. Science. 187: 1089–1091.PubMedCrossRefGoogle Scholar
  231. Mullins, D. W., Lacey, J. C., and Hearn, R. A. 1973a. 5 S rRNA and tRNA-evidence for a common evolutionary origin. Nature New Biol. 242: 80–81.Google Scholar
  232. Mullins, D. W., Lacey, J. C., and Hearn, R. A. 1973b. Reply. Nature New Biol. 245: 127–128.CrossRefGoogle Scholar
  233. Murayama, A., Raffin, J. P., Remy, P., and Ebel, J. P. 1975a. Yeast phenylalanyl-tRNA synthetase: Properties of the sulfhydryl groups; evidence for -SH requirements in tRNA acylation. FEBS Lett. 53: 15–22.PubMedCrossRefGoogle Scholar
  234. Murayama, A., Raffin, J. P., Remy, P., and Ebel, J. P. 1975b. Yeast phenylalanyl-tRNA synthetase; isolation of subunits on organomercurial-sepharose columns. FEBS Lett. 53: 23–25.PubMedCrossRefGoogle Scholar
  235. Nazario, M., and Evans, J. A. 1974. Physical and kinetic studies of arginyl tRNA ligase of Neurospora. J. Biol. Chem. 249: 4934–4942.Google Scholar
  236. Novelli, G. D. 1967. Amino acid activation for protein synthesis. Ann. Rev. Biochem. 36: 449–484.PubMedCrossRefGoogle Scholar
  237. C.Aberg, B., and Philipson, L. 1972. Binding of histidine to TMV RNA. Biochem. Biophys. Res. Comm. 48: 927–932.CrossRefGoogle Scholar
  238. Odom, O. W., Hardesty, B., Wintermeyer, W., and Zachau, H. G. 1974. The effect of removal or replacement with proflavine of the Y base in the anticodon loop of yeast tRNAphe on binding into the acceptor or donor sites of reticulocyte ribosomes. Arch. Biochem. Biophys. 162: 536–551.PubMedCrossRefGoogle Scholar
  239. Ofengand, J., Chlâdek, S., Robilard, G., and Bierbaum, J. 1974. Enzymatic acylation of oxydized reduced tRNA by E. coli., yeast, and rat liver synthetases occurs almost exclusively at the 2’ hydroxyl. Biochemistry. 13: 5425–5432.PubMedCrossRefGoogle Scholar
  240. Ofengand, J., and Henes, C. 1969. The function of pseudouridylic acid in tRNA. J. Biol. Chem. 244: 6241–6253.PubMedGoogle Scholar
  241. Papas, T. S., and Peterkofsky, A. 1972. A random sequential mechanism for arginyl tRNA synthetase of E. coli. Biochemistry. 11: 4602–4608.Google Scholar
  242. Parfait, R., and Grosjean, H. 1972. Arginyl-tRNA synthetase from Bacillus stearothermophilus. Eur. J. Biochem. 30: 242–249.CrossRefGoogle Scholar
  243. Penneys, N. S., and Muench, K. H. 1974. Human placental tryptophanyl tRNA synthetase. Biochemistry. 3: 560–565.CrossRefGoogle Scholar
  244. Petrissant, G. 1973. Evidence for the absence of the G-T-1,1,-C sequence from two mammalian initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.PubMedCrossRefGoogle Scholar
  245. Ravel, J. M., Wang, S. F., Heinemeyer, C., and Shive, W. 1965. Glutamyl and glutaminyl RNA synthetases of E. coli. J. Biol. Chem. 240: 432–438.Google Scholar
  246. Reid, B. R., Einarson, B., and Schmidt, J. 1972. Loop accessibility in tRNA. Biochimie. 54: 325–332.CrossRefGoogle Scholar
  247. Riesner, D., Maass, G., Thiebe, R., Philippsen, P., and Zachau, H. G. 1973. The conformational transitions in yeast tRNAPhe as studied with tRNAPhe fragments. Eur. J. Biochem. 36: 76–88.PubMedCrossRefGoogle Scholar
  248. Roberts, J. W., and Carbon, J. 1974. Molecular mechanism for missense suppression in E. coli. Nature. 250: 412–414.Google Scholar
  249. Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting tRNA from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.PubMedGoogle Scholar
  250. Roe, B., Michael, M., and Dudock, B. 1973. Function of NZ-methylguanine in phenylalanine tRNA. Nature New Biol. 246: 135–138.PubMedGoogle Scholar
  251. Rymo, L., Lundvik, L., and Lagerkvist, U. 1972. Subunit structure and binding properties of three amino acid tRNA ligases. J. Biol. Chem. 247: 3888–3899.PubMedGoogle Scholar
  252. Santi, D. V., Danenberg, P. V., and Satterly, P. 1971. Phenylalanyl tRNA synthetase from E.Google Scholar
  253. coli. Reaction parameters and order of substrate addition. Biochemistry. 10:4804–4812.Google Scholar
  254. Schmidt, J., Wang, R., Stanfield, S., and Reid, B. R. 1971. Yeast phenylalanyl tRNA synthetase. Biochemistry. 10: 3264–3268.PubMedCrossRefGoogle Scholar
  255. Schoemaker, H. J. P., Budzik, G. P., Giegé, R., and Schimmel, P. R. 1975. Three photocrosslinked complexes of yeast phenylalanine specific tRNA with aminoacyl tRNA synthetases. J. Biol. Chem. 250: 4440–4444.PubMedGoogle Scholar
  256. Schoemaker, H. J. P., and Schimmel, P. R. 1974. Photo-induced joining of a tRNA with its cognate amino-acid-tRNA synthetase. J. Mol. Biol. 84: 503–513.PubMedCrossRefGoogle Scholar
  257. Seno, T., Agris, P. F., and Söll, D. 1974. Involvement of the anticodon region of E. coli. tRNA°n and tRNA°u in the specific interaction with cognate aminoacyl-tRNA synthetase. Biochim. Biophys. Acta. 349: 328–338.PubMedGoogle Scholar
  258. Shulman, R. G., Hilbers, C. W., Kearns, D. R., Reid, B. R., and Wong, Y. P. 1973. Ring-current shifts in the 300 MHz NMR spectra of six purified tRNA molecules. J. Mol. Biol. 78: 57–69.PubMedCrossRefGoogle Scholar
  259. Simsek, M., Petrissant, G., and RajBhandary, U. L. I973a. Replacement of the sequence G-T-grC-G(A)- by G-A-U-C-G in initiator tRNA of rabbit liver cytoplasm. Proc. Nat. Acad. Sci. USA. 70: 2600–2604.Google Scholar
  260. Simsek, M., Ziegenmeyer, J., Heckman, J., and RajBhandary, U. L. 1973b. Absence of the sequence G-T-q,-C-G(A)- in several eukaryotic cytoplasmic initiator rRNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.PubMedCrossRefGoogle Scholar
  261. Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 72–74.PubMedGoogle Scholar
  262. Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.PubMedGoogle Scholar
  263. Singhal, R. P. 1974. Chemical probe of structure and function of tRNAs. Biochemistry. 13: 2924–2932.PubMedCrossRefGoogle Scholar
  264. Sprinzl, M., and Cramer, F. 1973. Accepting site for aminoacylation of tRNAPhe from yeast. Nature New Biol. 245: 3–5.PubMedGoogle Scholar
  265. Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.PubMedGoogle Scholar
  266. Steinberg, W. 1974. Temperature-induced depression of tryptophan biosynthesis in a tryptophanyltRNA synthetase mutant of B. subtilis. J. Bact. 117: 1023–1034.Google Scholar
  267. Suddath, F. L., Quigley, G. J., McPherson, A., Sneden, D., Kim, J. J., Kim, S. H., and Rich, A. 1974. Three dimensional structure of yeast phenylalanine tRNA at 3.0 resolution. Nature. 248: 20–24.PubMedCrossRefGoogle Scholar
  268. Taglang, R., Waller, J. P., Befort, N., and Fasiolo, F. 1970. Amino-acylation du tRNAva’ de E. coli. par la phénylalanyl-tRNA synthétase de levure. Eur. J. Biochem. 12: 550–557.PubMedCrossRefGoogle Scholar
  269. Tal, J., Deutscher, M. P., and Littauer, U. Z. 1972. Biological activity of E. coli. tRNAPhe modified in its C-C-A terminus. Eur. J. Biochem. 28: 478–491.PubMedCrossRefGoogle Scholar
  270. Thiebe, R. 1975. Aminoacylation of tRNA. Magnesium requirement and spermidine effect. FEBS Lett. 51: 259–261.PubMedCrossRefGoogle Scholar
  271. Thiebe, R., and Zachau, H. G. 1968. A special modification next to the anticodon of phenylalanine tRNA. Eur. J. Biochem. 5: 546–555.PubMedCrossRefGoogle Scholar
  272. Thomas, G. J., Chen, M. C., and Hartman, K. A. 1973. Raman studies of nucleic acids. X. Conformational structure of E. coli. tRNAs in aqueous solution. Biochim. Biophys. Acta. 324: 37–49.PubMedGoogle Scholar
  273. von Ehrenstein, G., Weisblum, B., and Benzer, S. 1963. The function of sRNA as amino acid adaptor in the synthesis of hemoglobin. Proc. Nat. Acad. Sci. USA. 49: 669–675.PubMedCrossRefGoogle Scholar
  274. White, B. N., and Tener, G. M. 1973. Properties of tRNAPhe from Drosophila. Biochim. Biophys. Acta. 312: 267–275.Google Scholar
  275. Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys: Res. Comm. 60: 1215–1221.CrossRefGoogle Scholar
  276. Wolfenden, R., Rammler, D. H., and Lipmann, F. 1964. On the site of esterification of amino acids to soluble RNA. Biochemistry. 3: 329–338.PubMedCrossRefGoogle Scholar
  277. Wong, Y. P., Reid, B. R., and Kearns, D. R. 1973. Conformation of charged and uncharged tRNAs. Proc. Nat. Acad. Sci. USA. 70: 2193–2195.PubMedCrossRefGoogle Scholar
  278. Yang, C. H., and Söll, D. 1974. Studies of tRNA tertiary structure by singlet-singlet energy transfer. Proc. Nat. Acad. Sci. USA. 71: 2838–2842.PubMedCrossRefGoogle Scholar
  279. Yang, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Comparison of the early melting transition of two tyrosine-specific tRNAs. Biochemistry. 11: 4375–4381.PubMedCrossRefGoogle Scholar
  280. Yem, D. W., and Williams, L. S. 1973. Evidence for the existence of two arginyl-tRNA synthetase activities in E. coli. J. Bact. 113: 891–894.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations