Advertisement

The Transfer Ribonucleic Acids

Chapter
  • 83 Downloads

Abstract

If not among all the universal components of organisms, then among the nucleic acids at least, the transfer RNAs are unique in having both a relatively constant molecular size and configuration. These consistencies are even more noteworthy because the class of substances (amino acids) they transport is totally lacking in both traits. Thus contrary to what might be expected from physicochemical considerations, no molecular relationships are in evidence between the carrier and transported compounds, a point that merits serious attention as the discussion proceeds. This chapter principally compares the characteristics of the base sequences of over 95 different species of tRNA. These results are then analyzed from an evolutionary standpoint in Chapter 8 in order to seek evidence relevant to the origin of life.

Keywords

Standard Relation Yeast tRNA Unpaired Region Short Type Eukaryotic Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alden, C. J., and Arnott, S. 1973. Nucleotide conformations in codon-anticodon interactions. Biochem. Biophys. Res. Comm. 53: 806–811.PubMedGoogle Scholar
  2. Armstrong, D. J., Burrows, W. J., Skoog, F., Roy, K. L., and Söll, D. 1969a. Cytokinins: Distribution in tRNA species of E. coli. Proc. Nat. Acad. Sci. USA. 63: 834–841.Google Scholar
  3. Armstrong, D. J., Skoog, F., Kirkegard, L. H., Hampel, A. E., Bock, R. M., Gillam, I., and Tener, G. M. 1969b. Cytokinins: Distribution in species of yeast tRNA. Proc. Nat. Acad. Sci. USA. 63: 504–511.PubMedGoogle Scholar
  4. Arnold, H., and Kersten, H. 1973. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli. and B. subtilis. FEBS Lett. 36: 34–38.Google Scholar
  5. Arnold, H., Schmidt, W., and Kersten, H. 1975. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis. FEBS Lett. 52: 62–65.Google Scholar
  6. Atkins, J. F., and Ryce, S. 1974. UGA and non-triplet suppressor reading of the genetic code. Nature. 249: 527–530.PubMedGoogle Scholar
  7. Baczynskyj, L., Biemann, K., and Hall, R. H. 1968. Sulfur-containing nucleoside from yeast tRNA: 2-thio-5 (or 6)-uridine acetic acid methyl ester. Science. 159: 1481–1483.PubMedGoogle Scholar
  8. Bartz, J., Söll, D., Burrows, W. J., and Skoog, F. 1970. Identification of the cytokinin-active ribonucleosides in pure E. coli. tRNA species. Proc. Nat. Acad. Sci. USA. 67: 1448–1453.PubMedGoogle Scholar
  9. Bhargava, P. M., Pallaiah, T., and Premkumar, E. 1970. Aminoacyl-tRNA synthetase recognition code-words in yeast tRNAs: A proposal. J. Theor. Biol. 29: 447–469.PubMedGoogle Scholar
  10. Blobstein, S. H., Gebert, R., Grunberger, D., Nakanishi, K., and Weinstein, I. B. 1975. Structure of the fluorescent nucleoside of yeast tRNAPhe. Arch. Biochem. Biophys. 167: 668–673.PubMedGoogle Scholar
  11. Carbon, J., Squires, C., and Hill, C. W. 1970. Glycine tRNA of E. coli. II. Improved GGA-recognition in strains containing a genetically altered tRNA; Reversal by a secondary suppressor mutation. J. Mol. Biol. 52: 571–584.PubMedGoogle Scholar
  12. Caskey, C. T., Beaudet, A., and Nirenberg, M. 1968. Codons and protein synthesis. 15. Dissimilar responses of mammalian and bacterial tRNA fractions to mRNA codons. J. Mol. Biol. 37: 99–118.PubMedGoogle Scholar
  13. Cedergren, R. J., Cordeau, J. R., and Robillard, P. 1972. On the phylogeny of tRNAs. J. Theor. Biol. 37: 209–220.PubMedGoogle Scholar
  14. Celis, J. E., Hooper, M. L., and Smith, J. D. 1973. Amino acid acceptor stem of E. coli. suppressor tRNATYr is a site of synthetase recognition. Nature New Biol. 244: 261–264.PubMedGoogle Scholar
  15. Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. Mole. Biol. 11: 489–525.Google Scholar
  16. Chinali, G., Sprinzl, M., Parmeggiani, A., and Cramer, F. 1974. Participation in protein biosynthesis of tRNAs bearing altered 3’-terminal ribosyl residues. Biochemistry. 13: 3001–3010.PubMedGoogle Scholar
  17. Crick, F. H. C. 1966. Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol. 19: 548–555.PubMedGoogle Scholar
  18. Dayhoff, M. O., ed. 1969. Atlas of Protein Sequence and Structure. 1969., Vol. 4. Silver Spring, Md., Nat. Biomed. Res. Found.Google Scholar
  19. Dudock, B. S., Katz, G., Taylor, E. K., and Holley, W. 1969. Primary structure of wheat germ phenylalanine transfer RNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.PubMedGoogle Scholar
  20. Dudock, B. S., DiPeri, C., and Michael, M. S. 1970. On the nature of the yeast phenylalanine transfer ribonucleic acid synthetase recognition site. J. Biol. Chem. 245: 2465–2468.PubMedGoogle Scholar
  21. Dudock, B. S., DiPeri, C., Scileppi, K., and Reszelback, R. 1971. The yeast phenylalanyl-tRNA synthetase recognition site: The region adjacent to the dihydrouridine loop. Proc. Nat. Acad. Sci. USA. 68: 681–684.PubMedGoogle Scholar
  22. Dugré, M., and Cedergren, R. J. 1974. Origine de l’inosine dans les tRNA de levure. Can. J. Biochem. 52: 417–422.PubMedGoogle Scholar
  23. Eisinger, J., and Gross, N. 1974. The anticodon-anticodon complex. J. Mol. Biol. 88: 165–174.PubMedGoogle Scholar
  24. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raegmaekers, A., Van der Bergh, A., Volckaert, G., and Ysebaert, M. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature. 260: 500–507.PubMedGoogle Scholar
  25. Geller, M., Pohorille, A. and Jaworski, A., 1973. Electronic structure of thiouracils and their interaction with adenine. Biochim. Biophys. Acta. 331: 1–8.PubMedGoogle Scholar
  26. Genter, N., and Berg, P. 1971. Occurrence of a glycyl-lipopolysaccharide structure in E. coli. and its enzymatic formation from glycyl-tRNA. Fed. Proc. 30: 1218.Google Scholar
  27. Ghysen, A., and Celis, J. E. 1974. Mischarging single and double mutants of E. coli sup. 3 tyrosine tRNA. J. Mol. Biol. 83: 333–351.PubMedGoogle Scholar
  28. Gillam, I., Millward, S., Blew, D., von Tigerstrom, M., Wimmer, E., and Tener, G. M. 1967. The separation of soluble RNAs on benzoylated dimethylaminoethylcellulose. Biochemistry. 6: 3043–3056.PubMedGoogle Scholar
  29. Gould, R. M., Thornton, M. P., Liepkalns, V., and Lennarz, W. J. 1968. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. II. Specificity of alanyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3096–3104.PubMedGoogle Scholar
  30. Griffin, G. D., Yang, W. K., and Novelli, G. D. 1976. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. Arch. Biochem. Biophys. 176: 187–196.PubMedGoogle Scholar
  31. Hall, R. H. 1971. The Modified Nucleosides in Nucleic Acids., Columbia University Press, N.Y., p. 257–280.Google Scholar
  32. Hirsch, D. 1971, Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.Google Scholar
  33. Holmes, W. M., Hurd, R. E., Reid, B. R., Rimerman, R. A., and Hatfield, G. W. 1975. Separation of tRNA by sepharose chromatography using reverse salt gradients. Proc. Nat. Acad. Sci. USA. 72: 1068–1071.PubMedGoogle Scholar
  34. Inokuchi, H., Celis, J. E., and Smith, J. D. 1974. Mutant tyrosine tRNAs of E. coli: Construction by recombination of a double mutant A1G82 chargeable with glutamine. J. Mol. Biol. 85: 187–192.PubMedGoogle Scholar
  35. Isham, K. R., and Stulberg, M. P. 1974. Modified nucleosides in undermethylated phenylalanine tRNA from E. coli. Biochim. Biophys. Acta. 340: 177–182.Google Scholar
  36. Jacobson, B. K. 1971. Role of an isoacceptor tRNA as an enzyme inhibitor: Effect on tryptophan pyrrolase of Drosophila. Nature New Biol. 231: 17–19.Google Scholar
  37. Johnson, H., Hayashi, H., and Söll, D. 1970. Isolation and properties of a tRNA deficient in ribothymidine. Biochemistry. 9: 2823–2831.PubMedGoogle Scholar
  38. Kaji, A., Kaji, H., and Novelli, G. D. 1965a. Soluble amino acid-incorporating system. I. Preparation of the system and nature of the reaction. J. Biol. Chem. 240: 1185–1191.PubMedGoogle Scholar
  39. Kaji, A., Kaji, H., and Novelli, G. D. 1965b. Soluble amino acid-incorporating system. II. Soluble nature of the system and the characterization of the radioactive product. J. Biol. Chem. 240: 1192–1199.PubMedGoogle Scholar
  40. Kaminek, M. 1974. Evolution of tRNA and the origin of two positional isomers of zeatin. J. Theor. Biol. 48: 489–492.PubMedGoogle Scholar
  41. Körner, A., and Söll, D. 1974. N-(purin-6-yIcarbamoyl)threonne: Biosynthesis in vitro. in tRNA by an enzyme purified from E. coli. FEBS Lett. 39: 301–306.Google Scholar
  42. Kruppa, J., and Zachau, H. G. 1972. Multiplicity of serine-specific transfer RNAs of brewers’ and bakers’ yeast. Biochim. Biophys. Acta. 277: 499–512.PubMedGoogle Scholar
  43. Leibowitz, M. J., and Soffer, R. L. 1969. A soluble enzyme from Escherichia coli. which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem. Biophys. Res. Comm. 36: 47–53.PubMedGoogle Scholar
  44. Li, H. J., Nakanishi, K., Grunberger, D., and Weinstein, I. B., 1973. Biosynthetic studies of the Y base in yeast phenylalanine tRNA. Incorporation of guanosine. Biochem. Biophys. Res. Comm., 55: 818–823.PubMedGoogle Scholar
  45. Lindahl, T., Adams. A., Geroch, M., and Fresco, J. R. 1967. Selective recognition of the native conformation of tRNAs by enzymes. Proc. Nat. Acad. Sci. USA. 57: 178–185.Google Scholar
  46. Liu, L. P., and Ortwerth, B. J. 1972. Specificity of rat liver lysine tRNA for codon recognition. Biochemistry. 11: 12–17.PubMedGoogle Scholar
  47. Matsuhashi, M., Dietrich, C. P., and Strominger, J. L. 1967. Biosynthesis of the peptidoglycan of bacterial cell walls. III. The role of soluble ribonucleic acid and of lipid intermediates in glycine incorporation in Staphylococcus aureus. J. Biol. Chem. 242: 3191–3206.Google Scholar
  48. Maugh, T. H. 1974. Rous sarcoma virus: A new role for transfer RNA. Science. 186: 41.PubMedGoogle Scholar
  49. Melera, P. W., Momeni, C., and Rusch, H. L. 1974. Analysis of isoaccepting tRNAs during the growth phase mitotic cycle of Physarum polycephalum. Biochemistry. 13: 4139–4142.Google Scholar
  50. Morikawa, K., Torii, K., Iitaka, Y., and Tsuboi, M. 1974. Crystal and molecular structure of the methyl ester of uridin-5-oxyacetic acid: A minor constituent of E. coli. tRNAs. FEBS Lett. 48: 279–282.PubMedGoogle Scholar
  51. Munch, H. J., and Thiebe, R. 1975. Biosynthesis of the nucleoside Y in yeast tRNAphe: Incorporating of the 3-amino-3-carboxypropyl-group from methionine. FEBS Lett. 51: 257–258.PubMedGoogle Scholar
  52. Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970a. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. valine tRNA. Biochem. Biophys. Res. Comm. 38: 657–662.PubMedGoogle Scholar
  53. Neidhardt, F. C. 1966. Roles of amino acid activating enzymes in cellular physiology. Bacteriol. Rev. 30:701–7–19.Google Scholar
  54. Nesbitt, J. A., and Lennarz, W. J. 1968. Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3088–3095.PubMedGoogle Scholar
  55. Nishimura, S. 1972. Minor components in tRNA: Their characterization, location, and function. Progr. Nucleic Acid Res. Mol. Biol. 12: 49–85.Google Scholar
  56. Nishimura, S., Taya, Y., Kuchino, Y., and Ohashi, Z. 1974. Enzymatic synthesis of 3-(3-amino3-carboxypropyl)uridine in E. coli. phenylalanine tRNA: Transfer of the 3-amino-3-carboxypropyl group from 5-adenosylmethionine. Biochem. Biophys. Res. Comm. 57: 702–708.PubMedGoogle Scholar
  57. Nishimura, S., and Weinstein, I. B. 1969. Fractionation of rat liver tRNA. Isolating tyrosine, valine, serine, and phenylalanine tRNAs and their coding properties. Biochemistry. 8: 832–842.PubMedGoogle Scholar
  58. Nishimura, S., Yamada, Y., and Ishikura. H. 1969. The presence of 2-methylthio-N(O2-isopentenyl)adenosine in serine and phenylalanine tRNAs from E. coli. Biochim. Biophys. Acta. 179: 517–520.Google Scholar
  59. Odom, O. W., Hardesty, B., Wintermeyer, W., and Zachau, H. G. 1974. The effect of removal or replacement with profiavin of the Y base in the anticodon loop of yeast tRNAphe on binding into the acceptor or donor sites of reticulocyte ribosomes. Arch. Biochem. Biophys. 162: 536–551.PubMedGoogle Scholar
  60. Ofengand, J., and Henes, C. 1969. The function of pseudouridylic acid in tRNA. J. Biol. Chem. 244: 6241–6253.PubMedGoogle Scholar
  61. Ohashi, Z., Maeda, M., McCloskey, J. A., and Nishimura, S. 1974. 3-(3-amino-3-carboxypropyl)uridine: A novel modified nucleoside isolated from E. coli. phyenylalanine tRNA. Biochemistry. 13: 2620–2625.Google Scholar
  62. Parthasarathy, R., Ohrt, J. M., and Chkeda, G. B. 1974a. Conformation of N-(purin-6-ylcarbamoyl)glycine, a hypermodified base in tRNA. Biochem. Biophys. Res. Comm. 57: 649–653.PubMedGoogle Scholar
  63. Parthasarathy, R., Ohrt, J. M., and Chkeda, G. B. 1974b. Conformation and possible role of hypermodified nucleosides adjacent to 3’-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)L-threonine riboside. Biochem Biophys. Res. Comm. 60: 211–218.PubMedGoogle Scholar
  64. Pearson, R. L., Hancher, C. W., Weiss, J. F., Holladay, D. W., and Keemers, A. D. 1973. Preparation of crude tRNA and chromatographic purification of five tRNAs from calf liver. Biochim. Biophys. Acta. 294: 236–249.Google Scholar
  65. Pearson, R. L., Weiss, J. F., and Kelmers, A. D. 1971. Improved separation of tRNAs on polychlorotrifluoroethylene-supported reversed-phase chromatography columns. Biochim. Biophys. Acta. 228: 770–774.PubMedGoogle Scholar
  66. Peterkofsky, A., and Jesensky, C. 1969. The localization of N6(6,2-isopentenyl)-adenosine among the acceptor species of tRNA of Lactobacillus acidophilus. Biochemistry. 8: 3798–3807.Google Scholar
  67. Petit, J. F., Strominger, J. L., and Söll, D. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. II. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J. Biol. Chem. 243: 757–767.Google Scholar
  68. Petrissant, G. 1973. Evidence for the absence of G-TAI’-C sequence from two mammalian initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.PubMedGoogle Scholar
  69. Powers, D. M., and Peterkofsky, A. 1972. Biosynthesis and specific labeling of N(purin-6-ylcarbamoyl)threonine of E. coli. tRNA. Biochem. Biophys. Res. Comm. 46: 831–838.PubMedGoogle Scholar
  70. Randerath, E., Chia, L.-L. S. Y., Morris, H. P., and Randerath, K. 1974. Base analysis of RNA by 3H postlabelling-a study of ribothymidine content and degree of base methylation of 4 S RNA. Biochim. Biophys. Acta. 366: 159–167.PubMedGoogle Scholar
  71. Rao, P. M.,and Kaji, H. 1974. Utilization of isoaccepting leucyl-tRNA in the soluble incorporation system and protein synthesizing systems from E. coli. FEBS Lett. 43: 199–202.Google Scholar
  72. Richter, D., Erdmann, V. A., and Sprinzl, M. 1973. Specific recognition of GT“I’C loop (loop IV) of tRNA by 50 S ribosomal subunits from E. coli. Nature New Biol. 246: 132–135.Google Scholar
  73. Roberts, W. S. L., Strominger, J. L., and Söll, D. 1968a. Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus. J. Biol. Chem. 243: 749–756.Google Scholar
  74. Roberts, W. S. L., Petit, J. F., and Strominger, J. L. 1968b. Biosynthesis of the peptidoglycan of bacteria. VIII. Specificity in the utilization of L-alanyl tRNA for interpeptide bridge synthesis in Arthrobacter crystailopoietes. J. Biol. Chem. 243: 768–772.Google Scholar
  75. Roe, B., and Dudock, B. 1972. The role of the fourth nucleotide from the 3’-end in the yeast phenylalanyl tRNA synthetase recognition site: Requirement for adenosine. Biochem. Biophys. Res. Comm. 49: 399–406.PubMedGoogle Scholar
  76. Roth, J. R., and Ames, B. N. 1966. Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having layered histidyl-tRNA sythetase. J. Mol. Biol. 22: 325–334.PubMedGoogle Scholar
  77. Saneyoshi, M., Ohashi, Z., Harada, F., and Nishimura, S. 1972. Isolation and characterization of 2-methyl-adenosine from E. coli. tRNA2’°, tRNAifi°, tRNAH’a and tRNAArg. Biochim: Biophys. Acta. 262: 1–10.Google Scholar
  78. Schlesinger, S., and Magasanik, B. 1964. Effect of a-methylhistidine on the control of histidine synthesis. J. Mol. Biol. 9: 670–682.PubMedGoogle Scholar
  79. Schulman, LaD. H. 1972. Structure and function of E. coli. formylmethionine tRNA: Loss of methionine acceptor activity by modification of a specific guanosine residue in the acceptor stem of formylmethionine tRNA from E. coli. Proc: Nat. Acad. Sci. USA. 69: 3594–3597.Google Scholar
  80. Sekiya, T., Takeishi, K., and Ukita, T. 1969. Specificity of yeast glutamic acid tRNA for codon recognition. Biochim. Biophys. Acta. 182: 411–426.PubMedGoogle Scholar
  81. Sen, G. C., and Ghosh. H. P., 1973. Coding properties of isoaccepting lysine tRNA species from baker’s yeast. Biochim. Biophys. Acta. 308: 106–116.PubMedGoogle Scholar
  82. Silbert, D. F., Fink, G. R., and Ames, B. N. 1966. Histidine regulatory mutants in Salmonella typhimurium. III. A class of regulatory mutants deficient in tRNA for histidine. J. Mol. Biol. 22: 335–347.PubMedGoogle Scholar
  83. Simsek, M., Ziegenmeyer, J., Heckman, J., and RajBhandary, U. L. 1973. Absence of the sequence GTY’CG(A)- in several eukaryotic cytoplasmic initiator tRNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.PubMedGoogle Scholar
  84. Smith, J. D., and Celis, J. E. 1973. Mutant tyrosine tRNA that can be charged with glutamine. Nature New Biol. 243: 66–71.PubMedGoogle Scholar
  85. Söll, D. 1971. Enzymatic modification of tRNA. Science. 173: 293–299.PubMedGoogle Scholar
  86. Söll, D., Cherayil, J., Jones, D. S., Faulkner, R. D., Hampel, A., Bock, R. M., and Khorana, H. C. 1966. sRNA specificity for codon recognition as studied by the ribosomal binding technique. Cold Spring Harbor Symp. Quant. Biol. 31: 51–62.Google Scholar
  87. Sprinzl, M., and Cramer, F. 1973. Accepting site for aminoacylation of tRNAPhe from yeast. Nature New Biol. 245: 3–5.PubMedGoogle Scholar
  88. Taglang, R., Waller, J. P., Befort, N., and Fasciolo, F. 1970. Amino-acylation du tRNAia’ de E. coli. par la phénylalanyl-tRNA synthétase de levure. Eur. J. Biochem. 12: 550–557.PubMedGoogle Scholar
  89. Tal, J., Deutscher, M. P., and Littauer, U. Z. 1972. Biological activity of E. coli. tRNAPhe modified in its -CCA terminus. Eur. J. Biochem. 28: 478–491.PubMedGoogle Scholar
  90. Thiebe, R., and Poralla, K. 1973. Origin of the nucleoside Y in yeast tRNAPhe. FEBS Lett. 38: 27–28.PubMedGoogle Scholar
  91. Wallace, R. B., and Freeman, K. B. 1974. Multiple species of raethionyl-tRNA from mouse liver mitochondria. Biochem. Biophys. Res. Comm. 60: 1440–1445.PubMedGoogle Scholar
  92. White, B. N., and Tener, G. M. 1973. Properties of tRNAPhe from Drosophila. Biochim. Biophys. Acta. 312: 267–275.Google Scholar
  93. White, B. N., Dunn, R., Gillam, I., Tener, G. M., Armstrong, D. J., Skoog, F., Frihart, C. R., and Leonard, N. J. 1975. An analysis of five serine tRNAs from Drosophila. J. Biol. Chem. 250: 515–521.Google Scholar
  94. Wittig, B., Reuter, S., and Gottschling, H. 1973. Purification of the four lysine-specific tRNAs from chick embryos. Biochim. Biophys. Acta. 331: 221–230.PubMedGoogle Scholar
  95. Woodward, W. R., and Herbert, E. 1972. Coding properties of reticulocyte lysine tRNAs in hemoglobin synthesis. Science. 177: 1197–1199.PubMedGoogle Scholar
  96. Wu, M., Davidson, N., Attardi, G., and Aloni, Y. 1972. Expression of the mitochondrial genome in HeLa Cells. XIV. The relative positions of the 4 S RNA genes and of the rRNA genes in mitochondrial DNA. J. Mol. Biol. 71: 81–93.PubMedGoogle Scholar
  97. Yamada, Y., Nishimura, S., and Ishikura, H. 1971. The presence of 2-methylthio-Ns-(02-isopentenyl)adenosine in leucine, tryptophan, and cysteine tRNAs from E. coli. Biochiin. Biophys. Acta. 247: 170–174.Google Scholar
  98. Yang. W. K., Hellman, A., Martin, D. H., Hellman, K. B., and Novelli, G. D. 1969. Iso-accepting tRNAs of L-M cells in culture and after tumor induction in C3H mice. Proc. Nat. Acad. Sci. USA. 64: 1411–1418.Google Scholar
  99. Yang, W. K., and Novelli, G. D. 1971. Analysis of isoaccepting tRNAs in mammalian tissues and cells. Methods Enzymol. 20: 44–55.Google Scholar
  100. Barrell, B. G., Coulson, A. R., and McClain, W. H. 1973. Nucleotide sequence of a glycine tRNA coded by bacteriophage T4. FEBS Lett. 37: 64–69.PubMedGoogle Scholar
  101. Hill, C. W., Combriato, G., Stemhart, W., Riddle, D. L., and Carbon, J. 1973. The nucleotide sequence of the GGG-specific glycine tRNA of E. coli. and Salmonella typhimurium. J. Biol. Chem. 248: 4252–4262.Google Scholar
  102. Hill, C. W., Squires, C., and Carbon, J. 1970. Structural genes for two glycine tRNA species. J. Mol. Biol. 52: 557–569.PubMedGoogle Scholar
  103. Marcu, K., Mignery, R., Reszelbach, R., Roe, B., Sirover, M., and Dudock, B. 1973. The absense of ribothymidine in specific tRNAs. I. Glycine and threonine tRNAs of wheat embryo. Biochem. Biophys. Res. Comm. 55: 477–483.PubMedGoogle Scholar
  104. Riddle, D. L., and Carbon, J. 1973. Frameshift suppression: A nucleotide addition in the anticodon of a glycine tRNA. Nature New Biol. 242: 230–234.PubMedGoogle Scholar
  105. Roberts, R. J. 1972: Structures of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–46.Google Scholar
  106. Roberts, R. J. 1974. Staphylococcal tRNAs. II. Sequence analysis of isoaccepting glycine tRNA IA and IB from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4787–4796.PubMedGoogle Scholar
  107. Roberts, R. J., Lovinger, G. G., Tamura, T., and Strominger, J. L. 1974. Staphylococcal tRNAs. I. Isolation and purification of the isoaccepting glycine tRNAs from Staphylococcus epidermidis. Texas 26. J. Biol. Chem. 249: 4781–4786.PubMedGoogle Scholar
  108. Squires, C., and Carbon, J. 1971. Normal and mutant glycine tRNAs. Nature New Biol. 233: 274–277.PubMedGoogle Scholar
  109. Stahl, S., Paddock, G., and Abelson, J. 1973. T4 bacteriophage tRNA°1. Biochem. Biophys. Res. Comm. 54: 567–569.PubMedGoogle Scholar
  110. Stewart, T. S., Roberts, R. J., and Strominger, J. L. 1971. Novel species of RNA. Nature. 230: 36–38.PubMedGoogle Scholar
  111. Yoshida, M. 1973. The nucleotide sequence of tRNAch from yeast. Biochem. Biophys. Res. Comm. 50: 779–784.PubMedGoogle Scholar
  112. Zachau, H. G. 1969. Transfer ribonucleic acids. Angew. Chem. (Int. Ed.). 8: 711–727.Google Scholar
  113. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswrick, J. R., and Zamir, A. 1965a. Structure of a ribonucleic acid. Science., 147: 1462–1465.PubMedGoogle Scholar
  114. Holley, R. W., Everett, G. A., Madison, J. T., and Zamir, A. 1965b. Nucleotide sequences in the yeast alanine tRNA. J. Biol. Chem. 240: 2122–2127.PubMedGoogle Scholar
  115. Merrill, C. R. 1968. Reinvestigation of the primary structure of yeast alanine tRNA. Biopolymers. 6: 1727–1735.Google Scholar
  116. Murao, K., Hasegawa, T., and Ishikura, H. 1976. 5-methoxyuridine: A new minor constituent located in the first position of the anticodon of tRNAma, tRNAThr, and tRNAval from B. subtilis. Nucl. Acids Res. 3:2851–2857.Google Scholar
  117. Penswick, J. R., Martin, R., and Dirheimer, G. 1975. Evidence supporting a revised sequence for yeast alanine tRNA. FEBS Lett. 50: 28–31.PubMedGoogle Scholar
  118. Takemura, S., and Ogawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 323–333.Google Scholar
  119. Takemura, S., Ogawa, K., and Nakazawa, K. 1972. Nucleotide sequence of alanine tRNA, from Torulopsis utilis. FEBS Lett. 25: 29–32.Google Scholar
  120. Takemura, S., Ogawa, K., and Nakazawa, K. 1973. The primary structure of alanine tRNAI from Torulopsis utilis. J. Biochem. 74: 313–322.Google Scholar
  121. Williams, R. J., Nagel, W., Roe, B., and Dudock, B. 1974. Primary structure of E. coli. alanine tRNA: Relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem. Biophys. Res. Comm. 60: 1215–1221.PubMedGoogle Scholar
  122. Yoshida, M., Kaziro, Y., and Ukita, T. 1968. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA. Biochim. Biophys. Acta. 166: 646–655.PubMedGoogle Scholar
  123. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1971. Structure of asparate-tRNA from brewer’s yeast. Nature New Biol. 230: 125–126.PubMedGoogle Scholar
  124. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972a. The primary structure of aspartate tRNA from brewer’s yeast. Complete digestion with pancreatic ribonuclease and T, ribonuclease. Biochim. Biophys. Acta. 259: 198–209.PubMedGoogle Scholar
  125. Gangloff, J., Keith, G., Ebel, J. P., and Dirheimer, G. 1972b. The primary structure of aspartateGoogle Scholar
  126. tRNA from brewer’s yeast. II. Partial digestions with pancreatic ribonuclease and T1 ribonuclease and derivation of complete sequence. Biochim. Biophys. Acta. 259: 210–222.Google Scholar
  127. Harada, F., and Nishimura, S. 1972. Possible anticodon sequences of tRNA’, tRNAAS“, and tRNAAaP from E. coli. B. Universal presence of nucleoside Q in the first position of the anticodon of these transfer ribonucleic acids. Biochemistry. 11: 301–308.PubMedGoogle Scholar
  128. Harada, F., Yamaizumi, K., and Nishimura, S. 1972. Oligonucleotide sequences of RNase T1 and pancreatic RNase digests of E. coli. aspartic acid tRNA. Biochem. Biophys. Res. Comm. 49: 1605–1609.PubMedGoogle Scholar
  129. Keith, G., Gangloff, J., Ebel, J. P., and Dirheimer, G. 1970. Etablissement de la séquence de nucléotides de l’aspartate-t-RNA de levure de bière. C. R. Acad. Sci. Paris., 271: 613–616.Google Scholar
  130. Kobayashi, T., Irie, T., Yoshida, M., Takeishi, K., and Ukita, T. 1974. The primary structure of yeast glutamic acid tRNA specific to the GAA codon. Biochim. Biophys. Acta. 366: 168–181.PubMedGoogle Scholar
  131. Munninger, K. O., and Chang, S. H. 1972. A fluorescent nucleoside from glutamic acid tRNA of E. coli. K12. Biochem. Biophys. Res. Comm. 46: 1837–1842.PubMedGoogle Scholar
  132. Ohashi, Z., Murao, K., Yahagi, T., von Minden, D. L., McCloskey, J. A., and Nishimura, S. 1972. Characterization of C+ located in the first position of the anticodon of E. coli. tRNAMet as N4-acetylcytidine. Biochim. Biophys. Acta. 262: 209–213.Google Scholar
  133. Ohashi, Z., Saneyoshi, M., Harada, F., Hara, H., and Nishimura, S. 1970. Presumed anticodon structure of glutamic acid tRNA from E. coli: A possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem. Biophys. Res. Comm. 40: 866–872.Google Scholar
  134. Singhal, R. P. 1971. Modification of E. coli. glutamate tRNA with bisulfite. J. Biol. Chem. 246: 5848–5851.PubMedGoogle Scholar
  135. Yoshida, M., Takeishi K., and Ukita, T. 1970. Anticodon structure of GAA-specific glutamic acid tRNA from yeast. Biochem. Biophys. Res. Comm. 39: 852–857.PubMedGoogle Scholar
  136. Yoshida, M., Takeishi, K., and Ukita, T. 1971. Structural studies on a yeast glutamic acid tRNA specific to GAA codon. Biochim. Biophys. Acta. 228: 153–166.PubMedGoogle Scholar
  137. Bayev, A. A., Venkstern, T. V., Mirzabekov, A. D., Krutilina, A. I., Li, L., and Axelrod, V. D. 1967. Primary structure of the valine tRNA. Mol. Biol. 1: 754–758.Google Scholar
  138. Bonnet, J., Ebel, J. P., and Dirheimer, G. 1971. Primary structure of tRNA)a’, from brewer’s yeast. FEBS Lett. 15: 286–290.PubMedGoogle Scholar
  139. Bonnet, J., Ebel, J. P., Dirheimer, G., Shershneva, L. P., Krutilina, A. I., Venkstern, T. V., and Bayer, A. A. 1974. The corrected nucleotide sequence of valine tRNA from baker’s yeast. Biochimie. 56: 1211–1213.PubMedGoogle Scholar
  140. Harada, F., Kimura, F., and Nishimura, S. 1969. Nucleotide sequence of valine tRNA from E. coli. B. Biochim. Biophys. Acta. 195: 590–592.PubMedGoogle Scholar
  141. Harada, F., Kimura, F., and Nishimura, S. 1971. Primary sequence of tRNA’, from E. coli. B. Biochemistry. 10: 3269–3283.PubMedGoogle Scholar
  142. Kimura-Harada, F., Saneyoshi, M., and Nishimura, S. 1971. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 13: 335–338.Google Scholar
  143. Mirzavekov, A. D., Lastit, D., Leoina, E. S., Undritsov, I. M., and Baev, A. A. 1972. The acceptor activity of dissected baker’s yeast tRNA°a1: Localization of two possible recognition sites of valyl-tRNA ligase. Mol. Biol. 6: 69–84.PubMedGoogle Scholar
  144. Mizutani, T., Miyazaki, M., and Takemura, S. 1968. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 64: 839–848.Google Scholar
  145. Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. 1970. Uridin-5-oxyacetic acid: A new minor constituent from E. coli. tRNA I. Biochem. Biophys. Res. Comm. 38: 657–662.PubMedGoogle Scholar
  146. Piper, P. W. 1975b. The primary structure of the major cytoplasmic valine tRNA of mouse myeloma cells. Eur. J. Biochem. 51: 295–304.PubMedGoogle Scholar
  147. Piper, P. W., and Clark, B. F. 1974a. The nucleotide sequences of cytoplasmic methionine and valine tRNAs from mouse myeloma cells. FEBS Lett. 47: 56–59.PubMedGoogle Scholar
  148. Takada-Gurrier, C., Grosjean, H. G., Dirheimer, G., and Keith, G. 1976. The primary structure of tRNA2a’ from B. stearothermophilus. FEBS Lett. 62: 1–3.Google Scholar
  149. Takemura, S., Mizutani, T., and Miyazaki, M. 1968a. The primary structure of valine-I tRNA from Torulopsis utilis. J. Biochem. 63: 277–278.Google Scholar
  150. Takemura, S., Mizutani, T., and Miyazaki, M. 1968b. The primary structure of valine-I tRNA from Torulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1. J. Biochem. 64: 827–837.PubMedGoogle Scholar
  151. Yaniv, M., and Barrell, B. G. 1969. Nucleotide sequence of E. coli. B tRNAva’. Nature. 222: 278–279.PubMedGoogle Scholar
  152. Yaniv, M., and Barrell, B. G. 1971. Sequence relationship of three valine acceptor tRNAs from E. coli. Nature New Biol. 233: 113–114.Google Scholar
  153. Zachau, H. G. 1972. Transfer ribonucleic acids. In: Bosch, L., ed., The Mechanism of Protein Synthesis and its Regulation., Amsterdam, North-Holland Publishing Co., p. 173–217.Google Scholar
  154. Blank, H. U., and Sö11, D. 1971. The nucleotide sequence of two leucine tRNA species from E. coli. K12. Biochem. Biophys. Res. Comm. 43: 1192–1197.PubMedGoogle Scholar
  155. Dube, S. K., Marcker, K. A., and Yudelevich, A. 1970. The nucleotide sequence of a leucine tRNA from E. coli. FEBS Lett. 9: 168–170.Google Scholar
  156. Harada, F., Sato, S., and Nishimura, S. 1972. Unusual CCA-stem structure of E. coli. B tRNA1 s FEBS Lett. 19: 352–355.Google Scholar
  157. Singer, C. E., and Smith, G. R. 1972. Histidine regulation in Salmonella typhimurium. XIII. Nucleotide sequence of histidine tRNA. J. Biol. Chem. 247: 2983–3000.Google Scholar
  158. Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. N. 1972. Mutant tRNA’ ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 73–74.Google Scholar
  159. Comer, M. M., Foss, K., and McClain, W. H. 1975. A mutation of the wobble nucleotide of a bacteriophage T4 tRNA. J. Mol. Biol. 99: 283–293.PubMedGoogle Scholar
  160. Folk, W. R., and Yaniv, M. 1972. Coding properties and nucleotide sequences of E. coli. glutamine tRNAs. Nature New Biol. 237: 165–166.PubMedGoogle Scholar
  161. Seidman, J. G., Corner, M. M., and McClain, W. H. 1974. Nucleotide alterations in the bacteriophage T4 glutamine tRNA that affect ochre suppressor activity. J. Mol. Biol. 90: 677–689.PubMedGoogle Scholar
  162. Murao, K., Tanabe, T., Ishii, F., Namiki, M., and Nishimura, S. 1972. Primary sequence of arginine tRNA from E. coli. Biochem. Biophys. Res. Comm., 47: 1332–1337.Google Scholar
  163. Weissenbach, J., Martin, R., and Dirheimer, G. 1972. Nucleotide sequence of tRNAiltrg from brewer’s yeast. FEBS Lett. 28: 353–355.PubMedGoogle Scholar
  164. Weissenbach, J., Martin, R., and Dirheimer, C. 1975a. The primary structure of tRNAr from brewer’s yeast. Eur. J. Biochem. 56: 521–526.PubMedGoogle Scholar
  165. Weissenbach, J., Martin, R., and Dirheimer, G., 1975. Partial digestion with Ti RNase and primary sequence of yeast tRNAllrg. Eur. J. Biochem. 56: 527–532.PubMedGoogle Scholar
  166. Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974.. Transfer RNA biosynthesis: The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.Google Scholar
  167. Seidman, J. G., Barrell, B. G., and McClain, W. H. 1975. Five steps in the conversion of a large precusor RNA into bacteriophage proline and serine tRNAs. J. Mol. Biol. 99: 733–760.PubMedGoogle Scholar
  168. Madison, J. T., and Boguslawski, S. J. 1974. Partial digestion of a yeast lysine tRNA and reconstruction of the nucleotide sequence. Biochemistry. 13: 524–527.PubMedGoogle Scholar
  169. Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1972. Nucleotide sequence of a lysine tRNA from baker’s yeast. Science. 176: 687–689.PubMedGoogle Scholar
  170. Madison, J. T., Boguslawski, S. J., and Teetor, G. H. 1974. Oligonucleotide composition of a yeast lysine tRNA. Biochemistry. 13: 518–523.PubMedGoogle Scholar
  171. Smith, C. J., Ley, A. N., D’Obrenan, P., and Mitra, S. K. 1971. The structure and coding specificity of a lysine tRNA from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem., 246: 7817–7829.PubMedGoogle Scholar
  172. Smith, C. J., Teh, H. S., Ley, A. N., and D’Obrenan, P. 1973. The nucleotide sequences of the major and minor lysine tRNAs from the haploid yeast S. cerevisiae. aS288C. J. Biol. Chem. 248: 4475–4485.PubMedGoogle Scholar
  173. Harada, F., and Nishimura, S. 1974. Purification and characterization of AUA specific isoleucine tRNA from E. coli. B. Biochemistry. 13: 300–307.PubMedGoogle Scholar
  174. Takemura, S., Murakami, M., and Miyazaki, M. 1969a. Nucleotide sequence of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 489–491.Google Scholar
  175. Takemura, S., Murakami, M., and Miyazaki, M., 1969b. The primary structure of isoleucine tRNA from Torulopsis utilis. J. Biochem. 65: 553–566.Google Scholar
  176. Yarus, M., and Barre11, B. G. 1971. The sequence of nucleotides in tRNAne from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.PubMedGoogle Scholar
  177. Cory, S., and Marcker, K. A. 1970. The nucleotide sequence of methionine tRNAM. J. Biochem. 12: 177–194.Google Scholar
  178. Cory, S., Marcker, K. A., Dube, S. K., and Clark, B. F. C. 1968. Primary structure of a methionine tRNA from E. coli. Nature. 220: 1039–1040.Google Scholar
  179. Dube, S. K., and Marcker, K. A. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 256–262.PubMedGoogle Scholar
  180. Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S. 1968. Nucleotide sequence of Nformyl-methionyl-transfer RNA. Nature. 218: 233–234.Google Scholar
  181. Dube, S. K. Marcker, K. A., Clark, B. F. C., and Cory, S. 1969. The nucleotide sequence of Nformyl-methionyl-transfer RNA. Eur. J. Biochem. 8: 244–255.Google Scholar
  182. Ecarot-Charrier, B., and Cedergren, R. J. 1976. The preliminary sequence of tRNAFet from Anacystis nidulans. compared with other initiator tRNAs. FEBS Lett. 63: 287–290.PubMedGoogle Scholar
  183. Egan, B. Z., Weiss, J. F., and Kelmers, A. D. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E.coli. K-12MO. Biochem. Biophys. Res. Comm. 55: 320–327.PubMedGoogle Scholar
  184. Gruhl, H., and Feldmann, H. 1975. The primary structure of a noninitiating methionine specific tRNA from brewer’s yeast. FEBS Lett. 57: 145–148.PubMedGoogle Scholar
  185. Högenauer, G., Turnowsky, F., and Unger, F. M. 1972. Codon-anticodon interaction of methionine specific tRNAs. Biochem. Biophys. Res. Comm. 46: 2100–2106.PubMedGoogle Scholar
  186. Ishikura, H., Yamada, Y., Murao, K., Saneyoshi, M., and Nishimura, S. 1969. The presence of N- [9-(β-D-ribofuranosyl)purine-6yl-carbomoyl]threonine in serine, methionine, and lysine tRNAs from E. coli. Biochem. Biophys. Res. Comm. 37: 990–995.Google Scholar
  187. Koiwai, O., and Miyazaki, M. 1976. The primary structure of non-initiator tRNAMgit from baker’s yeast. J. Biochem. 80: 951–959.PubMedGoogle Scholar
  188. Petrissant, G., and Boisnard, M. 1974. Particularités structurales du méthionine tRNA,M„et de foie de lapin. Biochimie. 56: 787–789.PubMedGoogle Scholar
  189. Piper, P. W. 1975a. The nucleotide sequence of a methionine tRNA which functions in protein elongation in mouse myeloma cells. Eur. J. Biochem. 51: 283–293.PubMedGoogle Scholar
  190. Piper, P. W., and Clark, B. F. C. 1974b. Primary structure of a mouse myeloma cell initiator tRNA. Nature. 247: 516–518.PubMedGoogle Scholar
  191. Simsek, M., and RajBhandary, U. L. 1972. The primary structure of yeast initiator tRNA. Biochem. Biophys. Res. Comm. 49: 508–515.PubMedGoogle Scholar
  192. Simsek, M., RajBhandary, U. L., Boisnard, M. and Petrissant G. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator tRNAs. Nature. 247: 518–520.PubMedGoogle Scholar
  193. Yamada, Y., and Ishikura, H. 1975. Nucleotide sequence of initiator tRNA from B. subtilis. FEBS Lett. 54: 155–158.Google Scholar
  194. Ish-Horowicz, D., and Clark, B. F. C. 1973. The nucleotide sequence of a serine tRNA from E. coli. J. Biol. Chem. 248: 6663–6673.Google Scholar
  195. Rogg, H., Müller, P., and Staehelin, M. 1975. Nucleotide sequences of rat liver serine tRNA. Eur. J. Biochem. 53: 115–127.Google Scholar
  196. Yamada, Y., and Ishikura, H. 1973. Nucleotide sequence of tRNA3er from E. coli. FEBS Lett. 29: 231–234.Google Scholar
  197. Clarke, L., and Carbon, J. 1974. The nucleotide sequence of a threonine tRNA from E. coli. J. Biol. Chem. 249: 6874–6885.Google Scholar
  198. Kuntzel, B., Weissenbach, J. and Dirheimer, G. 1972. The sequence of nucleotides in tRNAftig from brewer’s yeast. FEBS Lett. 25: 189–191.PubMedGoogle Scholar
  199. Kuntzel, B., Weissenbach, J., and Dirheimer, G. 1974. Structure primaire des tRNAfirg de levure de bière. Biochimie. 56: 1069–1087.PubMedGoogle Scholar
  200. Blobstein, S. H., Grunberger D., Weinstein, I. B., and Nakanishi, K. 1973. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine tRNA. Biochemistry. 12: 188–193.PubMedGoogle Scholar
  201. Dudock, B. S., and G. Katz. 1969. Large oligonucleotide sequences in wheat germ phenylalanine tRNA. J. Biol. Chem., 244: 3069–3074.PubMedGoogle Scholar
  202. Dudock, B. S., Katz, G., Taylor, E. K., and Holley, R. W. 1969. Primary structure of wheat germ phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 62: 941–945.PubMedGoogle Scholar
  203. Everett, G. A., and Madison, J. T. 1976. Nucleotide sequence of tRNAPhe from pea (Pisum sativum., Alaska). Biochemistry. 15: 1016–1021.PubMedGoogle Scholar
  204. Guerrier-Takada, C., Dirheimer, G., Grosjean, H., and Keith, G. 1975. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 60: 286–289.Google Scholar
  205. Harbers, K., Thiebe, R., and Zachau, H. G. 1972. Preparation and characterization of fragments from yeast tRNAPhe. Eur. J. Biochem. 26: 132–143.PubMedGoogle Scholar
  206. Keith, G., Ebel, J. P., and Dirheimer, G. 1974. The primary structure of two mammalian tRNAsPhe: Identity of calf liver and rabbit liver tRNAsPhe. FEBS Lett. 48: 50–52.PubMedGoogle Scholar
  207. Keith, G., Picaud, F., Weissenbach, J., Ebel, J. P., Petrissant, G., and Dirheimer, G. 1973. The primary structure of rabbit liver tRNAPhe and its comparison with known tRNAPhe sequences. FEBS Lett. 31: 345–347.PubMedGoogle Scholar
  208. Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A. 1973. Three-dimensional structure of yeast phenylalanine tRNA: Folding of the polynucleotide chain. Science. 179: 285–288.PubMedGoogle Scholar
  209. Kim, S. H.,. Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C., and Rich, A. 1974. Three-dimensional tertiary structure of yeast phenylalanine tRNA. Science. 185: 435–440.Google Scholar
  210. Nakanishi, K., Furutachi, N., Funamizu, M., Grunberger, D., and Weinstein, I. B. 1970. Structure of the fluorescent Y base from yeast phenylalanine tRNA. J. Am. Chem. Soc. 92: 7617–7619.PubMedGoogle Scholar
  211. Philippsen, P., and Zachau, H. G. 1971. Fragments of yeast tRNAPhe and tRNASer prepared by partial digestion with spleen phosphodiesterase. FEBS Lett. 15: 69–74.PubMedGoogle Scholar
  212. Pongo, O., Bald, R., and Reinwald, E. 1973. On the structure of yeast tRNAPhe: Complementaryoligonucleotide binding studies. Eur. J. Biochem. 32: 117–125.Google Scholar
  213. RajBhandary, U. L., Chang, S. H., Sneider, J., and Davis, D. 1968. Yeast phenylalanine tRNA: Partial digestion with ribonuclease T1, and derivation of the total primary structure. J. Biol. Chem. 243: 598–608.Google Scholar
  214. RajBhandary, U. L., Chang, S. H., Stuart, A., Faulkner, R. D., Hoskinson, R. M., and Khorana, H. G. 1967. The primary structure of yeast phenylalanine tRNA. Proc. Nat. Acad. Sci. USA. 57: 751–758.Google Scholar
  215. Rosenfeld, A., Stevens, C. L., and Printz, M. P. 1970. Studies on the secondary structure of phenylalanyl tRNA. Biochemistry. 9: 4971–4980.PubMedGoogle Scholar
  216. Takemura, S., Kasai, H., and Goto, M. 1974. Nucleotide sequence of the anticodon region of Torulopsis. phenylalanine tRNA. J. Biochem. 75: 1169–1172.PubMedGoogle Scholar
  217. Uziel, M., and Gassen, H. G. 1969. Structure of tRNAPke. Fed. Proc. 28: 409.Google Scholar
  218. Wong, Y. P., Kearns, D. R., Shulman, R. G., Yamane, T., Chang, S., Chirskyian, J. G., and Fresco, J. R. 1973. High resolution NMR study of base pairing in the native and denatured conformers of tRNA. J. Mol. Biol. 74: 403–406.PubMedGoogle Scholar
  219. Altman, S., and Smith, J. D. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233: 35–39.PubMedGoogle Scholar
  220. Doctor, B. P., Loebel, J. E., and Kellog, D. A. 1966. Studies on the species specificity of yeast and E. coli. tyrosine tRNA2. Cold Spring Harbor Symp. Quant. Biol. 31: 543–548.PubMedGoogle Scholar
  221. Doctor, B. P., Loebel, J. E., Sodd, M. A. and Winter, D. B. 1969. Nucleotide sequence of E. coli. tyrosine tRNA. Science. 163: 693–695.PubMedGoogle Scholar
  222. Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.PubMedGoogle Scholar
  223. Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.Google Scholar
  224. Harada, F., Gross, H. J., Kimura, F., Chang, S. H., Nishimura, S., and RajBhandary, U. L. 1968. 2-methylthio N6-(12-isopentenyl) adenosine: A component of E. coli. tyrosine tRNA. Biochem. Biophys. Res. Comm. 33: 299–306.Google Scholar
  225. Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.Google Scholar
  226. Hachimoto, S., Takemura, S., and Miyazaki, M. 1972. Partial digestion with ribonuclease T, and derivation of the complete sequence of tRNATYr from Torulopsis utilis. J. Biochem. 72: 123–134.Google Scholar
  227. Madison, J. T., Everett, G. A., and Kung, H. 1966a. Nucleotide sequence of a yeast tyrosine tRNA. Science. 153: 531–534.PubMedGoogle Scholar
  228. Madison, J. T. Everett, G. A., Kung, H. 1966b. On the nucleotide sequence of yeast tyrosine tRNA. Cold Spring Harbor Symp. Quant. Biol. 31: 409–416.Google Scholar
  229. Madison, J. T., Everett, G. A., Kung, H. 1967. Oligonucleotides from yeast tyrosine tRNA. J. Biol. Chem. 242: 1318–1323.PubMedGoogle Scholar
  230. Madison, J. T., and Kung, 11.-K. 1967. Large oligonucleotides isolated from yeast tyrosine tRNA after partial digestion with ribonuclease T1. Science. 242: 1324–1330.Google Scholar
  231. Seno, T., and Nishimura, S. 1971. Cleavage of E. coli. tyrosine tRNA2 in S-region and its effects on the structure and function of the reconstituted molecules. Biochim. Biophys. Acta. 228: 141–152.PubMedGoogle Scholar
  232. Takemura, S., Hashimoto, S., and Miyazaki, M. 1972. Complete digestion of tyrosine tRNA from Torulopsis utilis. with pancreatic and T1 ribonucleases. J. Biochem. 72: 111–121.PubMedGoogle Scholar
  233. Ginsberg, T., Rogg, H., and Staehelin, M. 1971. Nucleotide sequences of rat liver serine-tRNA. Eur. J. Biochem. 21: 249–257.PubMedGoogle Scholar
  234. Hentzen, D., and Garet, J. P. 1976. Anticodon loop sequences of tRNAccA and tRNA cA from the posterior silkgland of Bombyx mori. L. Biochem. Biophys. Res. Comm. 71: 241–248.PubMedGoogle Scholar
  235. Ishikura, H., Yamada, Y., and Nishimura, S. 1971a. The nucleotide sequence of a serine tRNA from E. coli. FEBS Lett. 16: 68–70.Google Scholar
  236. Ishikura, H., Yamada, Y., and Nishimura, S. 1971b. Structure of serine tRNA from E. coli. Biochim. Biophys. Acta. 228: 471–481.Google Scholar
  237. McClain, W. H., Barrell, B. G., and Seidman, J. G. 1975. Nucleotide alterations in bacteriophage T4 serine tRNA that affect the conversion of precursor RNA into tRNA. J. Mol. Biol. 99: 717–732.PubMedGoogle Scholar
  238. Rogg, H., and Staehelin, M. 1971a. Nucleotide sequences of rat liver serine-tRNA. 1. Products of digestion with pancreatic ribonuclease. Eur. J. Biochem. 21: 235–242.PubMedGoogle Scholar
  239. Rogg, H., and Staehelin, M. 1971b. Nucleotide sequence of rat liver serine-tRNA. 2. The products of digestion with ribonuclease T1. Eur. J. Biochem. 21: 243–248.PubMedGoogle Scholar
  240. Staehelin, M. 1971. The primary structure of tRNA. Experientia., 27: 1–11.PubMedGoogle Scholar
  241. Staehelin, M., Rogg, H., Baguley, B. C., Ginsberg, T., and Wehrli, W. 1968. Structure of a mammalian serine tRNA. Nature. 219: 1363–1365.PubMedGoogle Scholar
  242. Zachau, H. G., Dütting, D., and Feldmann, H. 1966a. Nucleotidsequenzen zweier serinspezifischer Transfer-Ribonucleinsäuren. Angew. Chem., 78: 392–393.Google Scholar
  243. Zachau, H. G., Dütting, D., and Feldmann, H. 1966b. Serine specific tRNAs. Hoppe-Seyler’s Z. Phys. Chem. 347: 229–235.Google Scholar
  244. Hirsch, D. 1970. Tryptophan tRNA of E. coli. Nature. 228: 57.Google Scholar
  245. Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.Google Scholar
  246. Keith, G., Roy, A., Ebel, J. P., and Dirheimer, G. 1971. The nucleotide sequences of two tryptophan-tRNAs from brewer’s yeast. FEBS Lett. 17: 306–308.PubMedGoogle Scholar
  247. Maugh, T. H. 1974. Rous sarcoma virus: A new role for tRNA. Science. 186: 41.PubMedGoogle Scholar
  248. Chang, S. H., Kuo, S., Hawkins, E., and Miller, N. R., 1973. The corrected nucleotide sequence of yeast leucine tRNA. Biochem. Biophys. Res. Comm. 51: 951–955.PubMedGoogle Scholar
  249. Chang, S. H., and Miller, N. 1971. The nucleotide sequence of yeast leucine tRNA. Fed. Proc. 30: 1101.Google Scholar
  250. Kowalski, S., Yamane, T., and Fresco, J. R. 1971. Nucleotide sequence of the “denaturable” leucine tRNA from yeast. Science. 172: 385–387.PubMedGoogle Scholar
  251. Pinkerton, T. C., Paddock, G., and Abelson, J. 1972. Bacteriophage T4 tRNA Leu. Nature New Biol. 240: 88–90.PubMedGoogle Scholar
  252. Pinkerton, T. C., Paddock, G., and Abelson, J. 1973. Nucleotide sequence determination of bacteriophage T4 leucine tRNA. J. Biol. Chem. 248: 6348–6365.PubMedGoogle Scholar
  253. Holness, N.J., and Atfield, G. 1974. Nucleotide sequence of tRNAcys from baker’s yeast. FEBS Lett. 46: 268–270.PubMedGoogle Scholar
  254. Holness, N. J., and Atfield, G. 1976a. The extraction and purification of a cysteine tRNA from baker’s yeast. Biochem. J. 153: 429–435.PubMedGoogle Scholar
  255. Holness, N. J., and Atfield, G. 1976b. The nucleotide sequence of cysteine tRNA from baker’s yeast. Biochem. J. 153: 447–454.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations