Skip to main content

Micromolecular Evolution—The Origin of the Genetic Code

  • Chapter
The Genetic Mechanism and the Origin of Life

Abstract

Aside from the conclusions just reached, the foregoing review of the genetic mechanism makes it evident that the system is totally dependent on a coding device, a code built on triplets of nucleotides. Thus an understanding of the origins of the entire apparatus appears to be contingent on a knowledge of the beginnings of the code catalog itself. Because of the importance of the problem, numerous attempts at solving it have been made along a diversity of avenues, which fall into four major categories: conceptual, mathematical, biochemical, and biological. Since assumptions made by studies in the first three of these groupings are often in conflict with the findings just summarized, the present status of the problem as outlined below may be viewed more objectively if those conclusions are held in abeyance momentarily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D. J. 1971. Proposed detail structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Arfmann, H. A., Labitzke, R., Lawaczeck, R., and Wagner, K. G. 1974. Aromatic amino acid-lysine copolymers. Biochimie. 56: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Barker, H. A., and Beck, J. V. 1941. The fermentative decomposition of purines by Clostridium acidi-urici. and C. cylindrosporum. J. Biol. Chem. 141: 3–27.

    CAS  Google Scholar 

  • Barker, H. A., Ruben, S., and Beck, J. V. 1940. Synthesis of acetic acid from CO2 by Clostridium acidi-urici. Proc. Nat. Acad. Sci. USA. 26: 477–482.

    Article  CAS  Google Scholar 

  • Besson, J., and Gavaudan, P. 1967. Sur l’organisation logarithmique du code génétique. C.R. Acad. Sci. Paris. D264: 1311–1314.

    CAS  Google Scholar 

  • Bishop, M. J., Lohrmann, R., and Orgel, L. E. 1972. Prebiotic phosphorylation of thymidine at 65° C in simulated desert conditions. Nature. 237: 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Brack, A., and Orgel, L. E. 1975. ß. structures of alternating peptides and their possible prebiotic significance. Nature. 256: 383–387.

    Google Scholar 

  • Breed, R. S., Murray, E. G. D., and Smith, J. N. R. 1957. Bergey’s Manual for Determinative Bacteriology., Baltimore, Williams and Wilkins, p. 837–853.

    Google Scholar 

  • Bruenn, J., and Jacobson, K. B. 1972. New species of tyrosine tRNA in nonsense suppressor strains of yeast. Biochim. Biophys. Acta. 287: 68–76.

    PubMed  CAS  Google Scholar 

  • Burton, S. D., Morita, R. Y., and Miller, W. 1966. Utilization of acetate by Beggiatoa. J. Bact. 91: 1192–1200.

    CAS  Google Scholar 

  • Calvin, M. 1975. Chemical evolution. Am. Sci. 63: 169–177.

    PubMed  CAS  Google Scholar 

  • Carter, C. W., and Kraut, J. 1974. A proposed model for interaction of polypeptides with RNA. Proc. Nat. Acad. Sci. USA. 71: 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T., and Garen, A. 1969. Leucine insertion by the Su6. +. suppressor gene. J. Mol. Biol. 45: 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T., and Garen, A. 1970. Tryptophan insertion by the Su9. +. gene, a suppressor of UGA nonsense triplet. J. Mol. Biol. 49: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T., Webster, R. E., and Zinder, N. D. 1971. Suppression of UGA codon by a tryptophan tRNA. J. Mol. Biol. 56: 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. 1970. A mechanism for the evolution of the genetic code. Curr. Mod. Biol. 3: 260–264.

    PubMed  CAS  Google Scholar 

  • Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W. 1973. Bacteriophage MS2 RNA: Nucleotide sequence of the end of the A protein gene and the intercistronic region. Nature New Biology. 241: 99–101.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C. 1968. The origin of the genetic code. J. Mol. Biol. 38: 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M. O. 1971. Evolution of proteins. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 392–419.

    Google Scholar 

  • Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution. 16: 102–117.

    Article  Google Scholar 

  • Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool. 12: 71–82.

    Article  Google Scholar 

  • Dillon, L. S. 1973. Origins of the genetic code. Bot. Rev. 39: 301–345.

    Article  CAS  Google Scholar 

  • Fox, S. W. 1974. Origins of biological information and the genetic code. Mol. Cell. Biochem. 3: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Fox, S. W., Harada, K., and Vegotsky, A. 1959. Thermal polymerization of amino acids and a theory of biochemical origins. Experientia. 15: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Fox, S. W., and Nakashima, T. 1967. Fractionation and characterization of an amidated thermal 1:1:1-proteinoid. Biochim. Biophys. Acta. 140: 155–167.

    CAS  Google Scholar 

  • Fox, S. W., Yuki, A., Waehneldt, T. V., and Lacey, J. C. 1971. The primordial sequence-ribosomes, and the genetic code. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 252–262.

    Google Scholar 

  • Gatlin, L. L. 1972. Information Theory and the Living System., New York, Columbia University Press.

    Google Scholar 

  • Gavaudan, P. 1971a. [The internal logic of the genetic coding table]. C.R. Hebd. Séances Acad. Sci. 272: 1672–1675.

    Google Scholar 

  • Gavaudan, P. 1971b. The genetic code and the origin of life. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 432–445.

    Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.

    CAS  Google Scholar 

  • Harpold, M. A., and Calvin, M. 1973. Amino acid-nucleotide interactions on an insoluble solid support. Biochim. Biophys. Acta. 308: 117–128.

    PubMed  CAS  Google Scholar 

  • Hartman, H. 1975. Speculations on the evolution of the genetic code. Origins Life. 6: 423–427.

    Article  CAS  Google Scholar 

  • Hasegawa, M., and Yano, T. A. 1975. Entropy of the genetic information and evolution. Origins Life. 6: 219–227.

    Article  CAS  Google Scholar 

  • Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.

    CAS  Google Scholar 

  • Hélène, C. 1971. Role of aromatic amino-acid residues in the binding of enzymes and proteins to nucleic acids. Nature New Biol. 234: 120–121.

    Article  PubMed  Google Scholar 

  • Higa, A. I., de Forchetti, S. R. M., and Cazzulo, J. J. 1976. CO2-fixing enzymes in Pseudomonas fluorescens. J. Gen. Microb. 93: 69–74.

    CAS  Google Scholar 

  • Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.

    Article  Google Scholar 

  • Huxley, J. 1963. Evolution: The Modern Synthesis., London, Allen and Unwin.

    Google Scholar 

  • Ishigami, M., and Nagano, K. 1975. The origin of the genetic code. Origins Life. 6: 551–560.

    Article  CAS  Google Scholar 

  • Jeppesen, P. G. N., Nichols, J. L., Sanger, F., and Harrell, B. G. 1970. Nucleotide sequences from bacteriophage R17 RNA. Cold Spring Harbor Symp. Quant. Biol. 35: 13–20.

    Article  CAS  Google Scholar 

  • Jett, M., and Jamieson, G. A. 1971. A homology between codon sequence and the linkage in glycoproteins. Carbohydr. Res. 18: 446–468.

    Article  Google Scholar 

  • Jorré, R. P., and Curnow, R. N. 1975. The evolution of the genetic code. Biochimie. 57. :1147–1154.

    Google Scholar 

  • Jukes, T. H. 1966. Molecules and Evolution., New York, Columbia University Press.

    Google Scholar 

  • Jukes, T. H. 1966. Recent advances in studies of evolutionary relationships between proteins and nucleic acids. Space Life Sci. 1: 469–494.

    Article  Google Scholar 

  • Jukes, T. H., and Gatlin, L. 1971. Recent studies concerning the coding mechanism. Progr. Nucleic Acid Res. Mol. Biol. 11: 303–350.

    Article  CAS  Google Scholar 

  • Kaplan, R. W. 1971. The problem of chance in formation of protobionts by random aggregation of macromolecules. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 319–329.

    Google Scholar 

  • Keil, F. 1912. Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitrag. Biol. Pflanzen. 11: 335–372.

    Google Scholar 

  • Krzanowska, H. 1970. [Genetic code and evolution]. Wszechswiat. 7/8:169–174.

    Google Scholar 

  • Lacey, J. C., and Pruitt, K. M. 1969. Origin of the genetic code. Nature. 223: 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, J. C., Weber, A. L., and White, W. E. 1975. A model for the coevolution of the genetic code and the process of protein synthesis: Review and assessment. Origin Life. 6: 273–283.

    Article  CAS  Google Scholar 

  • Lesk, A. M. 1970. On the origin of the genetic code: Photochemical interaction between amino acids and nucleic acids not requiring adaptors. J. Theor. Biol. 27: 171–173.

    Article  CAS  Google Scholar 

  • Ljungdahl, L., and Wood, H. G. 1969. Total synthesis of acetate from CO2 by heterotropic bacteria. Ann. Rev. Microbiol. 23: 515–538.

    Article  CAS  Google Scholar 

  • Maier, S., and Murray, R. G. E. 1965. The fine structure of Thioploca ingrica. and a comparison with Beggiatoa. Can. J. Microb. 11: 645–655.

    Article  CAS  Google Scholar 

  • Mednikov. B. M. 1971. The origin of ribosomes and the evolution of rRNA. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 231–235.

    Google Scholar 

  • Melcher, G. 1970. A new hypothesis on the evolution of the genetic code. Biophysics. 7: 25–28.

    CAS  Google Scholar 

  • Miklos, J. 1971. Notes on genetic code: I. Analyzing Claviere’s data: Anticodon-amino acid assignments and miscoding through amino acid substitution. Stud. Biophys. 28: 223–230.

    CAS  Google Scholar 

  • Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W. 1972. Nucleotide sequence of the gene coding for bacteriophage MS2 coat protein. Nature. 237: 82–88.

    Article  CAS  Google Scholar 

  • Model, P., Webster, R. E., and Zinder, N. D. 1969. The UGA codon in vitro: Chain termination and suppression. J. Mol. Biol. 43: 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. W., Barnabas, J., and Goodman, M. 1973. A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theor. Biol. 56: 63–82.

    Google Scholar 

  • Nagyvary, J., and Fendler, J. H. 1974. Origin of the genetic code: A physical-chemical model of primitive codon assignments. Origins Life. 5: 357–362.

    Article  CAS  Google Scholar 

  • Nichols, J. L. 1970. Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in phage R17 RNA. Nature. 225: 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Orgel, L. E. 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Orgel, L. E. 1972. A possible step in the origin of the genetic code. ISR J. Chem. 10: 287–292.

    CAS  Google Scholar 

  • Papentin, F. 1973. Experiments on protein evolution and evolutionary aspects of the genetic code. J. Theor. Biol. 39: 417–430.

    Article  PubMed  CAS  Google Scholar 

  • Parker, D. J., Wu, T.-F., and Wood, H. G. 1971. Total synthesis of acetate from CO2:Methyltetrahydrofolate, an intermediate, and a procedure of separation of the folates. J. Bact. 108: 770–776.

    PubMed  CAS  Google Scholar 

  • Parker, D. J., Wood, H. G., Ghambeer, R. K., and Ljungdahl, L. G. 1972. Total synthesis of acetate from CO2 during carboxylation of trideuteriomethyl-cobalamin. Biochemistry. 11: 30743080.

    Google Scholar 

  • Pringsheim, E. G. 1964. Heterotrophism and species concepts in Beggiatoa. Am. J. Bot. 51: 898–913.

    Article  Google Scholar 

  • Raszka, M., and Mandel, M. 1971. Interaction of aromatic amino acids with neutral poly(A). Proc. Nat. Acad. Sci. USA. 68: 1190–1191.

    Article  PubMed  CAS  Google Scholar 

  • Raszka, M., and Mandel, M. 1972a. Interaction of amino acids and related compounds with neutral poly A. First Eur. Biophys. Congr., Baden. 1: 263–268.

    Google Scholar 

  • Raszka, M., and Mandel, M. 1972b. Is there a physical chemical basis for the present genetic code? J. Mol. Evol. 2: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, V. A., and Bachinskii, A. G. 1972a. [Population model of occurrence of codon stable ambiguity in a genetic code]. Genetika. 8: 153–160.

    Google Scholar 

  • Ratner, V. A., and Bachinskii, A. G. 1972b. [Population models of degeneracy arising in genetic code. II. Competition of 2 series for free nonsense]. Generika. 8: 179–184.

    Google Scholar 

  • Rich, A. 1974. Transfer RNA and the translation apparatus in the origin of life. Origins Life. 5: 207–219.

    Article  CAS  Google Scholar 

  • Sagers, R. D., Benziman, M., and Gunsalus, I. C. 1961. Acetate formation in Clostridium acidi-urici: Acetokinase. J. Bact. 82: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Salthe, S. N. 1972. Evolutionary Biology., New York, Holt, Rinehart and Winston, Inc. Sambrook, J. F., Fan, D. P., and Brenner, S. 1967. A strong suppressor specific for UGA. Nature. 214: 452–453.

    Google Scholar 

  • Saxinger, C., and Ponnamperuma, C. 1971. Experimental investigation on the origin of the genetic code. J. Mol. Evol. 1: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Saxinger, C., and Ponnamperuma, C. 1974. Interactions between amino acids and nucleotides in the prebiotic milieu. Origins Life. 5: 189–200.

    Article  CAS  Google Scholar 

  • Saxinger, C., Ponnamperuma, C., and Woese, C. 1971. Evidence for the interaction of nucleotides with immobilized amino acids and its significance for the origin of the genetic code. Nature New Biol. 234: 172–174.

    Article  PubMed  CAS  Google Scholar 

  • Schapp, T. 1971. Dual information in DNA and evolution of genetic code. J. Theor. Biol. 32: 293–298.

    Article  Google Scholar 

  • Schulman, M., Chamber, R. K., Ljungdahl, L. G., and Wood, H. G. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum. that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248: 6255–6261.

    PubMed  CAS  Google Scholar 

  • Schulman, M., Parker, D., Ljungdahl, L. G., and Wood, H. G. 1972. Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J. Bact. 109: 633–644.

    PubMed  CAS  Google Scholar 

  • Schutzenberger, M. P., Gavaudan, P., and Besson, J. 1969. Sur l’existence d’une certaine corrélation entre lepoids moléculaire d’acides aminés et le nombre de triplets intervenane dans leur codage. C.R. Acad. Sci. Paris. D268: 1342–1344.

    CAS  Google Scholar 

  • Simpson, G. G. 1949. The Meaning of Evolution: A Study of the History of Life and Its Significance for Man, New Haven, Conn., Yale University Press.

    Google Scholar 

  • Smith, J. D., Abelson, J. N., Goodman, H. M., Landy, A., and Brenner, S. 1968. Amber suppressor tRNA. In:Fröholm, L. O., and S. G. Laland, eds. Structure and Function of tRNA and 5 S-RNA.,. New York, Academic Press, p. 37–51.

    Google Scholar 

  • Smith, J. M. 1966. The Theory of Evolution. 2nd Ed., Harmondsworth, England, Penguin Books. Smith, K. C. 1968. The biological importance of U.V.-induced DNA-protein cross-linking in vivo. and its probable chemical mechanism. Photochem. Photobiol., 7: 651–660.

    Google Scholar 

  • Smith, K. C. 1969. Photochemical addition of amino acids to “C-uracil. Biochem. Biophys. Res. Comm. 34: 354–357.

    Article  CAS  Google Scholar 

  • Smith, K. C., and Meun, D. H. C. 1968. Kinetics of the photochemical addition of [35S] cysteine to polynucleotides and nucleic acids. Biochemistry. 7: 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, J. A. 1969. Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in phage R17 RNA. Nature. 224: 957–964.

    Article  PubMed  CAS  Google Scholar 

  • Sun, A. Y., Ljungdahl, L., and Wood, G. H. 1969. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J. Bact. 98: 842–844.

    CAS  Google Scholar 

  • West, E. S., and Todd, W. R. 1961. Textbook of Biochemistry. 3rd Ed., New York, The Macmillan Company.

    Google Scholar 

  • Woese, C. R. 1968. The fundamental nature of the genetic code: Prebiotic interactions between polynucleotides and polyamino acids or their derivatives. Proc. Nat. Acad. Sci. USA. 59: 110–117.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R. 1973. Evolution of nucleic acid replication: The possible role of simple repeating sequence polypeptides therein. J. Mol. Evol. 2: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R., and Bleyman, M. A. 1972. Genetic code limit organisms-do they exist? J. Mol. Evol. 1: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J. T. F. 1975. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA. 72: 1909–1912.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J. T. F. 1976. The evolution of a universal genetic code. Proc. Nat. Acad. Sci. USA. 73: 2336–2340.

    Article  PubMed  CAS  Google Scholar 

  • Yockey, H. P. 1973. Information theory into applications to biogenesis and evolution. In: Locker, A., ed., Biogenesis, Evolution, Homeostasis., Berlin, Springer-Verlag, p. 9–23.

    Chapter  Google Scholar 

  • Zipser, D. 1967. UGA: A third class of suppressible polar mutants. J. Mol. Biol. 29: 441–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Dillon, L.S. (1978). Micromolecular Evolution—The Origin of the Genetic Code. In: The Genetic Mechanism and the Origin of Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2436-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2436-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2438-6

  • Online ISBN: 978-1-4684-2436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics