Micromolecular Evolution—The Origin of the Genetic Code

  • Lawrence S. Dillon


Aside from the conclusions just reached, the foregoing review of the genetic mechanism makes it evident that the system is totally dependent on a coding device, a code built on triplets of nucleotides. Thus an understanding of the origins of the entire apparatus appears to be contingent on a knowledge of the beginnings of the code catalog itself. Because of the importance of the problem, numerous attempts at solving it have been made along a diversity of avenues, which fall into four major categories: conceptual, mathematical, biochemical, and biological. Since assumptions made by studies in the first three of these groupings are often in conflict with the findings just summarized, the present status of the problem as outlined below may be viewed more objectively if those conclusions are held in abeyance momentarily.


Aspartic Acid Genetic Code Glyoxylic Acid Natural Pair Biosynthetic Path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, D. J. 1971. Proposed detail structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.PubMedCrossRefGoogle Scholar
  2. Arfmann, H. A., Labitzke, R., Lawaczeck, R., and Wagner, K. G. 1974. Aromatic amino acid-lysine copolymers. Biochimie. 56: 53–60.PubMedCrossRefGoogle Scholar
  3. Barker, H. A., and Beck, J. V. 1941. The fermentative decomposition of purines by Clostridium acidi-urici. and C. cylindrosporum. J. Biol. Chem. 141: 3–27.Google Scholar
  4. Barker, H. A., Ruben, S., and Beck, J. V. 1940. Synthesis of acetic acid from CO2 by Clostridium acidi-urici. Proc. Nat. Acad. Sci. USA. 26: 477–482.CrossRefGoogle Scholar
  5. Besson, J., and Gavaudan, P. 1967. Sur l’organisation logarithmique du code génétique. C.R. Acad. Sci. Paris. D264: 1311–1314.Google Scholar
  6. Bishop, M. J., Lohrmann, R., and Orgel, L. E. 1972. Prebiotic phosphorylation of thymidine at 65° C in simulated desert conditions. Nature. 237: 162–164.PubMedCrossRefGoogle Scholar
  7. Brack, A., and Orgel, L. E. 1975. ß. structures of alternating peptides and their possible prebiotic significance. Nature. 256: 383–387.Google Scholar
  8. Breed, R. S., Murray, E. G. D., and Smith, J. N. R. 1957. Bergey’s Manual for Determinative Bacteriology., Baltimore, Williams and Wilkins, p. 837–853.Google Scholar
  9. Bruenn, J., and Jacobson, K. B. 1972. New species of tyrosine tRNA in nonsense suppressor strains of yeast. Biochim. Biophys. Acta. 287: 68–76.PubMedGoogle Scholar
  10. Burton, S. D., Morita, R. Y., and Miller, W. 1966. Utilization of acetate by Beggiatoa. J. Bact. 91: 1192–1200.Google Scholar
  11. Calvin, M. 1975. Chemical evolution. Am. Sci. 63: 169–177.PubMedGoogle Scholar
  12. Carter, C. W., and Kraut, J. 1974. A proposed model for interaction of polypeptides with RNA. Proc. Nat. Acad. Sci. USA. 71: 283–287.PubMedCrossRefGoogle Scholar
  13. Chan, T., and Garen, A. 1969. Leucine insertion by the Su6. +. suppressor gene. J. Mol. Biol. 45: 545–548.PubMedCrossRefGoogle Scholar
  14. Chan, T., and Garen, A. 1970. Tryptophan insertion by the Su9. +. gene, a suppressor of UGA nonsense triplet. J. Mol. Biol. 49: 231–234.PubMedCrossRefGoogle Scholar
  15. Chan, T., Webster, R. E., and Zinder, N. D. 1971. Suppression of UGA codon by a tryptophan tRNA. J. Mol. Biol. 56: 101–116.PubMedCrossRefGoogle Scholar
  16. Conrad, M. 1970. A mechanism for the evolution of the genetic code. Curr. Mod. Biol. 3: 260–264.PubMedGoogle Scholar
  17. Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W. 1973. Bacteriophage MS2 RNA: Nucleotide sequence of the end of the A protein gene and the intercistronic region. Nature New Biology. 241: 99–101.PubMedGoogle Scholar
  18. Crick, F. H. C. 1968. The origin of the genetic code. J. Mol. Biol. 38: 367–379.PubMedCrossRefGoogle Scholar
  19. Dayhoff, M. O. 1971. Evolution of proteins. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 392–419.Google Scholar
  20. Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution. 16: 102–117.CrossRefGoogle Scholar
  21. Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool. 12: 71–82.CrossRefGoogle Scholar
  22. Dillon, L. S. 1973. Origins of the genetic code. Bot. Rev. 39: 301–345.CrossRefGoogle Scholar
  23. Fox, S. W. 1974. Origins of biological information and the genetic code. Mol. Cell. Biochem. 3: 129–142.PubMedCrossRefGoogle Scholar
  24. Fox, S. W., Harada, K., and Vegotsky, A. 1959. Thermal polymerization of amino acids and a theory of biochemical origins. Experientia. 15: 81–84.PubMedCrossRefGoogle Scholar
  25. Fox, S. W., and Nakashima, T. 1967. Fractionation and characterization of an amidated thermal 1:1:1-proteinoid. Biochim. Biophys. Acta. 140: 155–167.Google Scholar
  26. Fox, S. W., Yuki, A., Waehneldt, T. V., and Lacey, J. C. 1971. The primordial sequence-ribosomes, and the genetic code. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 252–262.Google Scholar
  27. Gatlin, L. L. 1972. Information Theory and the Living System., New York, Columbia University Press.Google Scholar
  28. Gavaudan, P. 1971a. [The internal logic of the genetic coding table]. C.R. Hebd. Séances Acad. Sci. 272: 1672–1675.Google Scholar
  29. Gavaudan, P. 1971b. The genetic code and the origin of life. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 432–445.Google Scholar
  30. Goodman, H. M., Abelson, J. N., Landy, A., Brenner, S., and Smith, J. D. 1968. Amber suppression: A nucleotide change in the anticodon of a tyrosine tRNA. Nature. 217: 1019–1024.PubMedCrossRefGoogle Scholar
  31. Goodman, H. M., Abelson, J. N., Landy, A., Zadrazil, S., and Smith, J. D. 1970. The nucleotide sequences of tyrosine tRNAs of E. coli. Eur. J. Biochem. 13: 461–483.Google Scholar
  32. Harpold, M. A., and Calvin, M. 1973. Amino acid-nucleotide interactions on an insoluble solid support. Biochim. Biophys. Acta. 308: 117–128.PubMedGoogle Scholar
  33. Hartman, H. 1975. Speculations on the evolution of the genetic code. Origins Life. 6: 423–427.CrossRefGoogle Scholar
  34. Hasegawa, M., and Yano, T. A. 1975. Entropy of the genetic information and evolution. Origins Life. 6: 219–227.CrossRefGoogle Scholar
  35. Hashimoto, S., Miyazaki, M., and Takemura, S. 1969. Nucleotide sequence of tyrosine tRNA from Torulopsis utilis. J. Biochem. 65: 659–661.Google Scholar
  36. Hélène, C. 1971. Role of aromatic amino-acid residues in the binding of enzymes and proteins to nucleic acids. Nature New Biol. 234: 120–121.PubMedCrossRefGoogle Scholar
  37. Higa, A. I., de Forchetti, S. R. M., and Cazzulo, J. J. 1976. CO2-fixing enzymes in Pseudomonas fluorescens. J. Gen. Microb. 93: 69–74.Google Scholar
  38. Hirsch, D. 1971. Tryptophan tRNA as the UGA suppressor. J. Mol. Biol. 58: 439–458.CrossRefGoogle Scholar
  39. Huxley, J. 1963. Evolution: The Modern Synthesis., London, Allen and Unwin.Google Scholar
  40. Ishigami, M., and Nagano, K. 1975. The origin of the genetic code. Origins Life. 6: 551–560.CrossRefGoogle Scholar
  41. Jeppesen, P. G. N., Nichols, J. L., Sanger, F., and Harrell, B. G. 1970. Nucleotide sequences from bacteriophage R17 RNA. Cold Spring Harbor Symp. Quant. Biol. 35: 13–20.CrossRefGoogle Scholar
  42. Jett, M., and Jamieson, G. A. 1971. A homology between codon sequence and the linkage in glycoproteins. Carbohydr. Res. 18: 446–468.CrossRefGoogle Scholar
  43. Jorré, R. P., and Curnow, R. N. 1975. The evolution of the genetic code. Biochimie. 57. :1147–1154.Google Scholar
  44. Jukes, T. H. 1966. Molecules and Evolution., New York, Columbia University Press.Google Scholar
  45. Jukes, T. H. 1966. Recent advances in studies of evolutionary relationships between proteins and nucleic acids. Space Life Sci. 1: 469–494.CrossRefGoogle Scholar
  46. Jukes, T. H., and Gatlin, L. 1971. Recent studies concerning the coding mechanism. Progr. Nucleic Acid Res. Mol. Biol. 11: 303–350.CrossRefGoogle Scholar
  47. Kaplan, R. W. 1971. The problem of chance in formation of protobionts by random aggregation of macromolecules. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 319–329.Google Scholar
  48. Keil, F. 1912. Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitrag. Biol. Pflanzen. 11: 335–372.Google Scholar
  49. Krzanowska, H. 1970. [Genetic code and evolution]. Wszechswiat. 7/8:169–174.Google Scholar
  50. Lacey, J. C., and Pruitt, K. M. 1969. Origin of the genetic code. Nature. 223: 799–804.PubMedCrossRefGoogle Scholar
  51. Lacey, J. C., Weber, A. L., and White, W. E. 1975. A model for the coevolution of the genetic code and the process of protein synthesis: Review and assessment. Origin Life. 6: 273–283.CrossRefGoogle Scholar
  52. Lesk, A. M. 1970. On the origin of the genetic code: Photochemical interaction between amino acids and nucleic acids not requiring adaptors. J. Theor. Biol. 27: 171–173.CrossRefGoogle Scholar
  53. Ljungdahl, L., and Wood, H. G. 1969. Total synthesis of acetate from CO2 by heterotropic bacteria. Ann. Rev. Microbiol. 23: 515–538.CrossRefGoogle Scholar
  54. Maier, S., and Murray, R. G. E. 1965. The fine structure of Thioploca ingrica. and a comparison with Beggiatoa. Can. J. Microb. 11: 645–655.CrossRefGoogle Scholar
  55. Mednikov. B. M. 1971. The origin of ribosomes and the evolution of rRNA. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 231–235.Google Scholar
  56. Melcher, G. 1970. A new hypothesis on the evolution of the genetic code. Biophysics. 7: 25–28.Google Scholar
  57. Miklos, J. 1971. Notes on genetic code: I. Analyzing Claviere’s data: Anticodon-amino acid assignments and miscoding through amino acid substitution. Stud. Biophys. 28: 223–230.Google Scholar
  58. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W. 1972. Nucleotide sequence of the gene coding for bacteriophage MS2 coat protein. Nature. 237: 82–88.CrossRefGoogle Scholar
  59. Model, P., Webster, R. E., and Zinder, N. D. 1969. The UGA codon in vitro: Chain termination and suppression. J. Mol. Biol. 43: 177–190.PubMedCrossRefGoogle Scholar
  60. Moore, G. W., Barnabas, J., and Goodman, M. 1973. A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theor. Biol. 56: 63–82.Google Scholar
  61. Nagyvary, J., and Fendler, J. H. 1974. Origin of the genetic code: A physical-chemical model of primitive codon assignments. Origins Life. 5: 357–362.CrossRefGoogle Scholar
  62. Nichols, J. L. 1970. Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in phage R17 RNA. Nature. 225: 147–151.PubMedCrossRefGoogle Scholar
  63. Orgel, L. E. 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–393.PubMedCrossRefGoogle Scholar
  64. Orgel, L. E. 1972. A possible step in the origin of the genetic code. ISR J. Chem. 10: 287–292.Google Scholar
  65. Papentin, F. 1973. Experiments on protein evolution and evolutionary aspects of the genetic code. J. Theor. Biol. 39: 417–430.PubMedCrossRefGoogle Scholar
  66. Parker, D. J., Wu, T.-F., and Wood, H. G. 1971. Total synthesis of acetate from CO2:Methyltetrahydrofolate, an intermediate, and a procedure of separation of the folates. J. Bact. 108: 770–776.PubMedGoogle Scholar
  67. Parker, D. J., Wood, H. G., Ghambeer, R. K., and Ljungdahl, L. G. 1972. Total synthesis of acetate from CO2 during carboxylation of trideuteriomethyl-cobalamin. Biochemistry. 11: 30743080.Google Scholar
  68. Pringsheim, E. G. 1964. Heterotrophism and species concepts in Beggiatoa. Am. J. Bot. 51: 898–913.CrossRefGoogle Scholar
  69. Raszka, M., and Mandel, M. 1971. Interaction of aromatic amino acids with neutral poly(A). Proc. Nat. Acad. Sci. USA. 68: 1190–1191.PubMedCrossRefGoogle Scholar
  70. Raszka, M., and Mandel, M. 1972a. Interaction of amino acids and related compounds with neutral poly A. First Eur. Biophys. Congr., Baden. 1: 263–268.Google Scholar
  71. Raszka, M., and Mandel, M. 1972b. Is there a physical chemical basis for the present genetic code? J. Mol. Evol. 2: 38–43.PubMedCrossRefGoogle Scholar
  72. Ratner, V. A., and Bachinskii, A. G. 1972a. [Population model of occurrence of codon stable ambiguity in a genetic code]. Genetika. 8: 153–160.Google Scholar
  73. Ratner, V. A., and Bachinskii, A. G. 1972b. [Population models of degeneracy arising in genetic code. II. Competition of 2 series for free nonsense]. Generika. 8: 179–184.Google Scholar
  74. Rich, A. 1974. Transfer RNA and the translation apparatus in the origin of life. Origins Life. 5: 207–219.CrossRefGoogle Scholar
  75. Sagers, R. D., Benziman, M., and Gunsalus, I. C. 1961. Acetate formation in Clostridium acidi-urici: Acetokinase. J. Bact. 82: 233–238.PubMedCrossRefGoogle Scholar
  76. Salthe, S. N. 1972. Evolutionary Biology., New York, Holt, Rinehart and Winston, Inc. Sambrook, J. F., Fan, D. P., and Brenner, S. 1967. A strong suppressor specific for UGA. Nature. 214: 452–453.Google Scholar
  77. Saxinger, C., and Ponnamperuma, C. 1971. Experimental investigation on the origin of the genetic code. J. Mol. Evol. 1: 63–73.PubMedCrossRefGoogle Scholar
  78. Saxinger, C., and Ponnamperuma, C. 1974. Interactions between amino acids and nucleotides in the prebiotic milieu. Origins Life. 5: 189–200.CrossRefGoogle Scholar
  79. Saxinger, C., Ponnamperuma, C., and Woese, C. 1971. Evidence for the interaction of nucleotides with immobilized amino acids and its significance for the origin of the genetic code. Nature New Biol. 234: 172–174.PubMedCrossRefGoogle Scholar
  80. Schapp, T. 1971. Dual information in DNA and evolution of genetic code. J. Theor. Biol. 32: 293–298.CrossRefGoogle Scholar
  81. Schulman, M., Chamber, R. K., Ljungdahl, L. G., and Wood, H. G. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum. that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248: 6255–6261.PubMedGoogle Scholar
  82. Schulman, M., Parker, D., Ljungdahl, L. G., and Wood, H. G. 1972. Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J. Bact. 109: 633–644.PubMedGoogle Scholar
  83. Schutzenberger, M. P., Gavaudan, P., and Besson, J. 1969. Sur l’existence d’une certaine corrélation entre lepoids moléculaire d’acides aminés et le nombre de triplets intervenane dans leur codage. C.R. Acad. Sci. Paris. D268: 1342–1344.Google Scholar
  84. Simpson, G. G. 1949. The Meaning of Evolution: A Study of the History of Life and Its Significance for Man, New Haven, Conn., Yale University Press.Google Scholar
  85. Smith, J. D., Abelson, J. N., Goodman, H. M., Landy, A., and Brenner, S. 1968. Amber suppressor tRNA. In:Fröholm, L. O., and S. G. Laland, eds. Structure and Function of tRNA and 5 S-RNA.,. New York, Academic Press, p. 37–51.Google Scholar
  86. Smith, J. M. 1966. The Theory of Evolution. 2nd Ed., Harmondsworth, England, Penguin Books. Smith, K. C. 1968. The biological importance of U.V.-induced DNA-protein cross-linking in vivo. and its probable chemical mechanism. Photochem. Photobiol., 7: 651–660.Google Scholar
  87. Smith, K. C. 1969. Photochemical addition of amino acids to “C-uracil. Biochem. Biophys. Res. Comm. 34: 354–357.CrossRefGoogle Scholar
  88. Smith, K. C., and Meun, D. H. C. 1968. Kinetics of the photochemical addition of [35S] cysteine to polynucleotides and nucleic acids. Biochemistry. 7: 1033–1037.PubMedCrossRefGoogle Scholar
  89. Steitz, J. A. 1969. Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in phage R17 RNA. Nature. 224: 957–964.PubMedCrossRefGoogle Scholar
  90. Sun, A. Y., Ljungdahl, L., and Wood, G. H. 1969. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J. Bact. 98: 842–844.Google Scholar
  91. West, E. S., and Todd, W. R. 1961. Textbook of Biochemistry. 3rd Ed., New York, The Macmillan Company.Google Scholar
  92. Woese, C. R. 1968. The fundamental nature of the genetic code: Prebiotic interactions between polynucleotides and polyamino acids or their derivatives. Proc. Nat. Acad. Sci. USA. 59: 110–117.PubMedCrossRefGoogle Scholar
  93. Woese, C. R. 1973. Evolution of nucleic acid replication: The possible role of simple repeating sequence polypeptides therein. J. Mol. Evol. 2: 205–208.PubMedCrossRefGoogle Scholar
  94. Woese, C. R., and Bleyman, M. A. 1972. Genetic code limit organisms-do they exist? J. Mol. Evol. 1: 223–229.PubMedCrossRefGoogle Scholar
  95. Wong, J. T. F. 1975. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA. 72: 1909–1912.PubMedCrossRefGoogle Scholar
  96. Wong, J. T. F. 1976. The evolution of a universal genetic code. Proc. Nat. Acad. Sci. USA. 73: 2336–2340.PubMedCrossRefGoogle Scholar
  97. Yockey, H. P. 1973. Information theory into applications to biogenesis and evolution. In: Locker, A., ed., Biogenesis, Evolution, Homeostasis., Berlin, Springer-Verlag, p. 9–23.CrossRefGoogle Scholar
  98. Zipser, D. 1967. UGA: A third class of suppressible polar mutants. J. Mol. Biol. 29: 441–445.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations