The Genetic Mechanism: III Transcription, Processing, and an Analytical Synopsis



If this book were strictly faithful to the chronology of actual events, then transcription of the DNA molecule would have been among the first topics treated. Because of the structural and functional complexity of the various RNAs, however, much clarity is gained by delaying discussion of transcription of the DNA molecule and related events to this point. After these final aspects of the genetic mechanism have been viewed, an analysis then places the substance of the entire topic into context with the problem of life’s origins.


Genetic Mechanism Ehrlich Ascites Carcinoma Cell Large Precursor tRNA Species Globin mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarstad, K., and oyen, T. B. 1975. On the distribution of 5 S RNA cistrons on the genome of S. cerevisiae. FEBS Lett. 51: 227–231.Google Scholar
  2. Abraham, K. A., and Bhagava, P. M. 1963. The uptake of radioactive amino acids by spermatozoa. Biochem. J. 86: 308–313.PubMedGoogle Scholar
  3. Adesnik, M., and Levinthal, C. 1969. Synthesis and maturation of rRNA in E. coli. J. Mol. Biol. 46: 281–304.Google Scholar
  4. Akabori, S., and Yamamoto, M. 1972. Model experiments on the probiological formation of protein. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 189–197.Google Scholar
  5. Altman, S. 1971. Isolation of tyrosine tRNA precursor molecules. Nature New Biol. 229: 19–21.PubMedGoogle Scholar
  6. Altman, S., and Smith, J. D. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233: 35–39.PubMedGoogle Scholar
  7. Arce, C. A., Barra, H. S., Rodriguez, J. A., and Caputto, R. 1975. Tentative identification of the amino acid that binds tyrosine as a single unit into soluble brain proteins. FEBS Lett. 50: 5–7.PubMedGoogle Scholar
  8. Arion, V. Y., and Georgiev, G. P. 1967. On functional heterogeneity of chromosomal information RNA. Proc. Acad. Sci. USSR. 172: 716–719.Google Scholar
  9. Aronson, A., and Wilt, F. H. 1969. Properties of nRNA in sea urchin embryos. Proc. Nat. Acad. Sci. USA. 62: 186–193.PubMedGoogle Scholar
  10. Attardi, G., Parnas, H., Hwang, M. I. H., and Attardi, B. 1966. Giant-size rapidly labeled nRNA and cytoplasmic mRNA in immature duck erythrocytes. J. Mol. Biol. 20: 145–182.PubMedGoogle Scholar
  11. Baltimore, D., and Franklin, R. M. 1963. Properties of the mengovirus and poliovirus RNA polymerases. Cold Spring Harbor Symp. Quant. Biol. 28: 105–108.Google Scholar
  12. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputto, R. 1973a. Incorporation of phenylalanine as a single unit into rat brain protein. J. Neurochem. 21: 1241–1251.PubMedGoogle Scholar
  13. Barra, H. S., Rodriguez, J. A., Arce, C. A., and Caputto, R. 1973b. A soluble preparation from rat brain that incorporates into its own proteins (14C) arginine by a ribonuclease-sensitive system and (14C) tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20: 97–108.PubMedGoogle Scholar
  14. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputto, R. 1974. Some common properties of the enzyme that incorporates tyrosine as a single unit and the microtubule proteins. Biochem. Biophys. Res. Comm. 60: 1384–1390.Google Scholar
  15. Barrell, B. G., Seidman, J. G., Guthrie, C., and McClain, W. H. 1974. The nucleotide sequence of a precursor to serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 71: 413–416.PubMedGoogle Scholar
  16. Bautz, E. K. F. 1972. Regulation of RNA synthesis. Progr. Nucl. Acid. Res. 12: 129–160.Google Scholar
  17. Berg, D., Barrett, K., and Chamberlain, M. 1971. Purification of two forms of E. coli. RNA polymerase and of sigma component. Methods Enzymol. 21: 506–519.Google Scholar
  18. Bhargava, P. M., Bishop, M. W. H., and Work, T. S. 1956. Incorporation of (“C) amino acids into the proteins of bull spermatozoa. Biochem. J. 73: 247–256.Google Scholar
  19. Blatt, B., and Feldmann, H. 1973. Characterization of precursors to tRNA in yeast. FEBS Lett. 37: 129–133.PubMedGoogle Scholar
  20. Blatti, S. P., and Ingles, C. J., Lindell, T. J., Morris, P. W., Weaver, R. F., Weinberg, F., and Rutter, W. J. 1970. Structure and regulatory properties of eukaryotic RNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 35: 649–657.Google Scholar
  21. Body, B. A., and Brownstein, B. H. 1976. Ribosomal precursor particles of Bacillus megaterium. J. Bact. 126: 1149–1155.Google Scholar
  22. Bramwell, M. E. 1974. The behavior of hnRNA in partially and completely denaturing conditions. Biochem. J. 141: 477–484.PubMedGoogle Scholar
  23. Bramwell, M. E., and Harris, H. 1967. The origin of polydispersity in sedimentation patterns of rapidly labelled nRNA. Biochem. J. 103: 816–830.PubMedGoogle Scholar
  24. Brentani, R., and Brentani, M. 1969. Messenger RNA in the nucleolus. Genetics, Suppl. 61: 391–399.Google Scholar
  25. Brentani, R., Brentani, M., and Raw, I. 1964. Role of nucleolar RNA on the incorporation of ribosomal amino acid. Nature. 201: 1130.PubMedGoogle Scholar
  26. Brentani, R., Brentani, M., and Raw, I. 1967. Messenger activity of purified RNA from rat liver nucleoli. Nature. 214: 1122–1123.PubMedGoogle Scholar
  27. Brishammar, S., and Juntti, N. 1975. A poly(U) polymerase in tobacco leaves. Biochim. Biophys. Acta. 383: 351–358.PubMedGoogle Scholar
  28. Brown, D. D., and Gurdon, J. B. 1966. Size distribution and stability of DNA-like RNA synthesized during development of anucleolate embryos of Xenopus laevis. J. Mol. Biol. 19: 399–422.Google Scholar
  29. Brown, D. D., and Weber, C. S. 1968. Unique DNA sequences homologous to 4 S, 5 S, and rRNA. J. Mol. Biol. 34: 681–697.PubMedGoogle Scholar
  30. Burdon, R. H. 1971. RNA maturation in animal cells. Progr. Nucleic Acid. Res. Mol. Biol. 11: 33–76.Google Scholar
  31. Burgess, R. R., and Travers, A. A. 1971. Purification of the RNA polymerase sigma factor. Methods Enzymol. 21: 500–506.Google Scholar
  32. Burgess, R. R., Travers, A. A., Dunn, J. J., and Bautz, E. K. F. 1969. Factor stimulating transcription by RNA polymerase. Nature. 221: 43–46.PubMedGoogle Scholar
  33. Busby, W. F., Hele, P., and Chang, M. C. 1974. Apparent amino acid incorporation by ejaculated rabbit spermatozoa. Biochim. Biophys. Acta. 330: 246–259.Google Scholar
  34. Calvin, M. 1969. Chemical Evolution: Molecular Evolution towards the Origin of Living Systems on the Earth and Elsewhere. Oxford, Oxford University Press.Google Scholar
  35. Carre, D. S., and Chapeville, F. 1974. Study of the E. coli. 1RNA nucleotidyl transferase; effect of inorganic ions and thiol blocking reagents on enzyme activity. Biochim. Biophys. Acta. 361: 176–184.PubMedGoogle Scholar
  36. Carre, D. S., Litvak, S., and Chapeville, F. 1974. Study of E. coli. tRNA nucleotidyl transferase. Interactions of the enzyme with tRNA. Biochim. Biophys. Acta. 361: 185–197.PubMedGoogle Scholar
  37. Chamberlin, M., and Berg, P. 1962. DNA-directed synthesis of RNA by an enzyme from E. coli. Proc. Nat. Acad. Sci. USA. 48: 81–94.Google Scholar
  38. Chamberlin, M., and Berg, P. 1964. Mechanism of RNA polymerase action: Formation of DNA-RNA hybrids with single-stranded templates. J. Mol. Biol. 8: 297–313.PubMedGoogle Scholar
  39. Chambon, P. 1974. Eukaryotic RNA polymerases. In: Boyer, D. D., ed., The Enzymes., New York, Academic Press, 10: 261–331.Google Scholar
  40. Chambon, P., Gissinger, F., Kedinger, C., Mandel, J. L., and Meilhac, M. 1973. Structural and functional properties of three mammalian nuclear DNA-dependent RNA polymerases. Stud. Biophys. 31: 29–32.Google Scholar
  41. Chambon, P., Mandel, J. L., Gissinger, F., Kedinger, C., Gross-Bellard, M., and Hossenlopp, L. 1974. Transcription of double-stranded viral and cellular DNAs by purified mammalian DNA-dependent RNA polymerases. In: Bisivas, B. B., R. K. Mandel, A. Stevins, and W. E. Cohn, eds., Control of Transcription., New York, Plenum Publishing Co., p. 257–268.Google Scholar
  42. Chan, L., Harris, S. E., Rosen, J. M., Means, A. R., and O’Malley, B. W. 1977. Processing of nuclear heterogeneous RNA: Recent developments. Life Sci. 20: 1–16.PubMedGoogle Scholar
  43. Chang, C. N., and Chang, F. N. 1974. Methylation of ribosomal proteins in vitro. Nature. 251: 731–733.Google Scholar
  44. Chang, C. N., and Chang, F. N. 1975. Nature and stoichiometry of the methylated amino acids in 50 S ribosomal proteins. Biochemistry. 14: 468–477.PubMedGoogle Scholar
  45. Clarkson, S. G., Birnstiel, M. L., and Serra, V. 1973a. Reiterated tRNA genes of Xenopus laevis. J. Mol. Biol. 79: 391–410.Google Scholar
  46. Clarkson, S. G., Birnstiel, M. L., and Purdom, I. F. 1973b. Clustering of transfer RNA genes of Xenopus laevis. J. Mol. Biol. 79: 411–429.Google Scholar
  47. Cline, M. J., Eason, R., and Smellie, R. M. S. 1963. The biosynthesis of RNA following infection with a RNA virus. J. Biol. Chem. 238: 1788–1792.PubMedGoogle Scholar
  48. Cooper, H. L., and Gibson, E. M. 1969. Control of synthesis and wastage of rRNA in lymphocytes. J. Biol. Chem. 246: 5059–5066.Google Scholar
  49. Cramer, J. H., Bhargava, M. M., and Halvorson, H. O. 1972. Isolation and characterization of y DNA of S. cerevisiae. J. Mol. Biol. 71: 11–20.Google Scholar
  50. Cramer, J. H., Sebastian, J., Rownd, R. H., and Halvorson, H. O. 1974. Transcription of S. crevisiae. rDNA in vivo. and in vitro. Proc. Nat. Acad. Sci. USA. 71: 2188–2192.Google Scholar
  51. Cranston, J. W., Silber, R., Malathi, V. G., and Hurwitz, J. 1974. Characterization of adenosine triphosphate-inorganic pyrophosphate exchange reaction and demonstration of an enzymeadenylate complex with T4-induced enzyme. J. Biol. Chem. 249: 7447–7456.PubMedGoogle Scholar
  52. Dahlberg, A., and Peacock, A. C. 1971. Studies of 16 and 23 S rRNA of E. coli., using composite gel electrophoresis. J. Mol. Biol. 55: 61–74.PubMedGoogle Scholar
  53. Daneholt, B. 1973. The giant RNA transcript in balbiani ring of Chironomus tentans. In: Hamkalo, B. A., and J. Pajaconstantinou, eds., Molecular Cytogenetics., New York, Plenum Publishing Corp., p. 155–165.Google Scholar
  54. Daneholt, B., and Hosick, H. 1973. Evidence for transport of 75 S RNA from a discrete chromosome region via nuclear sap to cytoplasm in Chironomus tentans. Proc. Nat. Acad. Sci. USA. 70: 442–446.Google Scholar
  55. Darlix, J. L. 1974. Rho, a factor causing the modulation of early T7 genes transcription. Biochimie. 56: 693–701.PubMedGoogle Scholar
  56. Darlix, J. L. 1975. Simultaneous purification of E. coli. termination factor rho, RNase III, and RNase H. Eur. J. Biochem. 51: 369–376.PubMedGoogle Scholar
  57. Darlix, J. L., and Fromageot, P. 1974. Restriction of gene transcription by nucleotide analogs. Biochimie. 56: 703–710.PubMedGoogle Scholar
  58. Darnell, J. E., Jelinek, W. R., and Molloy, G. R. 1973. Biogenesis of mRNA: Genetic regulation in mammalian cells. Science. 181: 1215–1221.PubMedGoogle Scholar
  59. Davidson, J. N. 1972. The Biochemistry of the Nucleic Acids. 7th Ed., New York, Academic Press.Google Scholar
  60. Dennis, P. P., and Nomura, M. 1975. Stringent control of the transcriptional activities of ribosomal protein genes in E. coli. Nature. 255: 460–465.Google Scholar
  61. Desrosiers, R., Friderici, K., and Rottman, F. 1974. Identification of methylated nucleosides in mRNA from Novikoff hepatoma cells. Proc. Nat. Acad. Sci. USA. 71: 3971–3975.PubMedGoogle Scholar
  62. Deutscher, M. P. 1973. Synthesis and functions of the -C-C-A terminus of tRNA. Progr. Nucleic Acid Res. Mot. Biol. 13: 51–92.Google Scholar
  63. Deutscher, M. P., Foulds, J., and McClain, W. H. 1974. Transfer RNA nucleotidyltransferase plays an essential role in the normal growth of E. coli. and in the biosynthesis of some bacteriophage T4 tRNAs. J. Biol. Chem. 249: 6696–6699.PubMedGoogle Scholar
  64. Dhar, R., Weissman, S. M., Zain, B. S., Pan, J., and Lewis, A. M. 1974. Nucleotide sequence preceding an RNA polymerase initiation site on SV40 DNA. Nucleic Acid Res. 1: 595–613.PubMedGoogle Scholar
  65. Dijk, J., and Singhal, R. P. 1974. Precursor molecules of tRNAs in E. coli. J. Biol. Chem. 249: 645–648.Google Scholar
  66. Downey, K. M., Byrnes, J. J., Jurmark, B. S., and So, A. G. 1973. Reticulocyte RNA-dependent RNA polymerase. Proc. Nat. Acad. Sci. USA. 70: 3400–3404.PubMedGoogle Scholar
  67. Dunn, J. J., and Studier, F. W. 1973a. T7 early RNAs are generated by site-specific cleavages. Proc. Nat. Acad. Sci. USA. 70: 1559–1563.PubMedGoogle Scholar
  68. Dunn, J. J., and Studier, F. W. 1973b. T7 early RNAs and E. coli. rRNAs are cut from large precursor RNAs in vivo. by ribonuclease III. Proc. Nat. Acad. Sci. USA. 70: 3296–3300.PubMedGoogle Scholar
  69. Earp, H. S. 1974. Glucocorticoid regulation of transcription. Biochim. Biophys. Acta. 340: 95–107.PubMedGoogle Scholar
  70. Eason, R., and Smellie, R. M. S. 1964. Observation on the biosynthesis of polyribonucleotides in vitro. Biochem. J. 94: 7 P.Google Scholar
  71. Edlin, G., and Broda, P. 1968. Physiology and genetics of the “RNA control” locus in E. coli. Bacteriol. Rev. 32: 206–226.Google Scholar
  72. Edmonds; M., and Caramela, M. G. 1969. The isolation and characterization of adenosine monophosphate-rich polynucleotides synthesized by Ehrlich ascites cells. J. Biol. Chem. 244: 1314–1324.Google Scholar
  73. Edmonds, M., Vaughan, M. H., and Nakazato, H. 1971. Poly(A) sequences in hnRNA and rapidly-labeled polyribosomal RNA of HeLa cells. Proc. Nat. Acad. Sci. USA. 68: 1336–1340.PubMedGoogle Scholar
  74. Eström, J. E., and Daneholt, B. 1967. Sedimentation properties of the newly synthesized RNA from isolated nuclear components of Chironomus tentans. salivary gland cells. J. Mol. Biol. 28: 331–343.Google Scholar
  75. Eikhom, T. S., and Spiegelman, S. 1967. The dissociation of Qß-replicase and the relation of one of the components to a poly-C-dependent poly-G-polymerase. Proc. Nat. Acad. Sci. USA. 57: 1833–1840.PubMedGoogle Scholar
  76. Faiferman, I., and Pogo, A. O. 1975. Isolation of a ribonucleoprotein network that contains hnRNA and is bound to the nuclear membrane. Biochemistry. 14: 3808–3816.PubMedGoogle Scholar
  77. Farashyan, V. R., Ryskov, A. P., and Georgiev, G. P. 1973. Short poly(A) sequences at the 3’-end of nuclear D-RNAs. Molecular Biol. 7: 362–371.Google Scholar
  78. Firtel, R. A., and Lodish, H. F. 1973. A small nuclear precursor of mRNA in the cellular slime mold Dictyostelium discoideum. J. Mol. Biol. 79: 295–314.Google Scholar
  79. Firtel, R. A., and Pederson, T. 1975. Ribonucleoprotein particles containing hnRNA in the cellular slime mold Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA. 72: 301–305.Google Scholar
  80. Flint, S. J., de Pomerai, D. I., Chesterton, C. J., and Butterworth, P. H. W. 1974. Template specificity of eucaryotic DNA dependent RNA polymerases. Eur. J. Biochem. 42: 567–579.PubMedGoogle Scholar
  81. Ford, P. J., and Southern, E. M. 1973. Different sequences for 5 S RNA in kidney cells and ovaries of Xenopus laevis. Nature New Biol. 241: 7–12.Google Scholar
  82. Fouquet, H., and Sauer, H. W. 1975. Variable redundancy in RNA transcripts isolated in S and G2 phase of the cell cycle of Physarum. Nature. 255: 253–255.Google Scholar
  83. Fox, S. W. 1960. How did life begin? Science. 132: 200–208.PubMedGoogle Scholar
  84. Fox, S. W. 1971. Self-assembly of the protocell from a self-ordered polymer. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 8–30.Google Scholar
  85. Fox, S. W., and Dose, K. 1972. Molecular Evolution and the Origin of Life., San Francisco, W. H. Freeman and Company.Google Scholar
  86. Fox, S. W., Harada, K., and Kendrick, J. 1959. Production of spherules from synthetic proteinoid and hot water. Science. 129: 1221–1223.PubMedGoogle Scholar
  87. Fox, S. W., and Yuyama, S. 1963. Abiotic production of primitive protein and formed micropartides. Ann. N.Y. Acad. Sci. 108: 487–494.PubMedGoogle Scholar
  88. Fromson, D., and Duchastel, A. 1975. Poly(A)-containing polyribosomal RNA in sea urchin embryos: Changes in proportion during development. Biochim. Biophys. Acta. 378: 394–404.PubMedGoogle Scholar
  89. Fujisawa, T., Abe, S., Kawada, T., Satake, M., and Ogata, K. 1973a. Studies on the processing of 45-S RNA in rat liver nucleolus, with specific reference to 29.5-S RNA. Biochim. Biophys. Acta. 324: 226–240.PubMedGoogle Scholar
  90. Fujisawa, T., Abe, S., Satake, M., and Ogata, K. 1973b. Conversion of rat liver nucleolar 29.5-S RNA to 28-S RNA in vitro. Biochim. Biophys. Acta. 324: 241–253.Google Scholar
  91. Furth, J. J., and Austin, G. E. 1970. RNA polymerase of lymphoid tissue. Cold Spring Harbor Symp. Quant. Biol. 35: 641–648.Google Scholar
  92. Geiduschek, E. P., Brody, E. N., and Wilson, D. L. 1968. Some aspects of RNA transcription. In: Pullman, B., ed., Molecular Associations in Biology., New York, Academic Press, p. 163–182.Google Scholar
  93. Ghysen, A., and Celis, J. E. 1974. Joint transcription of two tRNATyr genes from E. coli. Nature. 249: 418–421.Google Scholar
  94. Gill, D. M. 1967. Incorporation of (“C) arginine into rat liver proteins catalyzed by soluble enzymes only. Biochim. Biophys. Acta. 145: 792–805.PubMedGoogle Scholar
  95. Gissinger, F., Kedinger, C., and Chambon, P. 1974. General enzymatic properties of purified calf thymus RNA polymerases AI & B. Biochimie. 56: 319–333.PubMedGoogle Scholar
  96. Giudice, G., Pirrone, A. M., Roccheri, M., and Trapani, M. 1973. Maturational cleavage of nucleolar rRNA precursor can be catalyzed by nonspecific endonuclease. Biochim. Biophys. Acta. 319: 72–80.PubMedGoogle Scholar
  97. Goldberger, R. F. 1974. Autogenous regulation of gene expression. Science. 183: 810–816.PubMedGoogle Scholar
  98. Gorini, L. 1970. Informational suppression. Ann. Rev. Genetics. 4: 107–134.Google Scholar
  99. Grankowski, N., Kudlicki, W., and Gascor, E. 1974. Ribosome-associated protein kinase from S. cerevisiae. FEBS Lett. 47: 103–106.Google Scholar
  100. Greene, M., and Cartas, M. 1972. The genome of RNA tumor viruses contains poly(A) sequences. Proc. Nat. Acad. Sci. USA. 69: 791–794.Google Scholar
  101. Greenberg, J. R., and Perry, R. P. 1972. Relative occurrence of poly(A) sequences in messenger and hnRNA of L cells as determined by poly(U)-hydroxylapatite chromatography. J. Mol. Biol. 72: 91–98.PubMedGoogle Scholar
  102. Grienenberger, J. M., and Simon, D. 1975. Structure and biosynthesis of rRNAs from the oncogenic bacterium Agrobacterium tumefasciens. Biochem. J. 149: 23–30.Google Scholar
  103. Grierson, D. 1974. Characterisation of RNA components from leaves of Phaseolus aureus. Eur. J. Biochem. 44: 509–515.Google Scholar
  104. Grierson, D., and Loening, U. 1974. Ribosomal RNA precursors and the synthesis of chloroplast and cytoplasmic rRNA in leaves of Phaseolus aureus. Eur. J. Biochem. 44: 501–507.Google Scholar
  105. Gross, R. H., and Beer, M. 1975. The RNA polymerases from Drosophila melanogaster. Biochemistry. 14: 4024–4031.Google Scholar
  106. Grummt, I. 1975. Synthesis of RNA molecules larger than 45 S by isolated rat liver nucleoli. Eur. J. Biochem., 57: 159–167.PubMedGoogle Scholar
  107. Gurley, W. B., Lin, C. -Y., Guilfoyle, T. J., and Nagao, R. T. 1976. Analysis of plant RNA polymerase I transcript in chromatin and nuclei. Biochim. Biophys. Acta. 425: 168–174.PubMedGoogle Scholar
  108. Guthrie, C. 1975. The nucleotide sequences of the dimeric precursor to glutamine and leucine tRNAs coded by bacteriophage T4. J. Mol. Biol. 95: 529–547.PubMedGoogle Scholar
  109. Guthrie, C., Seidman, J. G., Altman, S., Barrell, B. G., Smith, J. D., and McClain, W. H. 1973. Identification of tRNA precursor molecules made by phage T4. Nature New Biol. 246: 6–11.PubMedGoogle Scholar
  110. Hackett, P. B., and Sauerbier, W. 1974. Radiological mapping of the rRNA transcription unit in E. coli. Nature. 251: 639–641.Google Scholar
  111. Hackett, P. B., and Sauerbier, W. 1975. The transcriptional organization of the rRNA genes in mouse L cells. J. Mol. Biol. 91: 235–256.PubMedGoogle Scholar
  112. Hager, G. L., Holland, M. J., and Rutter, W. J. 1977. Isolation of RNA polymerases I, II, and III from S. cerevisiae. Biochemistry. 16: 1–8.Google Scholar
  113. Hames, B. D., and Perry, R. P. 1977. Homology relationship between the mRNA and hnRNA of mouse L cells. J. Mol. Biol. 109: 437–453.PubMedGoogle Scholar
  114. Hanson, E. D. 1966. Evolution of the cell from primordial living systems. Quart. Rev. Biol. 41: 1–12.PubMedGoogle Scholar
  115. Harris, H. 1974. Nucleus and Cytoplasm. 3rd Ed., Oxford, Clarendon Press.Google Scholar
  116. Hayashi, M., Hayashi, M. N., and Spiegelman, S. 1963a. Restriction of an in vivo. genetic transcription to one of the complementary strands of DNA. Proc. Nat. Acad. Sci. USA. 50: 664–672.PubMedGoogle Scholar
  117. Hayashi, M., Hayashi, M. N., and Spiegelman, S. 1963b. Replicating form of a single-stranded DNA virus: Isolation and properties. Science. 140: 1313–1316.PubMedGoogle Scholar
  118. Hayes, F., and Vasseur, M. 1974. In vitro. maturation of a 16 S RNA precursor. FEBS Lett. 46: 364–367.Google Scholar
  119. Hayes, F., and Vasseur, M. 1976. Processing of the 17-S E. coli. precursor RNA in the 27-S pre-ribosomal particle. Eur. J. Biochem. 61: 433–442.PubMedGoogle Scholar
  120. Hayes, F., Vasseur, M., Nikolaev, N., Schlessinger, D., Widada, J S, Krol, A., and Branlant, C. 1975. Structure of a 30 S pre-ribosomal RNA of E. coli. FEBS Lett. 56: 85–91.Google Scholar
  121. Hecht, N., and Woese, C. 1968. Separation of bacterial rRNA from its macromolecular precursors by polyacrylamide gel electrophoresis. J. Bact. 95: 986–990.PubMedGoogle Scholar
  122. Heiser, T. L., Davies, J. E., and Dahlberg, J. E. 1972. Mechanism of kasugamycin resistance in E. coli. Nature New Biol. 235: 6–9.Google Scholar
  123. Hemminki, K. 1974. Poly(A) in RNA extracted by thermal phenol fractionation from chick embryo brain and liver. Biochim. Biophys. Acta. 340: 262–268.PubMedGoogle Scholar
  124. Hercules, K., Schweiger, M., and Sauerbier, W. 1974. Cleavage by RNase III converts T3 and T7 early precursor RNA into translatable message. Proc. Nat. Acad. Sci. USA. 71: 840–844.PubMedGoogle Scholar
  125. Higashinakagawa, T., and Muramatsu, M. 1974. Ribosome precursor particles in the nucleolus of rat liver. Eur. J. Biochem. 42: 245–258.PubMedGoogle Scholar
  126. Hirsch, M., and Penman, S. 1974. Post-transcriptional addition of poly(A) to mitochondrial RNA by a cordycepin-insensitive process. J. Mol. Biol. 83: 131–142.PubMedGoogle Scholar
  127. Hoffman, D. J., and Niyogi, S. K. 1973. RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase of E. coli. Proc. Nat. Acad. Sci. USA. 70: 574–578.Google Scholar
  128. Holland, M. J., Hager, G. L., and Rutter, W. J. 1977. Selective transcription of ribosomal genes by RNA polymerase I. Biochemistry. 16: 16–24.PubMedGoogle Scholar
  129. Honjo, T., and Reeder, R. H. 1973. Preferential transcription of Xenopus laevis. rRNA in interspecies hybrids between Xenopus laevis. and X. mulleri. J. Mol. Biol. 80: 217–228.Google Scholar
  130. Honjo, T., and Reeder, R. H. 1974. Transcription of Xenopus. chromatin by homologous RNA polymerase. Biochemistry. 13: 1896–1899.PubMedGoogle Scholar
  131. Horinishi, H., Hashizume, S., Seguchi, M., and Takahashi, K. 1975. Incorporation of methionine by a soluble enzyme system from E. coli. Biochem. Biophys. Res. Comm. 67: 1136–1143.Google Scholar
  132. Huet, J., Degélée, S., Iboua, F., Buhler, J.-M., Sentenac, A., and Fromageot, P. 1976. Further characterization of yeast RNA polymerases. Effect of subunits removal. Biochimie. 58: 71–80.PubMedGoogle Scholar
  133. Hurwitz, J., Furth, J. J., Anders, M., and Evans, A. 1962. The role of DNA in RNA synthesis. J. Biol. Chem. 237: 3752–3759.PubMedGoogle Scholar
  134. Ingwall, J. S., Weiner, C. D., Morales, M. F., Davis, E., and Stockdale, F. E. 1974. Specificity of creatine in the control of muscle protein synthesis. J. Cell Biol. 63: 145–151.Google Scholar
  135. Ishikawa, K., Sato, T., Sato, S., and Ogata, K. 1974. RNP complexes containing nascent DNA- like RNA in the crude chromatin fraction of rat liver. Biochim. Biophys. Acta. 357: 420–437.Google Scholar
  136. Issinger, O. G., and Traut, R. R. 1974. Selective phosphorylation from GTP of proteins L7 and L12 of E. coli. 50 S ribosomes by a protein kinase from rabbit reticulocytes. Biochem. Biophys. Res. Comm. 59: 829–836.PubMedGoogle Scholar
  137. Jacob, S. T. 1973. Mammalian RNA polymerases. Nucleic Acid Res. Mol. Biol. 13: 93–126.Google Scholar
  138. Jacobson, A., Firtel, R. A., and Lodish, H. F., 1974. Synthesis of messenger and ribosomal RNA precursors in isolated nuclei of the cellular slime mold, Dictyostelium discoideum. J. Mol. Biol. 82: 213–230.Google Scholar
  139. Jaehning, J. A., Stewart, C. C., and Roeder, R. G. 1975. DNA-dependent RNA polymerase levels during the response of human peripheral lymphocytes to phytohaemogglutinin. Cell. 4: 51–58.PubMedGoogle Scholar
  140. Jänne, O., Bardin, C. W., and Jacob, S. T. 1975. Effect of polyamines on the in vitro. transcription of DNA and chromatin. Biochemistry. 14: 3589–3597.PubMedGoogle Scholar
  141. Jantzen, H. 1974. Polyadenylasäure-enthaltende RNA und Genaklivitätsmuster während der Entwicklung von Acanthamoeba castellanii. Biochim. Biophys. Acta. 374: 38–51.Google Scholar
  142. Jay, G., and Kaempfer, R. 1974. Sequence of events in initiation of translation: A role for initiator transfer RNA in the recognition of messenger RNA. Proc. Nat. Acad. Sci. USA. 71: 3199–3203.PubMedGoogle Scholar
  143. Jeffrey, W. R., and Brawerman, G. 1974. Characterization of the steady-state population of messenger RNA and its poly(A) segment in mammalian cells. Biochemistry. 13: 4633–4637.Google Scholar
  144. Jones, K. W. 1965. The role of the nucleolus in the formation of ribosomes. J. Ultrastruct. Res. 13: 257–262.PubMedGoogle Scholar
  145. Jones, K. W., and Truman, D. E. S., 1964. A hypothesis for DNA transcription and mRNA synthesis in vivo. Nature. 202: 1264–1267.Google Scholar
  146. Jordan, B. R., Forget, B. G., and Monier, R. 1971. A low molecular weight RNA synthesized by E. coli. in the presence of chloramphenicol. J. Mol. Biol. 55: 407–421.PubMedGoogle Scholar
  147. Jordan, B. R., Jourdan, R. and Jacq, B. 1976. Late steps in the maturation of 26 S ribosomal RNA: Generation of 5.8 S and 2 S RNAs by cleavages occurring in the cytoplasm. J. Mol. Biol. 101: 85–105.PubMedGoogle Scholar
  148. Kaback, D. B., Bhargava, M. M., and Halvorson, H. O. 1973. Location and arrangement of genes coding for ribosomal RNA in S. cerevisiae. J. Mol. Biol. 79: 735–739.Google Scholar
  149. Kabat, D. 1970. Phosphorylation of ribosomal proteins in rabbit reticulocytes. Biochemistry. 9: 4160–4175.PubMedGoogle Scholar
  150. Kabat, D. 1971. Phosphorylation of ribosomal proteins in rabbit reticulocytes. A cell-free system with ribosomal protein kinase activity. Biochemistry. 10: 197–203.PubMedGoogle Scholar
  151. Kaji, A., Kaji, H., and Novelli, G. D. 1963. A soluble amino-acid incorporating system. Biochem. Biophys. Res. Comm. 10: 406–409.Google Scholar
  152. Kaji, A., Kaji, H., and Novelli, G. D. 1965. Soluble amino acid-incorporating system. I. Preparation of the system and nature of the reaction. J. Biol. Chem. 240: 1185–1191.PubMedGoogle Scholar
  153. Kaji, H., Novelli, G. D., and Kaji, A. 1963. A soluble amino acid-incorporating system from rat liver. Biochim. Biophys. Acta. 76: 474–477.PubMedGoogle Scholar
  154. Kapitza, E. L., Stukacheva, E. A., and Shemyakin, M. F. 1976. The effect of the termination Rho factor and ribonuclease III on the transcription of bacteriophage 4X174 DNA in vitro. FEBS Lett. 64: 81–84.Google Scholar
  155. Kedinger, C., Gissinger, F., and Chambon, P. 1974. Molecular structures and immunological properties of calf-thymus enzyme Al and of calf-thymus and rat-liver enzymes B. Eur. J. Biochem. 44: 421–436.PubMedGoogle Scholar
  156. Kedinger, C., Nuret, P., and Chambon, P. 1971. Structural evidence for two a-amantin sensitive RNA polymerases in calf thymus. FEBS Lett. 15: 169–174.PubMedGoogle Scholar
  157. Keller, W., and Goor, R. 1970. Mammalian RNA polymerases: Structural and functional properties. Cold Spring Harbor Symp. Quant. Biol. 35: 671–680.Google Scholar
  158. Kemper, B., and Haberner, J. F. 1974. Non-ribosomal incorporation into a specific protein by a cell-free extract of parathyroid tissue. Biochim. Biophys. Acta. 349: 235–239.PubMedGoogle Scholar
  159. Kerjan, P., and Szulmajster, J. 1974. Intracellular ribonuclease activity in stationary phase cells of B. subtilis. Biochem. Biophys. Res. Comm. 59: 1079–1087.Google Scholar
  160. Kierszenbaum, A. L., and Tres, L. T. 1974. Nucleolar and perichromosomal RNA synthesis during meiotic prophase in the mouse testis. J. Cell Biol. 60: 39–53.PubMedGoogle Scholar
  161. Kiss, A., Sain, B., and Venetianer, P. 1977. The number of rRNA genes in E. coli. FEBS Lett. 79: 77–79.Google Scholar
  162. Klagsbrun, M.. 1973. An evolutionary study of the methylation of tRNA and rRNA into nucleic acid in prokaryote and eukaryote organisms. J. Biol. Chem. 248: 2612–2620.PubMedGoogle Scholar
  163. Klee, C. B. 1967. Structural alterations of polynucleotide phosphorylase leading to primer dependence. J. Biol. Chem. 242: 3579–3580.Google Scholar
  164. Klee, C. B. 1969. The proteolytic conversion of polynucleotide phosphorylase to a primer-dependent form. J. Biol. Chem. 244: 2558–2566.PubMedGoogle Scholar
  165. Klootwijk, J., and Planta, R. J. 1973a. Analysis of the methylation sites in yeast ribosomal RNA. Eur. J. Biochem. 39: 325–333.PubMedGoogle Scholar
  166. Klootwijk, J., and Planta, R. J. 1973b. Modified sequence in yeast ribosomal RNA. Mol. Biol. Reports. 1: 187–191.Google Scholar
  167. Knöchel, W., and Tiedemann, H. 1975. Size distribution and cell-free translation of globin-coding hnRNA from avaian erythroblasts. Biochim. Biophys. Acta. 378: 383–393.PubMedGoogle Scholar
  168. Kolata, G. B. 1974a. Control of protein synthesis (I): poly(A) in the cytoplasm. Science. 185: 517–518.PubMedGoogle Scholar
  169. Kolata, G. B. 1974b. Control of protein synthesis (II): RNA in the nucleus. Science. 185: 603–604.PubMedGoogle Scholar
  170. Kolata, G. B. 1977. Overlapping genes: More than anomalies? Science. 196: 1187–1188.PubMedGoogle Scholar
  171. Kossman, C. R., Stamato, T. D., and Pettijohn, D. E. 1971. Tandem snythesis of the 16 S and 23 S rRNA sequences of E. coli. Nature New Biol. 234: 102–104.Google Scholar
  172. Krakow, J. S., and Ochoa, S. 1963. RNA polymerase of Azotobacter vinelandii. Proc. Nat. Acad. Sci. USA. 49: 88–94.Google Scholar
  173. Kumar, A., and Wu, R. S. 1973. Role of rRNA transcription in ribosome processing in HeLa cells. J. Mol. Biol. 80: 265–276.PubMedGoogle Scholar
  174. Kurek, E., Grankonski, N., and Gasior, E. 1972a. On the phosphorylation of E. coli. ribosomes I. An in vivo. labeling of ribosomes. Acta Microbiol. Polonica. A4: 171–176.Google Scholar
  175. Kurek, E., Grankonski, N., and Gasior, E. 1972b. On the phosphorylation of E. coll. ribosomes. II. Reaction in cell-free system. Acta Microbiol. Polonica. A4: 177–183.Google Scholar
  176. Lacey, J. C., and Mullins, D. W. 1972. Proteins and nucleic acids in prebiotic evolution. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 171–188.Google Scholar
  177. Lacey, J. C., and Pruitt, K. M. 1969. Origin of the genetic code. Nature. 223: 799–804.PubMedGoogle Scholar
  178. Landy, A., Foeller, C., and Ross, W. 1974. DNA fragments carrying genes for tRNATYr. Nature. 249: 738–742.PubMedGoogle Scholar
  179. Lavi, S., and Shatkin, A. J. 1975. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Nat. Acad. Sci. USA. 72: 2012–2016.PubMedGoogle Scholar
  180. Leaver, C. J., and Key, J. L. 1970. Ribosomal RNA synthesis in plants. J. Mol. Biol. 49: 671–680.PubMedGoogle Scholar
  181. Lee, S. Y., Mendecki, J., and Brawerman, G. 1971. A polynucleotide segment rich in adenylic acid in the rapidly labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc. Nat. Acad. Sci. USA. 68: 1331–1335.PubMedGoogle Scholar
  182. Leibowitz, M. J., and Soffer, R. L. 1969. A soluble enzyme from E. coli. which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem. Biophys. Res. Comm. 36: 47–53.PubMedGoogle Scholar
  183. Letendre, C. H., and Singer, M. F. 1974. Studies on primer-independent polynucleotide phosphorylase of Micrococcus luteus. J. Biol. Chem. 249: 7383–7389.Google Scholar
  184. Levitan, I. B., and Webb, T. E. 1970. Posttranscriptional control in the steroid-mediated induction of hepatic tyrosine transaminase. Science. 167: 283–285.PubMedGoogle Scholar
  185. Lewin, B. M. 1970. The Molecular Basis of Gene Expression., New York, Wiley-Interscience.Google Scholar
  186. Liau, M. C., Craig, N. C., and Perry, R. P. 1968. Factors which influence the ability of isolated nucleoli to process 45-S RNA. Biochim. Biophys. Acta. 169: 196–205.PubMedGoogle Scholar
  187. Liebl, V., and Leiblova, J. 1968. Coacervate systems and life. J. Brit. Interplan. Soc. 21: 295–312.Google Scholar
  188. Lim, L., and Canellakis, E. S. 1970. Adenine-rich polymer associated with rabbit reticulocyte mRNA. Nature. 227: 710–712.PubMedGoogle Scholar
  189. Lindahl, L. 1975. Intermediates and time kinetics of the in vivo. assembly of E. coli. ribosomes. J. Mol. Biol. 92: 15–37.PubMedGoogle Scholar
  190. Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G., and Rutter, W. J. 1970. Specific inhibition of nuclear RNA polymerase II by a-amantin. Science. 170: 447–448.PubMedGoogle Scholar
  191. Link, G., and Richter, G. 1975. Properties and subunit composition of RNA polymerase II from plant cell cultures. Biochim. Biophys. Acta. 395: 337–346.PubMedGoogle Scholar
  192. Littauer, U. Z., and Inouye, H. 1973. Regulation of tRNA. Ann. Rev. Biochem. 42: 439–471.PubMedGoogle Scholar
  193. Loeb, J. F., and Blat, C. 1970. Phosphorylation of some rat liver ribosomal proteins and its activation by cyclic AMP. FEBS Lett. 10: 105–108.PubMedGoogle Scholar
  194. Loening, U. E. 1972. Ribosomal RNA in evolution. Biochem. J. 129: 35 p.Google Scholar
  195. Lowery-Goldhammer, C., and Richardson, J. P. 1974. An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. Proc. Nat. Acad. Sci. USA. 71. :2003–2007.Google Scholar
  196. Lowry, C. V., and Dahlberg, J. E. 1971. Structural differences between the 16 S rRNA of E. coli. and its precursor. Nature New Biol. 232: 52–54.PubMedGoogle Scholar
  197. Lukanidin, E. M., Zalmanzon, E. S., Komaromi, L., Samarina, O. P., and Georgiev, G. P. 1972. Structure and function of informofers. Nature New Biol. 238: 193–197.PubMedGoogle Scholar
  198. Luria, S. E. 1965. Asymmetrical transcription of T4 phage DNA by purified RNA polymerase. Biochem. Biophys. Res. Comm. 18: 735–742.Google Scholar
  199. Maden, B. E. H. 1968. Ribosome formation in animal cells. Nature. 219: 685–688.Google Scholar
  200. Maden, B. E. H., and Salim, M. 1974. The methylated nucleotide sequences in HeLa cell rRNA and its precursors. J. Mol. Biol. 88: 133–164.PubMedGoogle Scholar
  201. Maden, B. E. H., and Tartof, K. 1974. Nature of the rRNA transcribed from the X and Y chromosomes of D. melanogaster. J. Mol. Biol. 90: 51–64.Google Scholar
  202. Maio, J. J., and Kurnit, D. M. 1974. Transcription of mammalian satellite DNAs by homologous DNA-dependent RNA polymerases. Biochim. Biophys. Acta. 349: 305–319.PubMedGoogle Scholar
  203. Mangiarotti, G., Apirion, D., Schlessinger, D., and Silengo, L. 1968. Biosynthetic precursors of 30 S and 50 S ribosomal particles in E. coli. Biochemistry. 7: 456–472.Google Scholar
  204. Mangiarotti, G., Turco, E., Pongetto, A., and Altruda, F. 1974. Precursor 16 S RNA in active 30 S ribosomes. Nature. 247: 147–148.PubMedGoogle Scholar
  205. Marmur, J., and Greenspan, C. M. 1963. Transcription in vivo. of DNA from bacteriophage SP8. Science. 142: 387–389.PubMedGoogle Scholar
  206. Martin, F., and Brachet, J. 1959. Autoradiographic studies on the incorporation of amino acids into spermatozoa. Exp. Cell Res. 17: 399–404.PubMedGoogle Scholar
  207. Marzluff, W. F., Murphy, E. C., and Huang, R. C. C. 1974. Transcription of the genes for 5 S rRNA and tRNA in isolated mouse myeloma cell nuclei. Biochemistry. 13: 3689–3696.PubMedGoogle Scholar
  208. Matzura, H. 1973. Joint propagation of the ß. and ß’. subunits of RNA polymerase in E. coli. Nature New Biol. 244: 262–264.Google Scholar
  209. Mayo, V. S., and DeKloet, S. R. 1971. Disaggregation of “giant” heterogeneous nuclear RNA of mouse Ehrlich ascites cells by thermal denaturation in the presence of formaldehyde. Biochim. Biophys. Acta. 247: 74–79.PubMedGoogle Scholar
  210. McClain, W. H., Barrell, B. G., and Seidman, J. G. 1975. Nucleotide alterations in bacteriophage T4 serine tRNA that affect the conversion of precursor RNA into tRNA. J. Mol. Biol. 99: 717–732.PubMedGoogle Scholar
  211. McClain, W. H., Guthrie, C., and Barrel!, B. G. 1972. Eight tRNAs induced by infection of E. coli. with phage T4. Proc. Nat. Acad. Sci. USA. 69: 3703–3707.PubMedGoogle Scholar
  212. Melli, M., Ginelli, E., Corneo, G., and di Lernia, R. 1975. Clustering of the DNA sequences complementary to repetitive nuclear RNA of HeLa cells. J. Mol. Biol. 93: 23–38.PubMedGoogle Scholar
  213. Meyhack, B., Meyhack, I., and Apirion, D. 1974. Processing of precursor particles containing 17 S rRNA in a cell free system. FEBS Lett. 49: 215–219.PubMedGoogle Scholar
  214. Milanino, R., and Chargoff, E. 1973. A purine polyribonucleotide synthetase from E. coli. Proc. Nat. Acad. Sci. USA. 70: 2558–2562.Google Scholar
  215. Miller, D. L., and Hamkalo, B. A. 1972. Visualization of RNA synthesis on chromosomes. Int. Rev. Cyt. 33: 1–25.Google Scholar
  216. Mills, D. R., Peterson, R. L. and Spiegelman, S. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Nat. Acad. Sci. USA. 58: 217–224.PubMedGoogle Scholar
  217. Monjardine, J. P., and Crawford L. V. 1970. RNA polymerase from mouse embryo cells. Cold Spring Harbor Symp. Quant. Biol. 35: 659–662.Google Scholar
  218. Morgan, T. H. 1914. No crossing over in the male of Drosophila. of genes in the second and third pairs of chromosomes. Biol. Bull. 26: 195–204.Google Scholar
  219. Moses, R. E., and Singer, M. F. 1970. Studies on the polymerization reaction catalyzed by primer-dependent and primer-independent enzymes. J. Biol. Chem. 245: 2414–2422.PubMedGoogle Scholar
  220. Mosmose, K., and Kaji, A. 1966. Soluble amino acid-incorporating system. III. Further studies on the product and its relation to the ribosomal system for incorporation. J. Biol. Chem. 241: 3294–3307.Google Scholar
  221. Mueller, H. J. 1955. Life. Science. 121: 1–9.Google Scholar
  222. Müller, W. E. G., Totsuka, A., Kroll, M., Nusser, I., and Zahn, R. K. 1975. Poly(A) polymerase in quail oviduct: Changes during estrogen induction. Biochim. Biophys. Acta. 383: 147–159.PubMedGoogle Scholar
  223. Müller, W. E. G., Totsuka, A., and Zahn, R. K. 1974. Association of an estradiol receptor with the DNA-dependent RNA polymerase I from immature quail. Biochim. Biophys. Acta. 366: 224–233.PubMedGoogle Scholar
  224. Muramatsu, M., and Fujisawa, T. 1968. Methylation of rRNA precursor and tRNA in rat liver. Biochim. Biophys. Acta. 157: 476–492.PubMedGoogle Scholar
  225. Naito, S., and Ishihama, A. 1975. Isolation and properties of the transcription complex of E. coli. RNA polysomes. Biochim. Biophys. Acta. 402: 88–104.PubMedGoogle Scholar
  226. Nakanishi, S., Adhya, S., Gottesman, M., and Pastan, I. 1974. Activation of transcription at specific promoters by glycerol. J. Biol. Chem. 247: 4050–4056.Google Scholar
  227. Needham, A. E. 1959. The origination of life. Quart. Rev. Biol. 34: 189–209.Google Scholar
  228. Nierlich, D. P., Lamfrom, H., Sarabhai, A., and Abelson, J. 1973. Transfer RNA synthesis in vitro. Proc. Nat. Acad. Sci. USA. 70: 179–182.Google Scholar
  229. Niessing, J., and Sekeris, C. 1972. A homoribopolynucleotide synthetase in rat liver nuclei associated with RNP particles containing DNA-like RNA. FEBS Lett. 22: 83–88.PubMedGoogle Scholar
  230. Nikolaev, N., and Schlessinger, D. 1974. Binding of ribosomal proteins to 30 S preribosomal RNA of E. coli. Biochemistry. 13: 4272–4278.Google Scholar
  231. Nikolaev, N., Schlessinger, D., and Wellauer, P. K. 1974. 30 S pre-rRNA of E. coli. and products of cleavage by ribonuclease III. J. Mol. Biol. 86: 741–747.Google Scholar
  232. Nikolaev, N., Silengo, L., and Schlessinger, D. 1973. A role for ribonuclease III in processing of rRNA and mRNA precursors in E. coli. J. Biol. Chem. 248: 7967–7969.Google Scholar
  233. Olson, M. O. J., Prestayko, A. W., Jones, C. E., and Busch, H. 1974. Phosphorylation of proteins of ribosomes and nucleolar preribosomal particles from Novikoff hepatoma ascites cells J. Mol. Biol. 90: 161–168.PubMedGoogle Scholar
  234. Oparin, A. I. 1957. The Origin of Life on the Earth. 3rd Ed., New York, Academic Press. Oparin, A. I. 1968. Genesis and Evolutionary Development of Life. New York, Academic Press.Google Scholar
  235. Oparin, A. I. 1971. Coacervate drops as models of prebiological systems. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 1–7.Google Scholar
  236. Orgel, L. E. 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–394.PubMedGoogle Scholar
  237. Pace, B., Peterson, R., and Pace, N. 1970. Formation of all stable RNA species in E. coli by post-transcriptional modification. Proc. Nat. Acad. Sci. USA. 65: 1097–1104.Google Scholar
  238. Pace, N. R. 1973. Structure and synthesis of the rRNA of prokaryotes. Bact. Rev. 37: 562–603.PubMedGoogle Scholar
  239. Pace, N. R., Pato, M. L., McKibbin, J., and Radcliffe, C. W. 1973. Precursors of 5 S rRNA in B. subtilis. J. Mol. Biol. 75: 619–631.Google Scholar
  240. Pardue, N. L., Brown, D. D., and Birnstiel, M. L. 1973. Location of the genes for 5 S rRNA in Xenopus laevis. Chromosoma. 42: 191–203.PubMedGoogle Scholar
  241. Parker, C. S., and Roeder, R. C. 1977. Selective and accurate transcription of Xenopus laevis. 5. S RNA genes in isolated chromatin by purified RNA polymerase III. Proc. Nat. Acad. Sci. USA. 74: 44–48.PubMedGoogle Scholar
  242. Pastan, I., and Perlman, R. L. 1972. Regulation of gene transcription in E. coli. by cyclic AMP. In: Greengard, P., G. A. Robison, and R. Paoletti, eds., Advances in Cyclic Nucleotide Research., New York, Raven Press, p. 11–16.Google Scholar
  243. Paul, J., Gilmur, R. S., and Thomou, T. 1970. Organ-specificity of transcription from mammalian chromatin. In: Ochoa, S., C. F. Heredia, C. Asensio, and D. Nachmansohn, eds., Macromolecules: Biosynthesis and Function., New York, Academic Press, p. 237–242.Google Scholar
  244. Pederson, T. 1974. Proteins associated with hnRNA in eukaryotic cells. J. Mol. Biol. 83: 163–183.PubMedGoogle Scholar
  245. Perry, R. P., Cheng, T. Y., Freed, J. J., Greenberg, J. R., Kelley, D. E., and Tartof, K. D.Google Scholar
  246. a. Evolution of the transcription unit of rRNA. Proc. Nat. Acad. Sci. USA. 65:609–616.Google Scholar
  247. Perry, R. P., Greenberg, J. R., and Tartof, K. D. 1970b. Transcription of rRNA, hnRNA, and mRNA in eucaryotes. Cold Spring Harbor Symp. Quant. Biol. 35: 577–587.Google Scholar
  248. Perry, R. P. and Kelley, D. E. 1974. Existence of methylated mRNA in mouse L cells. Cell. 1: 37–42.Google Scholar
  249. Perry, R. P., and Scherrer, K. 1975. The methylated constituents of globin mRNA. FEBS Lett. 57: 73–78.PubMedGoogle Scholar
  250. Petranyi, P., Jendrisak, J. J., and Burgess, R. R. 1977. RNA polymerase II from wheat germ contains tightly bound zinc. Biochem. Biophys. Res. Comm. 74: 1031–1038.PubMedGoogle Scholar
  251. Pettijohn, D. E. 1972. Ordered and preferential initiation of rRNA synthesis in vivo. Nature New Biol. 235: 204–206.PubMedGoogle Scholar
  252. Philipson, L., Wall, R., Glukman, G., and Darnell, J. E. 1971. Addition of poly(A) to virusspecific RNA during adenovirus replication. Proc. Nat. Acad. Sci. USA. 68: 2806–2809.PubMedGoogle Scholar
  253. Prescott, D. M., Bostock, C., Gamow, E., and Lauth, M. 1971. Characterization of rapidly labeled RNA in Tetrahymena pyriformis. Exp. Cell Res. 67: 124–128.Google Scholar
  254. Prestayko, A. W., Klomp, G. R., Schmoll, D. J., and Busch, H. 1974a. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry. 13: 1945–1951.PubMedGoogle Scholar
  255. Prestayko, A. W., Olson, M. O. J., and Busch, H. 1974b. Phosphorylation of proteins of ribosomes and nucleolar preribosomal particles in vivo. in Novikoff hepatoma ascites cells. FEBS Lett. 44: 131–135.PubMedGoogle Scholar
  256. Proudfoot, N. J., and Brownlee, G. G. 1974. Nucleotide sequence adjacent to poly(A) in globin mRNA. FEBS Lett. 38: 179–183.Google Scholar
  257. Quincey, R. V., and Wilson, S. H. 1969. The utilization of genes for rRNA, 5 S RNA, and tRNA in liver cells of adult rats. Proc. Nat. Acad. Sci. USA. 64: 981–988.PubMedGoogle Scholar
  258. Quinlan, T. J., Billings, P. B., and Martin, T. E. 1974. Nuclear RNP complexes containing poly(A) from mouse ascites cells. Proc. Nat. Acad. Sci. USA. 71: 2632–2636.PubMedGoogle Scholar
  259. Racevskis, J., and Webb, T. E. 1974. Processing and release of rRNA from isolated nuclei. Eur. J. Biochem. 49: 93–100.PubMedGoogle Scholar
  260. Reeder, R. H., and Roeder, R. G. 1972. Ribosomal RNA synthesis in isolated nuclei. J. Mol. Biol. 67: 433 111.Google Scholar
  261. Retèl, J., and Planta, R. J. 1970. On the mechanism of the biosynthesis of rRNA in yeast. Biochim. Biophys. Acta. 224: 458–469.PubMedGoogle Scholar
  262. Rether, B., Gangloff, J., and Ebel, J. P. 1974. Replacement of the terminal CCA sequence in yeast-tRNA’he by several unusual sequences. Eur. J. Biochem. 50: 289–295.PubMedGoogle Scholar
  263. Rho, J. H., and Bonner, J. 1961. The site of RNA synthesis in the isolated nucleus. Proc. Nat. Acad. Sci. USA. 47: 1611–1619.PubMedGoogle Scholar
  264. Richardson, J. P. 1970. Rho factor function in T4 transcription. Cold Spring Harbor Symp. Quant. Biol. 35: 127–134.Google Scholar
  265. Richardson, J. P. 1974. Effects of supercoiling on transcription from bacteriophage PM2 DNA. Biochemistry. 3: 3164–3169.Google Scholar
  266. Richardson, J. P. 1975. Initiation of transcription by E. coli. RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2 DNA. J. Mol. Biol. 91: 477–487.PubMedGoogle Scholar
  267. Richardson, J. P., Grimely, C., and Lowery, C. 1975. Transcription termination factor rho activity is altered in E. coli. with suA. gene mutations. Proc. Nat. Acad. Sci. USA. 72: 1725–1728.PubMedGoogle Scholar
  268. Ritossa, F. M., Atwood, K. C., and Spiegelman, S. 1966. A molecular explanation of the bobbed mutants of Drosophila. as partial deficiencies of “ribosomal” DNA. Genetics. 54: 819–834.PubMedGoogle Scholar
  269. Rizzo, A. J., and Webb, T. E. 1972. Regulation of ribosome formation in regenerating rat liver. Eur. J. Biochem. 27: 136–144.PubMedGoogle Scholar
  270. Roberts, J. W. 1970. The p. factor: Termination and anti-termination in X. Cold Spring Harbor Symp. Quant. Biol. 35: 121–126.Google Scholar
  271. Robertson, H. D., Altman, S., and Smith, J. D. 1972. Purification and properties of a specific E. coli. ribonuclease which cleaves a tyrosine tRNA precursor. J. Biol. Chem. 247: 5243–5251.PubMedGoogle Scholar
  272. Roeder, R. G. 1974. Multiple forms of DNA-dependent RNA polymerase in Xenopus laevis. J. Biol. Chem. 249: 241–248.Google Scholar
  273. Roeder, R. G., and Rutter, W. J. 1969. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 224: 234–237.PubMedGoogle Scholar
  274. Roeder, R. G., and Rutter, W. J. 1970. Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Nat. Acad. Sci. USA. 65: 675–682.PubMedGoogle Scholar
  275. Rogers, M. E., Loening, U. E., and Fraser, R. S. S. 1970. Ribosomal RNA precursors in plants. J. Mol. Biol. 49: 681–692.PubMedGoogle Scholar
  276. Rogerson, A. C., and Ezekiel, D. H. 1974. Decay of RNA synthesis in amino acid-starved E. coli., after rifampin treatment. J. Bact. 117: 987–993.PubMedGoogle Scholar
  277. Roth, J. S. 1964. Biological information in a single strand of DNA. Nature. 202: 182–183.PubMedGoogle Scholar
  278. Roufa, D. J., and Axelrod, D. 1971. The repeated tRNA genes of animal cells in culture. Biochim. Biophys. Acta. 254: 429–439.PubMedGoogle Scholar
  279. Roy-Burman, P. 1970. Analogs of Nucleic Acid Components., Berlin, Springer Verlag.Google Scholar
  280. Russell, P. J., Hammett, J. R., and Selker, E. U. 1976. Neurospora crassa. cytoplasmic ribosomes: rRNA synthesis in the wild type. J. Bact. 127: 785–793.Google Scholar
  281. Ryan, A. M., and Borek, E. 1971. The relaxed control phenomenon. Progr. Nucl. Acid Res. Mol. Biol. 11: 193–228.Google Scholar
  282. Ryskov, A. P., Saunders, G. F., Farashyan, V. R., and Georgiev, G. P. 1973. Double-helical regions in nuclear precursor of mRNA (pre-mRNA). Biochim. Biophys. Acta. 312: 152–164.PubMedGoogle Scholar
  283. Ryskov, A. P., Yenikolopov, G. N., and Limborska, S. A. 1974. Complementary regions of the nuclear precursor of mRNA. FEBS Lett. 47: 98–102.PubMedGoogle Scholar
  284. Sagan, C. 1957. Radiation and the origin of the gene. Evolution. 11: 40–55.Google Scholar
  285. Saito, K., and Mitsuhashi, S. 1973. RNA-dependent RNA replicase in the immune response. Jpn. J. Microbiol. 17: 117–121.PubMedGoogle Scholar
  286. Salim, M., and Maden, B. E. H. 1973. Early and late methylations in HeLa cell ribosome maturation. Nature. 244: 334–336.PubMedGoogle Scholar
  287. Samarina, O. P., Krichevskaya, A. A., and Georgiev, G. P. 1966. Nuclear RNP particles containing mRNA. Nature. 210: 1319–1322.PubMedGoogle Scholar
  288. Samarina, O. P., Lukanidin, E. M., Molnar, J., and Georgiev, G. P. 1968. Structural organization of nuclear complexes containing DNA-like RNA. J. Mol. Biol. 33: 251–263.PubMedGoogle Scholar
  289. Sanderson, K. E. 1967. Revised linkage map of Salmonella typhimurium. Bacter. Rev. 31: 354–372.Google Scholar
  290. Scarpulla, R. C., C. E. Deutsch, and R. L. Soffer. 1976. Transfer of methionyl residues by leucyl, phenylalanyl-tRNA-protein transferase. Biochem. Biophys. Res. Comm., 71: 584–589.PubMedGoogle Scholar
  291. Scherrer, K., Latham, H., and Darnell, J. E. 1963. Demonstration of an unstable RNA and of a precursor to rRNA in HeLa cells. Proc. Nat. Acad. Sci. USA. 49: 240–248.PubMedGoogle Scholar
  292. Scherrer, K., Marcaud, L., Zajdela, F., London, I. M., and Gros, F. 1966. A rapidly labelled, unstable 60 S RNA with messenger properties in duck erythroblasts. Proc. Nat. Acad. Sci. USA. 56: 1571–1578.PubMedGoogle Scholar
  293. Schmidt, F. J. 1975. A novel function of E. coli. tRNA nucleotidyl-transferase. J. Biol. Chem. 250: 8399–8403.PubMedGoogle Scholar
  294. Schwartz, L. B., Sklar, V. E. F., Jaehning, J. A., Weinmann, R., and Roeder, R. G. 1974. Isolation and partial characterization of the multiple forms of DNA-dependent RNA polymerase in the mouse myeloma, MOPC315. J. Biol. Chem. 249: 5889–5897.PubMedGoogle Scholar
  295. Schweiger, A., and Schmidt, D. 1974. Isolation of RNA-binding proteins from rat liver nuclear 30 S-particles. FEBS Lett. 41: 17–20.PubMedGoogle Scholar
  296. Scott, N. S. 1973. Ribosomal RNA cistrons in Euglena gracilis. J. Mol. Biol. 81: 327–336.Google Scholar
  297. Seidman, J. G., and McClain, W. H. 1975. Three steps in conversion of large precursor RNA into serine and proline tRNAs. Proc. Nat. Acad. Sci. USA. 72: 1491–1495.PubMedGoogle Scholar
  298. Seidman, J. G., Barrell, B. G., and McClain, W. H. 1975. Five steps in the conversion of a large precursor RNA into bacteriophage praline and serine tRNAs. J. Mol. Biol. 99: 733–760.PubMedGoogle Scholar
  299. Seifart, K. H., and Benecke, B. J. 1975. DNA-dependent RNA polymerase C. Eur. J. Biochem. 53: 293–300.Google Scholar
  300. Seitz, Ur., and Seitz, Ul. 1973. Biosynthese der ribosomalen RNS bei der blaugrünen Algae Anacystis nidulans. Arch. Mikrobiol. 90: 213–222.Google Scholar
  301. Serfling, E., Maximovsky, L. F., and Wobus, U. 1974. Synthesis and processing of rRNA in salivary general cells of Chironomus thummi. Eur. J. Biochem. 45: 277–289.Google Scholar
  302. Siegel, R. B., and Summers, W. C. 1970. Control of phage-specific RNA synthesis in vivo. by early phage genes. J. Mol. Biol. 49: 115–123.PubMedGoogle Scholar
  303. Sirlin, J. L., Jacob, J., and Kato, K. 1962. The role of messenger to nucleolar RNA. Exp. Cell Res. 27: 355–359.PubMedGoogle Scholar
  304. Sklar, V. E. F., Schwartz, L. B., and Roeder, R. G. 1975. Distinct molecular structures of nuclear class I, II, and III DNA-dependent RNA polymerases. Proc. Nat. Acad. Sci. USA. 72: 348–352.PubMedGoogle Scholar
  305. Slack, J. M. W., and Loening, U. E. 1974. 5’-ends of ribosomal and ribosomal precursor RNAs from Xenopus laevis. Eur. J. Biochem. 43:59–67.Google Scholar
  306. Slater, D. W., Slater, I., and Gillespie, D. 1972. Post-fertilization synthesis of poly(A) in sea urchin embryos. Nature. 240: 333–337.PubMedGoogle Scholar
  307. Slater, D. W., Slater, I., Gillespie, D., and Gillespie, S. 1974. Post-fertilization polyadenylylation during transcriptive and translational inhibition. Biochem. Biophys. Res. Comm. 60: 1222–1228.PubMedGoogle Scholar
  308. Slater, I., and Slater, D. W. 1974. Polyadenylylation and transcription following fertilization. Proc. Nat. Acad. Sci. USA. 71: 1103–1107.PubMedGoogle Scholar
  309. Smith, A. E., Bellware, B. T., and Silver, J. J. 1967. Formation of nucleic acid coacervates by dehydration and rehydration. Nature. 214: 1038–1040.PubMedGoogle Scholar
  310. Smith, I., Dubnau, D., Morrell, P., and Marmur, J. 1968. Chromosomal location of DNA base sequences complementary to tRNA and to 5 S, 16 S, and 23 S rRNA in B. subtilis. J. Mol. Biol. 33: 123–140.Google Scholar
  311. Smith, M. J., Hough, B. R., Chamberlin, M. E. and Davidson, E. H. 1974. Repetitive and non-repetitive sequences in sea urchin hnRNA. J. Mol. Biol. 85: 103–126.PubMedGoogle Scholar
  312. Soeiro, R., Vaughan, M. H., Warner, J. R., and Darnell, J. E. 1968. The turnover of nuclear DNA-like RNA in HeLa cells. J. Cell Biol. 39: 112–118.PubMedGoogle Scholar
  313. Soffer, R. L. 1968. The arginine transfer reaction. Biochim. Biophys. Acta. 155: 228–240.PubMedGoogle Scholar
  314. Soffer, R. L. 1973. Peptide acceptors in the leucine-phenylalanine transfer reaction. J. Biol. Chem. 248: 8424–8428.PubMedGoogle Scholar
  315. Soffer, R. L., and Horinishi, H. 1969. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm. J. Mol. Biol. 43: 163–175.PubMedGoogle Scholar
  316. Soffer, R. L., and Mendelsohn, N. 1966. Incorporation of arginine by a soluble system from sheep thyroid. Biochem. Biophys. Res. Comm. 23: 252–258.PubMedGoogle Scholar
  317. Sogin, M., Pace, B., Pace, N. R., and Woese, C. R. 1971. Primary structural relationship of p16 to m16 rRNA. Nature New Biol. 232: 48–49.PubMedGoogle Scholar
  318. Somers, D. G., Pearson, M. L., and Ingles, C. J. 1975. Regulation of RNA polymerase II activity in a mutant rat myeloblast cell line resistant to a-amantin. Nature. 253: 372–374.PubMedGoogle Scholar
  319. Spiegelman, S., Mills, D. R., and Kramer, F. R. 1975. The extracellular evolution of structure in replicating RNA molecules. In: Miller, I. R., ed., Stability and Origin of Biological Information., New York, John Wiley & Sons, p. 123–172.Google Scholar
  320. Spohr, G., Imaizumi, T., and Scherrer, K. 1974. Synthesis and processing of nuclear precursormRNA in avian erythroblasts and HeLa cells. Proc. Nat. Acad. Sci. USA. 71: 5009–5013.PubMedGoogle Scholar
  321. Squires, C., Konrad, B., Kirschbaum, J., and Carbon, J. 1973. Three adjacent tRNA genes in E. coli. Proc. Nat. Acad. Sci. USA. 70: 438–441.Google Scholar
  322. Steggles, A. W., Wilson, G. N., Kantor, J. A., Picciano, D. J., Falvey, A. K., and Anderson, W. F. 1974. Cell-free transcription of mammalian chromatin. Proc. Nat. Acad. Sci. USA. 71: 1219–1223.PubMedGoogle Scholar
  323. Stein, G. S., Chandhuri, S. C., and Baserga, R. B. 1972. Gene activation in WI-38 fibroblasts stimulated to proliferate. J. Biol. Chem. 247: 3918–3922.PubMedGoogle Scholar
  324. Stetter, K. O., and Zillig, W. 1974. DNA-dependent RNA polymerase from Lactobacillus curva-tus. Eur. J. Biochem. 48: 527–540.Google Scholar
  325. Stoof, T. J., de Regt, V. C. H. F., Raué, H. A., and Planta, R. J. 1974. Two precursor 5 S RNA species in Bacillus licheniformis. FEBS Lett. 49: 237–241.Google Scholar
  326. Studier, F. W. 1973. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. Mol. Biol. 79: 237–248.PubMedGoogle Scholar
  327. Sulston, J., Lohrman, R., Orgel, L. E., Schneider-Bernloehr, H., Weimann, B. J., and Miles, H. T. 1969. Non-enzymatic oligonucleotide synthesis on a poly(C) template. J. Mol. Biol. 40: 227–234.PubMedGoogle Scholar
  328. Sypherd, P. S. 1968. Ribosome development and the methylation of rRNA. J. Bact. 95: 1844–1850.PubMedGoogle Scholar
  329. Szybalski, W., Kubinski, H., and Sheldrick, P. 1966. Pyrimidine clusters on the ‘transcribing-strand of DNA and their possible role in the initiation of RNA synthesis. Cold Spring Harbor Symp. Quant. Biol. 31: 123–127.PubMedGoogle Scholar
  330. Tartof, K. D. 1971. Increasing the multiplicity of ribosomal RNA genes in Drosophila melanogaster. Science. 171: 294–297.Google Scholar
  331. Tartof, K. D., and Perry, R. P. 1970. The 5 S RNA genes of Drosophila melanogaster. J. Mol. Biol. 51: 171–184.Google Scholar
  332. Telles, N. C., and Coble, D. W. 1968. The nucleolus-A morphological and possible functional relationship to the nuclear membrane. Fed. Proc. 27: 836.Google Scholar
  333. Terhune, M. W., and Sandstead, H. H. 1972. Decreased RNA polymerase activity in mammalian zinc deficiency. Science. 177: 68–69.PubMedGoogle Scholar
  334. Thammana, P., and Held, W. A. 1974. Methylation of 16 S RNA during ribosome assembly in vitro. Nature. 251: 682–686.Google Scholar
  335. Timberlake, W. E., and Turian, G. 1974. Multiple DNA-dependent RNA polymerases of Neuro-spora. Experientia. 30: 1236–1238.Google Scholar
  336. Tissières, A., Mitchell, H. K., and Tracy, U. M. 1974. Protein synthesis in salivary glands of Drosophila melanogaster. J. Mol. Biol. 84: 389–398.Google Scholar
  337. Torelli, U., and Torelli, G. 1973. Poly(A)-containing molecules in hnRNA of normal PhAstimulated lymphocyte and acute leukemiablast cells. Nature New Biol. 244: 134–136.PubMedGoogle Scholar
  338. Trapman, J., de Jonge, P., and Planta, R. J. 1975. On the biosynthesis of 5.8 S rRNA in yeast. FEBS Leu. 57: 26–30.Google Scholar
  339. Travers, A. A., and Burgess, R. R. 1967. Cyclic re-use of the RNA polymerase sigma factor. Nature. 222: 536–540.Google Scholar
  340. Tsai, M. J., and Saunders, G. F. 1974. Isolation and characterization of human DNA-dependent RNA polymerase. Biochim. Biophys. Acta. 366: 61–69.Google Scholar
  341. Van de Walle, C., and Deltour, R. 1974. Presence of hnRNA in a plant: Zea mays. FEBS Lett. 49: 87–91.Google Scholar
  342. Van Keulen, H., Planta, R. J., and Retèl, J. 1975. Structure and transcription specificity of yeast RNA polymerase A. Biochim. Biophys. Acta. 395: 179–190.PubMedGoogle Scholar
  343. Vickers, T. G., and Midgley, J. E. M. 1971. Evidence for tRNA precursors in bacteria. Nature New Biol. 233: 210–212.PubMedGoogle Scholar
  344. Walton, G. M., Gill, G. N., Abrams, I. B., and Garren, L. D. 1971. Phosphorylation of ribosome-associated protein by an adenosine 3’, 5’-cyclic monophosphate dependent protein kinase. Proc. Nat. Acad. Sci. USA. 68: 880–884.PubMedGoogle Scholar
  345. Warner, J. R., Soeiro, R., Birnboim, H. C., Girard, M., and Darnell, J. E. 1966. Rapidly labelled HeLa cell nuclear RNA. J. Mol. Biol. 19: 349–361.PubMedGoogle Scholar
  346. Weinberg, R. A. 1973. Nuclear RNA metabolism. Ann. Rev. Biochem. 42: 330–354.Google Scholar
  347. Weinberg, R. A., and Penman, S. 1970. Processing of 45 S nucleolar RNA. J. Mol. Biol. 47: 169–178.PubMedGoogle Scholar
  348. Weinmann, R., and Roeder, R. G. 1974. Role of DNA-dependent RNA polymerase III in the transcription of the tRNA and 5 S RNA genes. Proc. Nat. Acad. Sci. USA. 71: 1790–1794.PubMedGoogle Scholar
  349. Weisbeek, P. J., Bornas, W. E., Langeveld, S. A., Baas, P. D., and van Arkel, G. A. 1977. Bacteriophage OX174: Gene A overlaps gene B. Proc. Nat. Acad. Sci. USA. 74: 2504–2508.PubMedGoogle Scholar
  350. Wellauer, P. K., and Dawid, I. B. 1973a. Secondary structure maps of RNA. Proc. Nat. Acad. Sci. USA. 70: 2827–2831.PubMedGoogle Scholar
  351. Wellauer, P. K., and Dawid, I. B. 1973b. Secondary structure maps of rRNA and its precursors as determined by electron microscopy. Cold Spring Harbor Symp. Quant. Biol. 38: 525–535.Google Scholar
  352. Wilkie, N., and Smellie, R. M. S. 1968. Polyribonucleoside synthesis by subfractions of microsomes from rat liver. Biochem. J. 109: 229–238.PubMedGoogle Scholar
  353. Willems, M., Penman, M., and Penman, S. 1969. The regulation of RNA synthesis and processing in the nucleolus during inhibition of protein synthesis. J. Cell Biol. 41: 177–187.PubMedGoogle Scholar
  354. Wilson, J. H., Kim, J. S., and Abelson, J. N. 1972. Bacteriophage T4 tRNA. J. Mol. Biol. 71: 547–556.PubMedGoogle Scholar
  355. Wimber, D. E., and Steffensen, D. M. 1970. Localization of 5 S RNA genes on Drosophila. chromosomes by RNA-DNA hybridization. Science. 170: 639–641.PubMedGoogle Scholar
  356. Winicov, I. 1976. Alternate temporal order in ribosomal RNA maturation. J. Mol. Biol. 100: 141–155.PubMedGoogle Scholar
  357. Winicov, I., and Perry, R. P. 1974. Characterization of a nucleolar endonuclease possibly involved in rRNA maturation. Biochemistry. 13: 2908–2914.PubMedGoogle Scholar
  358. Winters, M. A., and Edmonds, M. 1973. A poly(A) polymerase from calf thymus. J. Biol. Chem. 248: 4763–4768.PubMedGoogle Scholar
  359. Wood, W. B., and Berg, P. 1963. Studies on the “messenger” activity of RNA synthesized with RNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 28: 237–246.Google Scholar
  360. Wykes, J., and Smellìe, R. M. S. 1966. The synthesis of polyribonucleotides by cytoplasmic enzymes. Biochem. J. 99: 347–355.PubMedGoogle Scholar
  361. Yankofsky, S. A., and Spiegelman, S. 1962. Identification of the ribosomal RNA cistron by sequence complementarity. Proc. Nat. Acad. Sci. USA. 48: 1069–1078.PubMedGoogle Scholar
  362. Yankofsky, S. A., and Spiegelman, S. 1963. Distinct cistrons for the two rRNA components. Proc. Nat. Acad. Sci. USA. 49: 538–544.PubMedGoogle Scholar
  363. Yoshida, N., Inoue, H., Sasaki, A., and Otsuka, H. 1971. Ribonuclease from Streptomyces erythreus. Biochim. Biophys. Acta. 228: 636–647.Google Scholar
  364. Young, H. A., and Whiteley, H. R. 1975. DNA-dependent RNA-polymerase in the dimorphic fungus Mucor rouxii. J. Biol. Chem. 250: 479–487.Google Scholar
  365. Zain, B. S., Weissman, S. M., Dhar, R., and Pan, J. 1974. The nucleotide sequence preceding an RNA polymerase initiation site on SV40 DNA. Part I. The sequence of the late strand transcript. Nucleic Acid Res. 1: 577–594.PubMedGoogle Scholar
  366. Zimmer, S. G., and Millette, R. L. 1975. DNA-dependent RNA polymerase from Pseudomonas. BAL-31. Biochemistry. 14: 290–299.PubMedGoogle Scholar
  367. Zingales, B., and Colli, W. 1977. Ribosomal RNA genes in B. subtilis. Evidence for a cotranscriptional mechanism. Biochim. Biophys. Acta. 474: 562–577.PubMedGoogle Scholar
  368. Zylber, E. A., and Penman, S. 1971. Products of RNA polymerases in HeLa cell nuclei. Proc. Nat. Acad. Sci. USA. 68: 2861–2865.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations