Advertisement

The Genetic Mechanism: II The Cell’s Employment of DNA

  • Lawrence S. Dillon

Abstract

Throughout the foregoing discussion, it became increasingly evident that the DNA molecule is completely dependent upon proteins for its every action. Replication was seen to proceed only in the presence of a series of enzymes, as did the synthesis of the nucleotides and their modification after incorporation. Even the structuring of the molecule into chromosomes or nucleoids required action from certain proteins. Hence DNA by itself is obviously inert, an attribute that cannot fail to preclude its being the first molecule of life—proteins certainly, and RNAs possibly, had to precede it in living systems. Although its absence of chemical activity bars DNA from further consideration in the search for the properties of the earliest protobiont, its presence should be expected in the genetic apparatus of the most advanced forms. Were the DNA molecule to participate actively in metabolism, it would of necessity undergo molecular changes. But through its inertness it remains stable, and through its stability it is capable of providing the same precise information to generation after generation of cells.

Keywords

Large Subunit Small Subunit Ribosomal Subunit Sedimentation Coefficient Hairpin Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D. J. 1971. Proposed detailed structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol. 30: 83–91.PubMedGoogle Scholar
  2. Adams, J. M., and Cory, S. 1970. Untranslated nucleotide sequence at the 5’-end of R17 bacteriophage RNA. Nature. 227: 570–574.PubMedGoogle Scholar
  3. Adams, J. M., and Cory, S. 1975. Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA. Nature. 255: 28–33.PubMedGoogle Scholar
  4. Adesnik, M., and Darnell, J. E. 1972. Biogenesis and characterization of histone mRNA in HeLa cells. J. Mol. Biol. 67: 397–406.PubMedGoogle Scholar
  5. Ajtkhozhin, M. A., and Akhanov, A. U. 1974. Release of mRNP-particles of the informosome type from polyribosomes of higher plant embryos. FEBS Lett. 41: 275–279.PubMedGoogle Scholar
  6. Allende, J. E., Monro, R., and Lipmann, F. 1964. Resolution of the E. coli. amino acyl sRNA transfer factor into two complementary fractions. Proc. Nat. Acad. Sci. USA. 51: 1211–1216.Google Scholar
  7. Ames, B. N., and Hartman, P. E. 1963. The histidine operon. Cold Spring Harb. Symp. Quant. Biol. 28: 349–356.Google Scholar
  8. Anderson, J. S., Bretscher, M. S., Clark, B. F. C., and Marcher, K. A. 1967. A GTP requirement for binding initiator tRNA to ribosomes. Nature. 215: 490–492.PubMedGoogle Scholar
  9. Arias, I. M., Doyle, D., and Schimke, R. T. 1969. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. Biol. Chem. 244: 3303–3315.PubMedGoogle Scholar
  10. Attardi, G., Huang, P. C., and Kabat, S. 1965. Recognition of rRNA sites in DNA. Proc. Nat. Acad. Sci. USA. 53: 1490–1498.PubMedGoogle Scholar
  11. Averner, M. J., and Pace, N. R. 1972. The nucleotide sequence of marsupial 5 S ribosomal RNA. J. Biol. Chem. 247: 4491–4493.PubMedGoogle Scholar
  12. Ayuso-Parilla, M., Henshaw, E. C., and Hirsch, C. A. 1973a. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4386–4393.PubMedGoogle Scholar
  13. Ayuso-Parilla, M., Hirsch, C. A., and Henshaw, E. C. 1973b. Release of the nonribosomal proteins from the mammalian native 40S ribosomal subunit by aurintricarboxylic acid. J. Biol. Chem. 248: 4394–4399.PubMedGoogle Scholar
  14. Bag, J., and Sarkar, S. 1975. Cytoplasmic nonpolysomal mRNP containing actin mRNA in chicken embryonic muscles. Biochemistry. 14: 3800–3807.PubMedGoogle Scholar
  15. Ball, L. A. 1973. Mutual influence of the secondary structure and informational content of a mRNA. J. Theor. Biol. 4: 243–247.Google Scholar
  16. Barrieux, A., Ingraham, H. A., David, D. N., and Rosenfeld, M. G. 1975. Isolation of messenger-like RNPs. Biochemistry. 14:1815–1821.Google Scholar
  17. Beaudet, A. L., and Caskey, C. T. 1971. Mammalian peptide chain termination. Proc. Nat. Acad. Sci. USA. 68: 619–624.PubMedGoogle Scholar
  18. Bell, E., and Reeder, R. 1965. Short-and long-lived mRNA in embryonic chick lens. Science. 150: 71–72.PubMedGoogle Scholar
  19. Bellmare, G., Jordan, B. R., Rocca-Serra, J., and Monier, R. 1972. Accessibility of E. coli. 5. S RNA base residues to chemical reagents. Biochimie. 54: 1453–1466.Google Scholar
  20. Bellmare, G., Vigne, R., and Jordan, B. R. 1973. Interaction between E. coli. ribosomal proteins and 5 S RNA molecules. Biochimie. 55: 29–35.Google Scholar
  21. Benhamou, J., and Jordan, B. R. 1976. Nucleotide sequence of D. melanogaster. 5. S RNA. FEBS Lett. 62: 146–149.PubMedGoogle Scholar
  22. Benhamou, J., Jourdan, R., and Jordan, B. R. 1977. Sequence of Drosophila. 5. S RNA synthesized by cultured cells and by the insect at different developmental stages. J. Mol. Evol. 9: 279–298.PubMedGoogle Scholar
  23. Berns, A. J. M., Strous, G. J. A. M., and Bloemendal, H. 1972. Heterologous in vitro. synthesis of lens a-crystallin polypeptide. Nature New Biol. 236: 7–9.PubMedGoogle Scholar
  24. Billeter, M. A., Dahlberg, J. E., Goodman, H. E., Hindley, J., and Weissmann, C. 1969. Sequence of first 175 nucleotides from the 5’-terminus of Qß RNA synthesized in vitro. Nature. 224: 1083–1086.Google Scholar
  25. Bishop, J. O., Morton, J. G., Rosbach, M., and Richardson, M. 1974. Three abundance classes in HeLa cell mRNA. Nature. 250: 199–204.PubMedGoogle Scholar
  26. Bitar, K. G. 1975. The primary structure of the ribosomal protein L29 from E. coli. Biochim. Biophys. Acta. 386: 99–106.Google Scholar
  27. Bitar, K. G., and Wittmann-Liebold, B. 1975. The primary structure of the 5 S rRNA binding protein L25 of E. coli. Hoppe-Seyler’s Zeit. Phys. Chem. 356: 1343–1352.Google Scholar
  28. Blobel, G. 1972. Protein tightly bound to globin mRNA. Biochem. Biophys. Res. Comm. 47: 88–95.PubMedGoogle Scholar
  29. Blobel, G. 1973. A protein of molecular weight 78,000 bound to the poly(A) region of eukaryotic mRNAs. Proc. Nat. Acad. Sci. USA. 70: 924–928.PubMedGoogle Scholar
  30. Bloemendal, H. 1977. The vertebrate eye lens. Science. 197: 127–138.PubMedGoogle Scholar
  31. Blundell, M., Craig, E., and Kennell, D. 1972. Decay rates of different mRNA in E. coli. and models of decay. Nature New Biol. 238: 46–49.PubMedGoogle Scholar
  32. Bollini, R., Soffientini, A. N., Bertani, A., and Lanzani, G. A. 1974. Some molecular properties of the elongation factor EF-1 from wheat embryos. Biochemistry. 13: 5421–5425.PubMedGoogle Scholar
  33. Bonnet, J., and Ebel,.1. P. 1972. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNAva’ with yeast valyl-tRNA synthetase. Eur. J. Biochem. 31: 335–344.PubMedGoogle Scholar
  34. Bonnet, J., and Ebel, J. P. 1974. Correction of aminoacylation errors: evidence for a nonsignificant role of the aminoacyl-tRNA synthetase catalyzed deacylation of aminoacyl-tRNAs. FEBS Lett. 39: 259–262.PubMedGoogle Scholar
  35. Bonnet, J., Giegé, R., and Ebel, J. P. 1972. Lack of specificity in the aminoacyl-tRNA synthetasecatalysed deacylation of aminoacyl-tRNA. FEBS Lett. 27: 139–144.PubMedGoogle Scholar
  36. Bostock, C. J., Prescott, D. M., and Lauth, M. 1971. Lability of 26 S rRNA in Tetrahymena pyriformis. Exp. Cell Res. 66: 260–262.Google Scholar
  37. Branlant, C., and Ebel, J.-P. 1977. Studies on the primary structure of E. coli. 23 S RNA. Nucleotide sequence of the ribonuclease Tl digestion products containing more than one uridine residue. J. Mol. Biol. 111: 215–256.PubMedGoogle Scholar
  38. Brenner, S., Jacob, F., and Meselson, M. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 190: 576–581.PubMedGoogle Scholar
  39. Bretscher, M. S. 1965. Fractionation of oligolysyl-adenosine complexes derived from polylysine attached to tRNA. J. Mol. Biol. 12: 913–919.PubMedGoogle Scholar
  40. Bretscher, M. S. 1966. Polypeptide chain initiation and the characterization of ribosomal binding in E. coli. Cold Spring Harbor Symp. Quant. Biol. 31: 289–296.Google Scholar
  41. Bretscher, M. S. 1968. Direct translation of a circular mRNA. Nature. 220: 1088–1091.PubMedGoogle Scholar
  42. Bretscher, M. S. 1969. Direct translation of bacteriophage fd DNA in the absence of neomycin B. J. Mol. Biol. 42: 595–598.PubMedGoogle Scholar
  43. Bretscher, M. S., Goodman, H. M., Menninger, J. R., and Smith, J. D. 1965. Polypeptide chain termination using synthetic polynucleotides. J. Mol. Biol. 14: 634–639.PubMedGoogle Scholar
  44. Brinacombe, R., Nierhaus, K. H., Garrett, R. A., and Wittmann, H. G. 1976. The ribosome of E. coli. Progr. Nucl. Acid Res. Mol. Biol. 18:1–44, 323–325.Google Scholar
  45. Brosius, J., and Chen, R. 1976. The primary structure of protein L16 located at the peptidyl-transferase center of E. coli. ribosomes. FEBS Lett. 68: 105–109.PubMedGoogle Scholar
  46. Brosius, J., Schiltz, E., and Chen, R. 1975. The primary structure of the 5 S RNA binding protein L18 from E. coli. ribosomes. FEBS Lett. 56: 359–361.PubMedGoogle Scholar
  47. Brot, N., Tate, W. P., Caskey, C.-T., and Weissbach, H. 1974. The requirement for ribosomal proteins L7 and L12 in peptide-chain termination. Proc. Nat. Acad. Sci. USA. 71: 89–92.PubMedGoogle Scholar
  48. Brouwer, J., and Planta, R. J. 1975. The origin of high molecular weight proteins in ribosomal preparations of Bacillus licheniformis. FEBS Lett. 53: 73–75.Google Scholar
  49. Brown, D. D., and Weber, C. S. 1968. Unique DNA sequences homologous to 4 S RNA, 5 S RNA, and rRNA. J. Mol. Biol. 34: 661–680.PubMedGoogle Scholar
  50. Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of 5 S DNA from Xenopus laevis. Proc. Nat. Acad. Sci. USA. 68: 3175–3179.Google Scholar
  51. Brown, G. L. 1963. Preparation, fractionation, and properties of sRNA. Progr. Nucl. Acid Res. 2: 259–310.Google Scholar
  52. Brown, J. C., and Doty, P. 1968. Protein factor requirement for binding of mRNA to ribosomes. Biochem. Biophys. Res. Comm. 30: 284–291.PubMedGoogle Scholar
  53. Brownlee, G. G., Cartwright, E., McShane, T., and Williamson, R. 1972. The nucleotide sequence of somatic 5 S RNA from Xenopus laevis. FEBS Lett. 25: 8–12.Google Scholar
  54. Brownlee, G. G., Sanger, F., and Barrell, B. G. 1967. Nucleotide sequence of 5 S rRNA from E. coli. Nature. 215: 735–736.Google Scholar
  55. Brownlee, G. G., Sanger, F., and Barrell, B. G. 1968. The sequence of 5 S rRNA. J. Mol. Biol. 34: 379–412.PubMedGoogle Scholar
  56. Bryan, R. N., and Hayashi, M. 1973. Two proteins are bound to most species of polysomal mRNA. Nature New Biol. 244: 271–274.PubMedGoogle Scholar
  57. Buckingham, M. E., Caput, D., Cohen, A., Whalen, R. G., and Gros, F. 1974. The synthesis and stability of cytoplasmic mRNA during myoblast differentiation in culture. Proc. Nat. Acad. Sci. USA. 71. :1466–1470.Google Scholar
  58. Burr, H., and Lingrel, J. B. 1971. Poly A sequences at the 3’ termini of rabbit globin mRNAs. Nature New Biol. 233: 41–43.PubMedGoogle Scholar
  59. Burstein, Y., Kantor, F., and Schechter, I. 1976. Partial amino-acid sequence of the precursor of an immuno-globulin light chain containing NH2-terminal pyroglutamic acid. Proc. Nat. Acad. Sci. USA. 73: 2604–2608.PubMedGoogle Scholar
  60. Busby, W. F., Hele, P., and Chang, M. C. 1974. Apparent amino acid incorporation by ejaculated rabbit spermatozoa. Biochim. Biophys. Acta. 330: 246–259.Google Scholar
  61. Busiello, E., and DiGirolamo, M. 1973. Aminoacyl-tRNA binding sites in E. coli. and reticulocyte ribosomes. FEBS Lett. 35: 341–343.PubMedGoogle Scholar
  62. Campo, M. S., and Bishop, J. O. 1974. Two classes of mRNA in cultured rat cells. J. Mol. Biol. 90: 649–663.PubMedGoogle Scholar
  63. Cann, A., Gambino, R., Banks, J., and Bank, A. 1974. Poly(A) sequences and biological activity from human globin mRNA. J. Biol. Chem. 249: 7536–7540.PubMedGoogle Scholar
  64. Cantor, C. R. 1967. Possible conformations of 5 S rRNA. Nature. 216: 513–514.PubMedGoogle Scholar
  65. Cantor, C. R. 1968. The extent of base pairing in 5 S rRNA. Proc. Nat. Acad. Sci. USA. 59: 478–483.PubMedGoogle Scholar
  66. Cashion, L. M., and Stanley, W. M. 1974. Two eukaryotic initiation factors (IF-I and IF-II) of protein synthesis that are required to form an initiation complex with rabbit reticulocyte ribosomes. Proc. Nat. Acad. Sci. USA. 71: 436–440.PubMedGoogle Scholar
  67. Caskey, C. T. 1973. Peptide chain termination. Adv. Prot. Chem. 27: 243–276.Google Scholar
  68. Caskey, C. T., Beaudet, A. L., and Tate, W. P. 1974. Mammalian release factor. Methods Enzymol. 30: 293–303.PubMedGoogle Scholar
  69. Caskey, T., Leder, P., Moldave, K., and Schlessinger, D. 1972. Translation: Its mechanism and control. Science. 176: 195–197.PubMedGoogle Scholar
  70. Ceccarini, C., and Maggio, R. 1968. Studies on the ribosomes from the cellular slime molds, Dictyostelium discoideum. and D. purpureum. Biochim. Biophys. Acta. 166: 134–141.Google Scholar
  71. Cedergren, R. J., and Sankoff, D. 1976. Evolutionary origin of 5.8 S rRNA. Nature. 260:74–75. Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Progr. Nucl. Acid Res. 11: 489–525.Google Scholar
  72. Chatterjee, S. K., Kazemie, M., and Matthaei, H. 1973. Separation of the ribosomal proteins by two-dimensional electrophoresis. Hoppe-Seyler’s Z. Phys. Chem. 354: 481–486.Google Scholar
  73. Chen, R., and Ehrke, G. 1976. The primary structure of protein L34 from the large ribosomal subunit of E. coli. FEBS Lett. 63: 215–217.Google Scholar
  74. Chen, R., Mende, L., and Arfsten, U. 1975. The primary structure of protein L27 from the peptidyl-tRNA binding site of E. coli. ribosomes. FEBS Lett. 59: 96–99.PubMedGoogle Scholar
  75. Chen, R., and Wittmann-Liebold, B. 1975. The primary structure of protein S9 from the 30 S subunit of E. coli. ribosomes. FEBS Lett. 52: 139–140.PubMedGoogle Scholar
  76. Cimadevilla, J. M., and Hardesty, B. 1975. Isolation and partial characterization of a 40 S riboso- mal subunit-tRNA binding factor from rabbit reticulocytes. J. Biol. Chem. 250: 4389–4397.PubMedGoogle Scholar
  77. Clark, B. F. C., and Marcker, K. A. 1966. The role of N-formyl-methionyl-sRNA in protein biosynthesis. J. Mol. Biol. 17: 394–406.PubMedGoogle Scholar
  78. Cole, P. E., and Crothers, D. H. 1972. Conformational changes of tRNA. Biochemistry. 11: 4368–4374.PubMedGoogle Scholar
  79. Cole, P. E., Young, S. K., and Crothers, D. M. 1972. Conformational changes of tRNA. Equilibrium phase diagrams. Biochemistry. 11: 4358–4368.PubMedGoogle Scholar
  80. Comb, D. G., and Sarkar, N. 1967. The binding of 5 S rRNA to ribosomal subunits. J. Mol. Biol. 25: 317–330.PubMedGoogle Scholar
  81. Contreras, R., Vandenberghe, A., Min Jou, W., de Wachter, R., and Fiers, W. 1971. Studies on the bacteriophage MS2 nucleotide sequence of a 3’-terminal fragment (n =. 104). FEBS Lett. 18: 141–144.PubMedGoogle Scholar
  82. Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W. 1973. Bacteriophage MS2 RNA: nucleotide sequence of the end of the A protein gene on the intercistronic region. Nature New Biol. 241: 99–101.PubMedGoogle Scholar
  83. Conway, T. W., and Lipmann, F. 1964. Characterization of a ribosome-linked guanosine triphosphatase in E. coli. extracts. Proc. Nat. Acad. Sci. USA. 52: 1462–1469.PubMedGoogle Scholar
  84. Cornick, G. G., and Kretsinger, R. H. 1977. The 30 S subunit of the E. coli. ribosome. Biochim. Biophys. Acta. 474: 398–410.PubMedGoogle Scholar
  85. Corry, M. J., Payne, P. I., and Dyer, T. A. 1974a. The nucleotide sequence of 5 S rRNA from the blue-green alga Anacystis nidulans. FEBS Lett. 46: 63–66.Google Scholar
  86. Cony, M. J., Payne, P. I., and Dyer, T. A. 1974b. A sequence analysis of 5 S rRNA from the blue-green alga Oscillatoria tenuis. and a comparison of blue-green alga 5 S rRNA with those of bacterial and eukaryotic origin. FEBS Lett. 46: 67–70.Google Scholar
  87. Cox, R. A. 1970. A spectrophotometric study of the secondary structure of RNA isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes. Biochem. J. 117: 101–118.PubMedGoogle Scholar
  88. Cox, R. A., Gould, H., and Kanagalingam, K. 1968. A study of the alkaline hydrolysis of fractionated reticulocyte rRNA and its relevance to secondary structure. Biochem. J. 106: 733–741.PubMedGoogle Scholar
  89. Cramer, F. 1969. Three-dimensional structure of tRNA. Progr. Nucl. Acid. Res. 11: 391–421.Google Scholar
  90. Cramer, F., and Erdman, V. A. 1968. Amount of adenine and uracil base pairs in E. coli. 23 S, 16 S, and 5 S rRNA. Nature. 218: 92–93.PubMedGoogle Scholar
  91. Cremer, K., and Schlessinger, D. 1974. Ca’ ions inhibit mRNA degradation but permit mRNA transcription and translation in DNA-coupled systems from E. coli. J. Biol. Chem. 249: 4730–4736.Google Scholar
  92. Crick, F. H. C. 1966. The genetic code: Yesterday, today, and tomorrow. Cold Spring Harbor Symp. Quant. Biol. 31: 3–10.Google Scholar
  93. Crick, F. H. C. 1967. The genetic code. Proc. Roy. Soc. London. B167: 331–347.Google Scholar
  94. Crick, F. H. C., Barnett, L., Brenner, S., and Watts-Tobin, R. J. 1961. General nature of the genetic code for proteins. Nature. 192: 1227–1232.PubMedGoogle Scholar
  95. Crystal, R. A., and Anderson, W. F. 1972. Initiation of hemoglobin synthesis. Proc. Nat. Acad. Sci. USA. 69: 706–711.PubMedGoogle Scholar
  96. Crystal, R. A., Elson, N. A., and Anderson, W. F. 1974. Initiation of globin synthesis. Methods Enzymol. 30: 101–127.PubMedGoogle Scholar
  97. Czernilofsky, A. P., Collatz, E. E., Stöffler, G., and Kuechler, E. 1974. Proteins at the tRNA binding sties of E. coli. ribosomes. Proc. Nat. Acad. Sci. USA. 71: 230–234.PubMedGoogle Scholar
  98. Dahlberg, A. E. 1974. Two forms of the 30 S ribosomal subunit of E. coli. J. Biol. Chem. 249: 7673–7678.Google Scholar
  99. Darnell, J. E., Wall, R., and Tushinski, R. J. 1971. An adenylic acid-rich sequence in mRNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc. Nat. Acad. Sci. USA. 68: 1321–1325.PubMedGoogle Scholar
  100. Davidson, J. N. 1972. The Biochemistry of the Nucleic Acids. 7th Ed., New York, Academic Press.Google Scholar
  101. Daya-Grosjean, L., Reinbolt, J., Pongs, O., and Garrett, R. A. 1974. A study of the regions of ribosomal proteins S4, S8, S15, and S20 that interact with 16 S RNA of E. coli. FEBS Lett. 44: 253–256.Google Scholar
  102. Dayhoff, M. O. 1972. Atlas of Protein Sequence and Structure. 1972. Washington, National Biomedical Research Foundation.Google Scholar
  103. Diez, J., and Brawerman, G. 1974. Elongation of the poly(A) segment of mRNA in the cytoplasm of mammalian cells. Proc. Nat. Acad. Sci. USA. 71: 4091–4095.PubMedGoogle Scholar
  104. Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution. 16: 102–117.Google Scholar
  105. Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool. 12: 71–82.Google Scholar
  106. Dillon, L. S. 1973. The origins of the genetic code. Bot. Rev. 39: 301–345.Google Scholar
  107. Dillon, L. S. 1978. Evolution: Concepts and Consequences. 2nd Ed., St. Louis, Mo., C. V. Mosby Co.Google Scholar
  108. Dina, D., Crippa, M., and Beccari, E. 1973. Hybridization properties and sequence arrangement in a population of mRNAs. Nature New Biol. 242: 101–105.PubMedGoogle Scholar
  109. Dina, D., Meza, I., and Crippa, M. 1974. Relative positions of the `repetitive,’ `unique’ and poly(A) fragments of mRNA. Nature. 248: 486–490.PubMedGoogle Scholar
  110. Dohme, F., and Nierhaus, K. H. 1976. Role of 5 S RNA in assembly and function of the 50 S subunit from E. coli. Proc. Nat. Acad. Sci. USA. 73: 2221–2225.Google Scholar
  111. Dovgas, N. V., Markova, L. F., Mednikova, T. A., Vinokurov, L. M., Alakhov, Y. B., and Ovchinnihov, Y. A. 1975. The primary structure of the 5 S RNA binding protein L25 from E. coli. ribosomes. FEBS Lett. 53: 351–354.PubMedGoogle Scholar
  112. Dovgas, N. V., Vinokurov, L. M., Velmoga, I. S., Alakhov, Y. B., and Ovchinnikov, Y. A. 1976. The primary structure of protein L10 from E. coli. ribosomes. FEBS Lett. 67: 58–61.PubMedGoogle Scholar
  113. Drews, J., Bednarik, K., and Grasmuck, H. 1974. Elongation factor 1 from Krebs H mouse ascites cells. Eur. J. Biochem. 41: 217–227.PubMedGoogle Scholar
  114. Dube, S. K. 1973. Recognition of tRNA by the ribosome. A possible role of 5 S RNA. FEBS Lett. 36: 39–42.PubMedGoogle Scholar
  115. Dubuy, B., and Weissman, S. M. 1971. Nucleotide sequence of Pseudomonas fluorescens. 5. S RNA. J. Biol. Chem. 246: 747–761.PubMedGoogle Scholar
  116. Dworkin, M. B., Rudensey, L. M., and Infante, A. A. 1977. Cytoplasmic nonpolysomal RNP particles in sea urchin embryos and their relationship to protein synthesis. Proc. Nat. Acad. Sci. USA. 74: 2231–2235.PubMedGoogle Scholar
  117. Ebel, J. P., Geigé, R., Bonnet, J., Kern, D., Befort, N., Bollack, C., Fasiolo, F., Gangloff, J., and Dirheimer, G. 1973. Factors determining the specificity of the tRNA aminoacylation reaction. Biochimie. 55: 547–557.PubMedGoogle Scholar
  118. Edmunds, M., Vaughan, M. H., and Nakazato, H. 1971. Poly(A) sequences in the hnRNA and rapidly-labelled polyribosomal RNA of HeLa cells. Proc. Nat. Acad. Sci. USA. 68: 1336–1340.Google Scholar
  119. Edström, J.-E., and Tanguay, R. 1974. Cytoplasmic RNAs with messenger characteristics in salivary gland cells of Chironomus tentans. J. Mol. Biol. 84: 569–583.Google Scholar
  120. Ehrenfeld, E., and Summers, D. 1972. Adenylate-rich sequences in vesicular stomatitis virus mRNA. J. Virol. 10: 683–688.PubMedGoogle Scholar
  121. Ehresmann, C., Fellner, P., and Ebel, J. P. 1970. Nucleotide sequences of sections of 16 S rRNA. Nature. 227: 1321–1323.PubMedGoogle Scholar
  122. Ehresmann, C., Steigler, P., Fellner, P., and Ebel, J. P. 1975. The determination of the primary structure of the 16 S ribosomal RNA of E. coli. III. Further studies. Biochimie. 57: 71 1748.Google Scholar
  123. Eisenstadt, J. M., and Brawerman, G. 1967. The role of the native subribosomal particles of E. coli. in polypeptide chain initiation. Proc. Nat. Acad. Sci. USA. 58: 1560–1565.PubMedGoogle Scholar
  124. Erdmann, V. A. 1976. Structure and function of 5 S and 5.8 S RNA. Progr. Nucl. Acid Res. Mol. Biol. 18: 45–90.Google Scholar
  125. Erdmann, V. A., Sprinzl, M., and Pongs, O. 1973. The involvement of 5 S RNA in the binding of tRNAs to ribosomes. Biochem. Biophys. Res. Comm. 54: 942–948.PubMedGoogle Scholar
  126. Eremenko, T., and Volpe, P. 1975. Polysome translational state during the cell cycle. Eur. J. Biochem. 52: 203–210.PubMedGoogle Scholar
  127. Fakunding, J. L., Traut, R. R., and Hershey, J. W. B. 1973. Dependence of initiation factor IF-2 activity on proteins L7 and L12 from E. coli. 50 S ribosomes. J. Biol. Chem. 248: 8555–8559.PubMedGoogle Scholar
  128. Fakunding, J. L., Trough, J. A., Traut, R. R., and Hershey, J. W. B. 1974. Purification and phosphorylation of initiation factor IF2. Meth. Enzym. 30: 24–31.PubMedGoogle Scholar
  129. Favre, A., Morel, C., and Scherrer, K. 1975. The secondary structure and poly(A) content of globin mRNA as a pure RNA and in polyribosome-derived RNP complexes. Eur. J. Biochem. 57: 147–157.PubMedGoogle Scholar
  130. Fellner, P., and Ebel, J. P. 1970. Observations on the primary structure of the 23 S rRNA from E. coli. Nature. 225: 1131–1132.Google Scholar
  131. Fellner, P., Ehresmann, C., and Ebel, J. P. 1970. Nucleotide sequences present within the 16 S rRNA of E. coli. Nature. 225: 26–29.Google Scholar
  132. Fellner, P., Ehresmann, C., and Ebel, J. P. 1972a. The determination of the primary structure of the 16 S rRNA of E. coli. I. Nucleotide sequence analysis of T1 and pancreatic RNase digestion products. Biochimie. 54: 853–900.PubMedGoogle Scholar
  133. Fellner, P., Ehresmann, C., Stiegler, P., and Ebel, J. P. 1972b. Partial nucleotide sequence of 16 S rRNA from E. coli. Nature New Biol. 239: 1–5.Google Scholar
  134. Fellner, P., and Sanger, F. 1968. Sequence analysis of specific areas of the 16 S and 23 S rRNAs. Nature. 219: 236–238.PubMedGoogle Scholar
  135. Fiers, W., Contreras, R., de Wachter, R., Haegeman, G., Merregaert, J., Min Jou, W., and Vandanberghe, A. 1971. Recent progress in the sequence determination of bacteriophage MS2 RNA. Biochimie. 53: 495–506.PubMedGoogle Scholar
  136. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Racymackers, A., Van der Bergh, A., Volckaert, G., and Ysebaert, M. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature. 260: 500–507.PubMedGoogle Scholar
  137. Firtel, R. A., Jacobson, A., and Lodish, H. F. 1972. Isolation and hybridization kinetics of mRNA from Dictyostelium discoideum. Nature New Biol. 239: 225–228.Google Scholar
  138. Fischel, J. L., and Ebel, J. P. 1975. Sequence studies on the 5 S RNA of Proteus vulgaris: Comparison with the 5 S of E. coli. Biochimie. 57: 899–904.Google Scholar
  139. Fiser, I., Scheit, K. H., Stöffler, G., and Kuechler, E. 1974. Identification of protein S1 at the mRNA binding site of the E. coli. ribosome. Biochem. Biophys. Res. Comm. 60: 1112–1118.PubMedGoogle Scholar
  140. Florendo, N. T. 1969. Ribosome substructure in intact mouse liver cells. J. Cell Biol. 41: 335–339.PubMedGoogle Scholar
  141. Ford, P. J., and Southern, E. M. 1973. Different sequences for 5 S RNA in kidney cells and ovaries of Xenopus laevis. Nature New Biol. 241: 7–12.Google Scholar
  142. Forget, B. G., and Jordan, B. 1969.5 S RNA synthesized by E. coli. in presence of chloramphenicol. Science. 167: 382–384.Google Scholar
  143. Forget, B. G., and Weissman, S. M. 1967. Nucleotide sequence of KB cell 5 S RNA. Science. 158: 1695–1699.PubMedGoogle Scholar
  144. Forget, B. G., and Weissman, S. M. 1969. The nucleotide sequence of ribosomal 5 S RNA from KB cells. J. Biol. Chem. 244: 3148–3165.PubMedGoogle Scholar
  145. Forget, B. G., Housman, D., Benz, E. J., and McCaffrey, R. P. 1975. Synthesis of DNA complementary to separated human a and ß globin mRNAs. Proc. Nat. Acad. Sci. USA. 72: 984–988.PubMedGoogle Scholar
  146. Fouquet, H., and Sauer, H. W. 1975. Variable redundancy in RNA transcripts isolated in S and G2 phase of the cell cycle of Physarum. Nature. 255: 253–255.Google Scholar
  147. Fox, G. E., and Woese, C. R. 1975. 5 S RNA secondary structure. Nature. 256: 505–507.Google Scholar
  148. Fromson, D., and Duchastel, A. 1975. Poly(A)-containing polyribosomal RNA in sea urchin embryos. Biochim. Biophys. Acta. 378: 394–404.PubMedGoogle Scholar
  149. Fromson, D., and Verma, D. P. S. 1976. Translation of nonpolyadenylated mRNA of sea urchin embryos. Proc. Nat. Acad. Sci. USA. 73. :148–151.Google Scholar
  150. Fujisawa, T., and Eliceiri, G. L. 1975. Ribosomal proteins of hamster, mouse, and hybrid cells. Biochim. Biophys. Acta. 402: 238–243.PubMedGoogle Scholar
  151. Funatsu, G., Yaguchi, M., and Wittmann-Liebold, B. 1977. Primary structure of protein S 12 from the small E. coli. ribosomal subunit. FEBS Lett. 73: 12–17.PubMedGoogle Scholar
  152. Ganoza, M. C., and Fox, J. L. 1974. Isolation of a soluble factor needed for protein synthesis with various messenger ribonucleic acids other than poly(U). J. Biol. Chem. 249: 1037–1043.PubMedGoogle Scholar
  153. Garen, A. 1968. Sense and nonsense in the genetic code. Science. 160: 149–159.PubMedGoogle Scholar
  154. Garrett, R. A., Schulte, C., Stöffler, G., Gray, P., and Monier, R. 1974. The release of proteins and 5 S RNA during the unfolding of E. coli. ribosomes. FEBS Lett. 49: 1–4.PubMedGoogle Scholar
  155. Garrett, R. A., and Wittmann, H. G. 1973. Structure of bacterial ribosomes. Adv. Prot. Chem. 27: 277–347.Google Scholar
  156. Gasior, E., and Moldave, K. 1972. Evidence for a soluble protein factor specific for the interaction between aminoacylated tRNAs and the 40 S subunit of mammalian ribosomes. J. Mol. Biol. 66: 391–402.PubMedGoogle Scholar
  157. Georgiev, G. P., and Samarina, O. P. 1971. D-RNA containing RNP particles. Adv. Cell Biol. 2: 47–110.PubMedGoogle Scholar
  158. Gesteland, R. F. 1966. Unfolding of E. coli. ribosomes by removal of magnesium. J. Mol. Biol. 18: 356–371.PubMedGoogle Scholar
  159. Ghosh, H. P., and Khorana, H. G. 1967. On the role of ribosomal subunits in protein synthesis. Proc. Nat. Acad. Sci. USA. 58: 2455–2461.PubMedGoogle Scholar
  160. Ghosh, H. P., Söll, D., and Khorana, H. G. 1967. Initiation of protein synthesis in vitro. as studied by using ribopolynucleotide with repeating nucleotide sequences as messengers. J. Mol. Biol. 25: 275–298.PubMedGoogle Scholar
  161. Gillespie, D., Takemoto, K., Robert, M., and Gallo, R. C. 1973. Poly(A) in visna virus RNA. Science. 179: 1328–1330.PubMedGoogle Scholar
  162. Ginzburg, I., and Zanier, A. 1975. Characterization of different conformational forms of 30 S ribosomal subunits in isolated and associated states. J. Mol. Biol. 93: 465–476.PubMedGoogle Scholar
  163. Glazier, K., and Schlessinger, D. 1974. Magic spot metabolism in an E. coli. mutant temperature sensitive in elongation factor Ts. J. Bact. 117: 1195–1200.PubMedGoogle Scholar
  164. Glick, B. R. 1977. The role of E. coli. ribosomal proteins L7 and L12 in peptide chain elongation. FEBS Lett. 73. :1–5.Google Scholar
  165. Glick, B. R., and Ganoza, M. C. 1976. Characterization and site of action of a soluble protein that stimulates peptide-bond synthesis. Eur. J. Biochem. 71: 483–491.PubMedGoogle Scholar
  166. Goldberg, A. L., and Wittes, R. E. 1966. Genetic code: Aspects of organization. Science. 153: 420–424.PubMedGoogle Scholar
  167. Goodman, H. M., Billeter, M. A., Hindley, J., and Weissmann, C. 1970. The nucleotide sequence at the 5’-terminus of the Qß RNA minus strand. Proc. Nat. Acad. Sci. USA. 67: 921–928.PubMedGoogle Scholar
  168. Gordon, J., Schweiger, M., Krisko, I., and Williams, C. A. 1969. Specificity and evolutionary divergence of the antigenic structure of the polypeptide chain elongation factors. J. Bact. 100: 1–4.PubMedGoogle Scholar
  169. Gormly, J. R., Yang, C. H., and Horowitz, J. 1971. Further studies on ribosome unfolding. Biochim. Biophys. Acta. 247: 80–90.PubMedGoogle Scholar
  170. Gorski, J., Morrison, M. R., Merkel, C. G., and Lingrel, J. B. 1975. Poly(A) size class distribution in globin mRNAs as a function of time. Nature. 253: 749–751.PubMedGoogle Scholar
  171. Gottlieb, M., Lubsen, N. H., and Davis, B. D. 1974. Ribosome dissociation factors. Methods Enzymol. 30: 87–94.PubMedGoogle Scholar
  172. Gould, R. M., Thornton, M. P., Liepkalns, V., and Lennarz, W. J. 1968. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidyiglycerol synthesis. J. Biol. Chem. 243: 3096–3104.Google Scholar
  173. Gralla, J., and De Lisi, C. 1974. mRNA is expected to form stable secondary structures. Nature. 248: 330–332.Google Scholar
  174. Gralla, J., Steitz, J. A., and Crothers, D. M. 1974. Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature. 248: 204–208.PubMedGoogle Scholar
  175. Grasmuck, H., Nolan, R. D., and Drews, J. 1974. Elongation factor 1 from ascites tumor cells. Eur. J. Biochem. 48: 485–493.Google Scholar
  176. Grasmuk, H., Nolan, R. D., and Drews, J. 1976. A new concept of the function of EF-1 in peptide chain elongation. Eur. J. Biochem. 71: 271–279.PubMedGoogle Scholar
  177. Gray, M. W. 1974. The presence of 02 -methylpseudouridine in the 18 S + 26 S ribosomal ribonucleates of wheat embryo. Biochemistry. 13: 5453–5463.PubMedGoogle Scholar
  178. Grayson, S., and Berry, S. J. 1973. Estimation of the half-life of a secretory protein message. Science. 180: 1071–1072.PubMedGoogle Scholar
  179. Greenberg, J. R. 1975. Messenger RNA metabolism of animal cells. J. Cell Biol. 64: 269–288.PubMedGoogle Scholar
  180. Greenberg, J. R. 1976. Isolation of L-cell mRNA which lacks poly(A). Biochemistry. 15: 3516–3552.PubMedGoogle Scholar
  181. Greenberg, J. R., and Perry, R. P. 1972. Relative occurrence of poly(A) sequences in messenger and hnRNA of L cells as determined by poly(U)-hydroxylapatite chromatography. J. Mol. Biol. 72: 91–98.PubMedGoogle Scholar
  182. Grierson, D. 1974. Characterization of RNA components from leaves of Phaseolus aureus. Eur. J. Biochem. 44: 509–515.Google Scholar
  183. Gross, P. R., and Cousineau, G. H. 1963. Effects of actinomyin D on macromolecule synthesis and early development in sea urchin eggs. Biochem. Biophys. Res. Comm. 10: 321–326.PubMedGoogle Scholar
  184. Groves, W. E., and Kempner, E. S. 1967. Amino acid coding in Sarcina lutea. and Saccharomyces cerevisiae. Science. 156: 387–390.Google Scholar
  185. Grozdanovic, J., and Hradec, J. 1975. Different binding sites of poly(A)-containing and poly(A)free fractions of nuclear ribonucleic acid to ribosomes from rat liver. Biochem. Biophys. Acta. 402: 69–82.PubMedGoogle Scholar
  186. Gualerzi, C., Janda, H. G., Passow, H., and Stöffler, G. 1974. Studies on the protein moiety of plant ribosomes. J. Biol. Chem. 249: 3347–3355.PubMedGoogle Scholar
  187. Gualerzi, C., Pon, C. L., and Kaji, A. 1971. Initiation factor dependent release of aminoacyltRNAs from complexes of 30 S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem. Biophys. Res. Comm. 45: 1312–1319.PubMedGoogle Scholar
  188. Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. 1971. Use of frog eggs and oocytes for the study of mRNA and its translation in living cells. Nature. 233: 177–182.PubMedGoogle Scholar
  189. Haenni, A. L., and Lucas-Lenard, J. 1970. Function of the elongation factors T and G. In: Ochoa, S., C. F. Heredin, C. Asensio, and D. Nachmansohn, eds., Macromolecules: Biosynthesis and Function., New York, Academic Press, p. 97–108.Google Scholar
  190. Haguenau, F. 1958. The ergastoplasm: Its history, ultrastructure and biochemistry. Internat. Rev. Cytol. 7: 425–483.Google Scholar
  191. Haines, M. E., Carey, N. H., and Palmiter, R. D. 1974. Purification and properties of ovalbumin mRNA. Eur. J. Biochem. 43: 549–560.PubMedGoogle Scholar
  192. Hall, N. D., and Amstein, H. R. V. 1973. Specificity of reticulocyte initiation factors for the translation of globin mRNA. Biochem. Biophys. Res. Comm. 54: 1489–1497.PubMedGoogle Scholar
  193. Hamel, E., and Cashel, M. 1973. Role of guanine nucleotides in protein synthesis. Proc. Nat. Acad. Sci. USA. 70: 3250–3254.PubMedGoogle Scholar
  194. Hampel, A., and Enger, M. D. 1973. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J. Mol. Biol. 79: 285–293.PubMedGoogle Scholar
  195. Hardy, S. J. S., Kurland, C. G., Voynow, P., and Mora, G. 1969. The ribosomal proteins of E. coli. Biochemistry. 8: 2897–2905.Google Scholar
  196. Hasselkorn, R., and Rothman-Denes, L. B. 1973. Protein synthesis. Ann. Rev. Biochem. 42: 397–438.Google Scholar
  197. Hatfield, D. 1972. Recognition of nonsense codons in mammalian cells. Proc. Nat. Acad. Sci. USA. 69: 3014–3018.PubMedGoogle Scholar
  198. Hatlen, L., and Attardi, G. 1971. Proportion of the HeLa cell genome complementary to tRNA and 5 S RNA. J. Mol. Biol. 56: 535–554.PubMedGoogle Scholar
  199. Hattman, S., and Hofschneider, P. H. 1968. Influence of T4 on the formation of RNA phage-specific polyribosomes and polymerase. J. Mol. Biol. 35: 513–522.PubMedGoogle Scholar
  200. Hawley, D. A., Miller, M. J., Slobin, L. I., and Wahba, A. J. 1974. The mechanism of action of initiation factor 3 in protein synthesis. Biochem. Biophys. Res. Comm. 61: 329–337.PubMedGoogle Scholar
  201. Held, W. A., Getle, W. R., and Nomura, M. 1974. Role of 16 S ribosomal RNA and the 30 S ribosomal protein S12 in the initiation of natural mRNA translation. Biochemistry. 13: 2115–2122.PubMedGoogle Scholar
  202. Hellerman, J. G., and Shafritz, D. A. 1975. Initiation of poly(A) and mRNA with eukaryotic initiator Met tRNAf binding factor. Proc. Nat. Acad. Sci. USA. 72: 1021–1025.PubMedGoogle Scholar
  203. Hemminki, K. 1974. Poly(A) in RNA extracted by thermal phenol fractionation from chick embryo brain and liver. Biochim. Biophys. Acta. 340: 262–268.PubMedGoogle Scholar
  204. Henriksen, O., Robinson, E. A., and Maxwell, E. S. 1975a. Interaction of guanosine nucleotides with EF-2. I. Equilibrium dialysis studies. J. Biol. Chem. 250: 720–724.PubMedGoogle Scholar
  205. Henriksen, O., Robinson, E. A., and Maxwell, E. S. 1975b. Interaction of guanosine nucleotides with EF-2. II. Effects of ribosomes and magnesium ions on guanosine diphosphate and guano-sine triphosphate binding to the enzyme. J. Biol. Chem. 250: 725–730.PubMedGoogle Scholar
  206. Henshaw, E. C., Guiney, D. G., and Hirsch, C. A. 1973. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4367–4376.PubMedGoogle Scholar
  207. Herr, W., and Noller, H. F. 1975. A fragment of 23 S RNA containing a nucleotide sequence complementary to a region of 5 S RNA. FEBS Lett. 53: 248–252.PubMedGoogle Scholar
  208. Herrington, M. D., and Hawtrey, A. O. 1971. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland. Biochem. J. 121: 279–285.PubMedGoogle Scholar
  209. Hershey, A. D., Dixon, J., and Chase, M. 1953. Nucleic acid economy in bacteria infected with bacteriophage T2. J. Gen. Physiol. 36: 777–789.PubMedGoogle Scholar
  210. Hershey, J. W. B., Dewey, K. F., and Thach, R. E. 1969. Purification and properties of IF-1. Nature. 222: 944–947.PubMedGoogle Scholar
  211. Highland, J. H., Bodley, J. W., Gordon, J., Hasenbank, R., and Stöffler, G. 1973. Identity of the ribosomal proteins involved in the interaction with EF-G. Proc. Nat. Acad. Sci. USA. 70: 147–150.PubMedGoogle Scholar
  212. Highland, J. H., Ochsner, E., Gordon, J., Hasenbank, R., and Stöffler, G. 1974. Inhibition of phenylalanyl-tRNA binding and EF-Tu-dependent GTP hydrolysis by antibodies specific for several ribosomal proteins. J. Mol. Biol. 86: 175–178.PubMedGoogle Scholar
  213. Hindley, J., and Page, S. M. 1972. Nucleotide sequence of yeast 5 S rRNA. FEBS Lett. 26: 157–160.PubMedGoogle Scholar
  214. Hindley, J., and Staples, D. H. 1969. Sequence of a ribosome binding site in bacteriophage Q/3-RNA. Nature. 224: 964–967.PubMedGoogle Scholar
  215. Hirashima, A., Wang, S., and Inouye, M. 1974. Cell-free synthesis of a specific lipoprotein of the E. coli. outer membrane directed by purified mRNA. Proc. Nat. Acad. Sci. USA. 71: 4149–4153.PubMedGoogle Scholar
  216. Hirsch, C. A., Cox, M. A., von Venrooij, W. J., and Henshaw, E. C. 1973. The ribosome cycle in mammalian protein synthesis. J. Biol. Chem. 248: 4377–4385.PubMedGoogle Scholar
  217. Hitz, H., Schäfer, D., and Wittmann-Liebold, B. 1975. Primary structure of ribosomal protein S6 from the wild type and a mutant of E. coli. FEBS Lett. 56: 259–262.Google Scholar
  218. Hodge, L. D., Robbins, E., and Scharff, M. D. 1969. Persistence of mRNA through mitosis in HeLa cells. J. Cell Biol. 40: 497–507.PubMedGoogle Scholar
  219. Holland, M. J., Hager, G. L., and Rutter, W. J. 1977. Characterization of purified poly(A)-containing mRNA from S. cerevisiae. Biochemistry. 16: 8–16.Google Scholar
  220. Houdebine, L. M. 1976. Absence of poly(A) in a large part of newly synthesized casein mRNAs. FEBS Leu. 66: 110–113.Google Scholar
  221. Howard, G. A., and Herbert, E. 1975. Ribosomal subunit localization of hemoglobin mRNA. Eur. J. Biochem. 54: 75–80.PubMedGoogle Scholar
  222. Howard, G. A., Traugh, J. A., Croser, E. A., and Traut, R. A. 1975. Ribosomal proteins from rabbit reticulocytes. J. Mol. Biol. 93: 391–404.PubMedGoogle Scholar
  223. Hsu, W. T., and Weiss, S. B. 1969. Selective translation of T4 template RNA by ribosomes from T4-infected E. coli. Proc. Nat. Acad. Sci. USA. 64: 345–351.Google Scholar
  224. Huynh-Van-Tan, Delaunay, J., and Schapira, G. 1971. Eukaryotic ribosomal proteins. FEBS Lett. 17: 163–167.Google Scholar
  225. Iatrou, K., and Dixon, G. H. 1977. The distribution of poly(A)+ and poly(A)- protamine mRNA sequences in the developing trout testis. Cell. 10: 433–441.PubMedGoogle Scholar
  226. Igarashi, K., Sugawara, K., Izumi, I., Nagayama, C., and Hirose, S. 1974. Effect of polyamines on polyphenylalanine synthesis by E. coli. and rat liver ribosomes. Eur. J. Biochem. 48: 495–502.PubMedGoogle Scholar
  227. Ilan, Jo. 1969. The role of tRNA in translational control of specific mRNA during insect metamorphosis. Cold Spring Harb. Symp. Quant. Biol. 34: 787–791.PubMedGoogle Scholar
  228. Ilan, Jo. and Ilan, Ju. 1973a. Sequence homology at the 5’-termini of insect mRNA. Proc. Nat. Acad. Sci. USA. 70: 1355–1358.PubMedGoogle Scholar
  229. Ilan, Ju., and Ilan, Jo. 1973b. An mRNA bound initiation factor and its role in translation of natural message. Nature New Biol. 241: 176–180.PubMedGoogle Scholar
  230. Ilan, Jo., Ilan, Ju., and Quastel, J. H. 1966. Effects of actinomysin D on nucleic acid metabolism and protein biosynthesis during metamorphosis of Tenebrio molitor. L. Biochem. J. 100: 441–447.PubMedGoogle Scholar
  231. Inoue-Yokosawa, N., Ishikawa, C., and Kagiro, Y. 1974. The role of guanosine triphosphate in translocation reaction catalyzed by EF-G. J. Biol. Chem. 249: 4321–4323.PubMedGoogle Scholar
  232. Ishikura, H., Yamada, Y., and Nishimura, S. 1971. Structure of serine tRNA from E. coli. and purification of serine tRNAs with different codon responses. Biochim. Biophys. Acta. 228: 471–481.PubMedGoogle Scholar
  233. Ishizuka, S., Kawakami, M., Ejiri, S., and Shimura, K. 1974. The initiator amino acid in silk fibroin biosynthesis. FEBS Lett. 47: 318–322.PubMedGoogle Scholar
  234. Isono, K., and Isono, S. 1976. Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc. Nat. Acad. Sci. USA. 73: 767–770.Google Scholar
  235. Isono, S., and Isono, K. 1975. Purification and characterization of 30 S ribosomal proteins from Bacillus stearothermophilus. Eur. J. Biochem. 50: 483–488.Google Scholar
  236. Iwasaki, K., Motoyoshi, K., Nagata, S. and Kaziro, Y. 1976. Purification and properties of a new polypeptide chain elongation factor, EF-1$, from pig liver. J. Biol. Chem. 251: 1843–1845.PubMedGoogle Scholar
  237. Jacob, F., and Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318–356.PubMedGoogle Scholar
  238. Jacobson, A., Firtel, R. A., and Lodish, H. F. 1974. Synthesis of messenger and ribosomal RNA precursors in isolated nuclei of the cellular slime mold Dictyostelium discoideum. J. Mol. Biol. 82: 213–230.Google Scholar
  239. Jantzen, H. 1974. Polyadenylsäure-enthaltende RNA und Genaklivitätsmuster während der Entwicklung von Acanthamoeba castellanü. Biochim. Biophys. Acta. 374: 38–51.Google Scholar
  240. Jay, G., and Kaempfer, R. 1975. Initiation of protein synthesis. Binding of mRNA. J. Biol. Chem. 250: 5742–5748.PubMedGoogle Scholar
  241. Jeffery, W. R., and Brawerman, G. 1974. Characterization of the steady-state population of mes- senger RNA and its poly(A) segment in mammalian cells. Biochemistry. 13: 4633–4637.PubMedGoogle Scholar
  242. Jerez, C., Sandoval, A., Allende, J., Henes, C., and Ofengand, J. 1969. Specificity of the interaction of aminoacyl RNA with a protein-GTP complex from wheat embryo. Biochemistry. 8: 3006–3014.PubMedGoogle Scholar
  243. Johnson, T. C., and Luttges, M. W. 1966. The effects of maturation on in vitro. protein synthesis by mouse brain cells. J. Neurochem. 13: 545–552.PubMedGoogle Scholar
  244. Johnston, R. E., and Bose, H. R. 1972. An adenylate-rich segment in the virion RNA of Sindbis virus. Biochem. Biophys. Res. Comm. 46: 712–718.PubMedGoogle Scholar
  245. Jordan, B. R., and Galling, G. 1973. Nucleotide sequence of Chlorella. cytoplasmic 5 S RNA. FEBS Lett. 37: 333–334.PubMedGoogle Scholar
  246. Jordan, B. R., Galling, G., and Jourdan, R. 1974. Sequence and conformation of 5 S RNA from Chlorella. cytoplasmic ribosomes: Comparison with other 5 S RNA molecules. J. Mol. Biol. 87: 205–225.PubMedGoogle Scholar
  247. Jukes, T. H. 1969. Recent advances in studies of evolutionary relationships between proteins and nucleic acids. Space Life Sci. 1: 469–494.PubMedGoogle Scholar
  248. Kabat, D. 1975. Potentiation of hemoglobin mRNA. J. Biol. Chem. 250: 6085–6092.PubMedGoogle Scholar
  249. Kaempfer, R. 1968. Ribosome subunit exchange during protein synthesis. Proc. Nat. Acad. Sci. USA. 61: 106–113.PubMedGoogle Scholar
  250. Kaempfer, R. 1969. Ribosome subunit exchange in the cytoplasm of a eucaryote. Nature. 222: 950–953.PubMedGoogle Scholar
  251. Kaempfer, R., and Meselson, M. 1968. Permanent association of 5 S RNA molecules with 50 S ribosomal subunits in growing bacteria. J. Mol. Biol. 34: 703–708.PubMedGoogle Scholar
  252. Kaempfer, R., Meselson, M., and Raskas, H. 1968. Cyclic dissociation into stable subunits and reformation of ribosomes during bacterial growth. J. Mol. Biol. 31: 277–289.PubMedGoogle Scholar
  253. Kaji, A., Kaji, H., and Novelli, G. D. 1965. Soluble amino acid-incorporating system. J. Biol. Chem. 240: 1185–1191.PubMedGoogle Scholar
  254. Kaltschmidt, E., Kahan, L., and Nomura, M. 1974. In vitro synthesis of ribosomal proteins directed by E. coli DNA. Proc. Nat. Acad. Sci. USA. 7./:446–450.Google Scholar
  255. Kates, J. 1970. Transcription of the vaccinia virus genome and the occurrence of poly(A) sequences in mRNA. Cold Spring Harbor Symp. Quant. Biol. 35: 743–752.Google Scholar
  256. Kawakita, M., Arai, K.-I., and Kaziro, Y. 1974. Interactions between EF-Tu-guanosine triphosphate and ribosomes and the role of ribosome-bound tRNA in guanosine triphosphate reaction. J. Biochem. 76: 801–809.PubMedGoogle Scholar
  257. Kay, A., Sander, G., and Grunberg-Manago, M. 1973. Effect of ribosomal protein L12 upon initiation factor IF-2 activities. Biochem. Biophys. Res. Comm. 51: 979–986.PubMedGoogle Scholar
  258. Kaziro, Y., Inoue-Yokosawa, N., and Kawakita, M. 1972. Studies on polypeptide EF-G from E. coli. J. Biochem. 72: 853–863.Google Scholar
  259. Kemp, D. J. 1975. Unique and repetitive sequences in multiple genes for feather keratin. Nature. 254: 573–575.PubMedGoogle Scholar
  260. Kim, S.-H., and Rich, A. 1969. Crystalline transfer RNA: The three-dimensional Patterson function of 12-Angstrom resolution. Science. 166: 1621–1624.PubMedGoogle Scholar
  261. Kim, W. S. 1969. N-formylseryl-tRNA. Science. 163: 947–949.PubMedGoogle Scholar
  262. Kimura, M., and Ohta, T. 1973. Eukaryotes-prokaryotes divergence estimated by 5 S ribosomal RNA sequences. Nature New Biol. 243: 199–200.PubMedGoogle Scholar
  263. Kischa, K., Möller, W., and Stöffler, G. 1971. Reconstitution of a GTPase activity by a 50 S ribosomal protein from E. coli. Nature New Biol. 233: 62–63.Google Scholar
  264. Kiselev, N. A., Stel’mashchuk, V. Y., Lerman, M. I., and Abakumova, O. Y. 1974. On the structure of liver ribosomes. J. Mol. Biol. 86: 577–586.PubMedGoogle Scholar
  265. Kiss, A., Sain, B., and Venetianer, P. 1977. The number of rRNA genes in E. coli. FEBS Lett. 79: 77–79.Google Scholar
  266. Klagsbrun, M. 1973. An evolutionary study of the methylation of tRNA and rRNA in prokaryote and eukaryote organisms. J. Biol. Chem. 248: 2612–2620.PubMedGoogle Scholar
  267. Klein, W. H., Murphy, W., Attardi, G., Britten, R. J., and Davidson, E. H. 1974. Distribution of repetitive and nonrepetitive sequence transcripts in HeLa mRNA. Proc. Nat. Acad. Sci. USA. 71: 1785–1789.PubMedGoogle Scholar
  268. Knight, E. J. R., and Darnell, J. E. 1967. Distribution of 5 S RNA in HeLa cells. J. Mol. Biol. 28: 491–502.PubMedGoogle Scholar
  269. Kohler, R. E., Ron, E. Z., and Davis, B. D. 1968. Significance of the free 70S ribosomes in E. coli. extracts. J. Mol. Biol. 36: 71–82.PubMedGoogle Scholar
  270. Kolakofsky, D., Dewey, K., and Thack, R. E. 1969. Purification and properties of initiation factor f2. Nature. 223: 694–697.PubMedGoogle Scholar
  271. Koser, R. B., and Collier, J. R. 1971. The molecular weight and thermolability of Ilyanassa. •rRNA. Biochim. Biophys. Acta. 254: 272–277.PubMedGoogle Scholar
  272. Koteliansky, V. E., Domogatsky, S. P., Gudkov, A. T., and Spirin, A. S. 1977. Elongation factor-dependent reactions on ribosomes deprived of proteins L7 and L12. FEBS Lett. 73: 6–11.PubMedGoogle Scholar
  273. Krauss, S. W., and Leder, P. 1975. Turnover of protein synthetic elongation and initiation factors in E. coli. J. Biol. Chem. 250: 4714–4717.Google Scholar
  274. Krystosek, A., Cawthon, M. L., and Kabat, D. 1975. Improved methods for purification and assay of eukaryotic mRNAs and ribosomes. J. Biol. Chem. 250: 6077–6084.PubMedGoogle Scholar
  275. Küntzel, H. 1969. Proteins of mitochondria) and cytoplasmic ribosomes. Nature. 222: 142–146.PubMedGoogle Scholar
  276. Kurland, C. G. 1970. Ribosome structure and function emergent. Science. 169: 1171–1177.PubMedGoogle Scholar
  277. Kwan, S. W., and Brawerman, G. 1972. A particle associated with the poly(A) segment in mammalian mRNA. Proc. Nat. Acad. Sci. USA. 69: 3247–3250.PubMedGoogle Scholar
  278. Lai, M. M. C., and Duesberg, P. H. 1972. Adenylic acid-rich sequence in RNA of Rous sarcoma virus and Rausche mouse leukaemia virus. Nature. 235: 383–386.PubMedGoogle Scholar
  279. Lake, J. A. 1976. Ribosome structure determined by electron microscopy of E. coli. small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105: 131–159.PubMedGoogle Scholar
  280. Lanzani, G. A., Bollini, R., and Soffientini, A. N. 1974. Heterogeneity of EF-1 from wheat embryos. Biochim. Biophys. Acta. 335: 275–283.Google Scholar
  281. Lawrence, F. 1973. Effect of adenosine on methionyl-tRNA synthetase. Eur. J. Biochem. 40: 493–500.PubMedGoogle Scholar
  282. Lawrence, F., Blanquet, S., Poiret, M., Robert-Gero, M., and Waller, J.-P. 1973. The mechanism of action of methionyl-tRNA synthetase. Eur. J. Biochem. 36: 234–243.PubMedGoogle Scholar
  283. Lawrence, F., Shire, D. J., and Waller, J.-P. 1974. The effect of adenosine analogues on ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Eur. J. Biochem. 41: 73–81.PubMedGoogle Scholar
  284. Laycock, A. G., and Hunt, J. A. 1969. Synthesis of rabbit globin by a bacterial cell-free system. Nature. 221: 1118–1122.PubMedGoogle Scholar
  285. Leaver, C. J., and Ingle, J. 1971. The molecular integrity of chloroplast rRNA. Biochem. J. 123: 235–243.PubMedGoogle Scholar
  286. LeBleu, B., Nudel, U., Falcoff, E., Prives, C., and Revel, M. 1972. A comparison of the translation of Mengo virus RNA and globin mRNA in Krebs ascites cell-free extracts. FEBS Lett. 25: 97–103.Google Scholar
  287. Lebleu, G., Marbaix, G., Huez, G., Timmerman, J., Burny, A., and Chantrenne, N. 1971. Characterization of the mRNP released from reticulocyte polyribosomes by EDTA treatment. Eur. J. Biochem. 19: 264–269.PubMedGoogle Scholar
  288. Leder, P. 1973. The elongation factors in protein synthesis. Adv. Prot. Chem. 27: 213–240.Google Scholar
  289. Lee-Huang, S., and Ochoa, S. 1973. Purification of two messenger-discriminating species of IF-3 from E. coli. Methods Enzymol. 30: 45–53.Google Scholar
  290. Lee-Huang, S., and Ochoa, S. 1974a. Preparation and properties of crystalline initiation factor 1 (IFI) from Escherichia coli. Methods Enzymol. 30: 31–39.Google Scholar
  291. Lee-Huang, S., and Ochoa, S. 1974b. Pruification of two messenger-discriminating species of initiation factor 3 (IF3) from E. coli. Methods Enzymol. 30: 45–53.Google Scholar
  292. Leffler, S. and Szer, W. 1974a. Purification and properties of initiation factor IF-3 from Caulobacter crescentus. J. Biol. Chem. 249: 1458–1464.Google Scholar
  293. Leffler, S., and Szer, W. 1974b. Polypeptide chain initiation in Caulobacter crescentus. without initiation factor IF-1. J. Biol. Chem. 249: 1465–1468.PubMedGoogle Scholar
  294. Leibowitz, M. J., and Soffer, R. L. 1969. A soluble enzyme from E. coli. which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem. Biophys. Res. Comm. 36: 47–53.PubMedGoogle Scholar
  295. Leighton, T. 1974. Further studies on the stability of sporulation mRNA in B. subtilis. J. Biol. Chem. 249: 7808–7812.Google Scholar
  296. Levin, D. H., Kyner, D., and Acs, G. 1973. Protein initiation in eukaryotes. Proc. Nat. Acad. Sci. USA. 70: 41–45.PubMedGoogle Scholar
  297. Levinthal, C., Hosoda, J., and Shub, D. 1967. The control of protein synthesis after phage infection. In: Colter, S. J., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 71–87.Google Scholar
  298. Levinthal, C., Keywan, A., and Higa, A. 1962. Messenger RNA turnover and protein synthesis in B. subtilis. inhibited by actinomycin D. Proc. Nat. Acad. Sci. USA. 48: 1631–1638.PubMedGoogle Scholar
  299. Levitt, M. 1969. Detailed molecular model for tRNA. Nature. 224: 759–763.PubMedGoogle Scholar
  300. Lewin, B. M. 1970. The Molecular Basis of Gene Expression. New York, Wiley-Interscience.Google Scholar
  301. Liautard, J. P., Setyono, B., Spindler, E., and Köhler, K. 1976. Comparison of proteins bound to the different functional classes of mRNA. Biochim. Biophys. Acta. 425: 373–383.PubMedGoogle Scholar
  302. Lim, L., and Canellakis, E. S. 1970. Adenine-rich polymer associated with rabbit reticulocyte mRNA. Nature. 227: 710–712.PubMedGoogle Scholar
  303. Lim, L., Canellakis, Z. N. and Canellakis, E. S. 1970. Metabolism of naturally occurring homo-polymers. Biochim. Biophys. Acta. 209: 128–138.PubMedGoogle Scholar
  304. Lin, J. Y., Tsung, C. M., and Fraenkel-Conrat, J. 1967. The coat protein of the RNA bacteriophage MS2. J. Mol. Biol. 24: 1–14.Google Scholar
  305. Lipmann, F. 1969. Polypeptide chain elongation in protein biosynthesis. Science. 164: 1024–1031.PubMedGoogle Scholar
  306. Loeb, J. N., Howell, R. R., and Tomkins, G. M. 1965. Turnover of rRNA in rat liver. Science. 149: 1093–1095.PubMedGoogle Scholar
  307. Loening, U. E. 1968. Molecular weights of rRNA in relation to evolution. J. Mol. Biol. 38: 355–365.PubMedGoogle Scholar
  308. Loening, U. E., Grierson, D., Rogers, M. E., and Sartirana, M. L. 1972. Properties of rRNA precursor. In: Cox, R. A., and A. A. Hadjiolov, eds., Functional Units in Protein Biosynthesis., New York, Academic Press, p. 395–405.Google Scholar
  309. Loftfield, R. B. 1972. The mechanism of aminoacylation of tRNA. Progr. Nucl. Acid. Res. Mol. Biol. 12: 87–128.Google Scholar
  310. Lucas-Lenard, J., and Lipmann, F. 1966. Separation of three microbial amino acid polymerization factors. Proc. Nat. Acad. Sci. USA. 55: 1562–1566.PubMedGoogle Scholar
  311. Lucas-Lenard, J., and Lipmann, F. 1971. Protein biosynthesis. Ann. Rev. Biochem. 40: 409–448.PubMedGoogle Scholar
  312. Lukanidin, E. M., Zalmanzon, E. S., Komaromi, L., Samarina, O. P., and Georgiev, G. P. 1972. Structure and function of informofers. Nature New Biol. 238: 193–197.PubMedGoogle Scholar
  313. Maclnnes, J. W. 1972. Differences between ribosomal subunits from brain and those from other tissues. J. Mol. Biol. 65: 157–162.Google Scholar
  314. Maclnnes, J. W. 1973. Mammalian brain ribosomes are behaviourly and structurally heterogeneous. Nature New Biol. 241: 244–246.Google Scholar
  315. MacLeod, M. C. 1975. Comparisons of the properties of cytoplasmic poly(A)-containing RNA from polysomal and nonpolysomal fractions of murine myeloma cells. Biochemistry. 14: 4011–4018.Google Scholar
  316. Maden, B. E. H., Forbes, J., de Jong, P., and Klootwijk, J. 1975. Presence of a hypermodified nucleotide in HeLa cell 18 S and Saccharomyces carlsbergensis. 17. S ribosomal RNAs. FEBS Lett. 59: 60–63.PubMedGoogle Scholar
  317. Madison, J. T. 1968. Primary structure of RNA. Ann. Rev. Biochem. 37: 131–148.PubMedGoogle Scholar
  318. Maelicke, A., Engel, G., Cramer, F., and Staehelin, M. 1974. ATP-induced specificity of the binding of serine tRNAs from rat liver to seryl-tRNA sythetase from yeast. Eur. J. Biochem. 42: 311–314.PubMedGoogle Scholar
  319. Mainwaring, W. I. P., Wilce, P. A., and Smith, A. E. 1974. Studies on the form and synthesis of mRNA in the rat ventral prostate gland, including its tissue-specific stimulation by androgens. Biochem. J. 137: 513–524.PubMedGoogle Scholar
  320. Maizels, N. 1974. E. coli. lactose operon ribosome binding site. Nature. 249: 647–649.Google Scholar
  321. Majumdar, A., Bose, K. K., and Gupta, N. K. 1976. Specific binding of E. coli. chain IF-2 to fMet-tRNA r r. J. Biol. Chem. 251: 137–140.PubMedGoogle Scholar
  322. Mangiarotti, G., and Schlessinger, D. 1966. Extraction of polyribosomes and ribosomal subunits from fragile growing E. coli. J. Mol. Biol. 20: 123–143.Google Scholar
  323. Mangiarotti, G., and Schlessinger, D. 1967. Formation and lifetime of mRNA molecules, ribosome subunit couples and polyribosomes. J. Mol. Biol. 29: 355–418.Google Scholar
  324. Mansbridge, J. N., Crossley, J. A., Lanyon, W. G., and Williamson, R. 1974. The poly(A) sequence of mouse globin mRNA. Eur. J. Biochem. 44: 261–269.PubMedGoogle Scholar
  325. Marcus, A., Seal, S. N., and Weeks, D. P. 1974. Protein chain initiation in wheat embryo. Methods Enzymol. 30: 94–101.PubMedGoogle Scholar
  326. Marshall, R. E. 1967. Fine structure of RNA codewords recognized by bacterial, amphibian, and mammalian transfer RNA. Science. 155: 820–826.PubMedGoogle Scholar
  327. Mathews, M. B., Osburn, M., Berns, A. J. M., and Bloemandal, H. 1972a. Translation of two mRNAs from lens in a cell-free system from Krebs II ascites cells. Nature New Biol. 236: 5–7.PubMedGoogle Scholar
  328. Mathews, M. B., Pragnell, I. B., Osburn, M., and Arnstein, H. R. V. 1972b. Stimulation by reticulocyte initiation factors of protein synthesis in a cell-free system from Krebs II ascites cells. Biochim. Biophys. Acta. 287: 113–123.PubMedGoogle Scholar
  329. Maugh, T. H. 1975. Ribosomes (II): A complicated structure begins to emerge. Science. 190: 258–260.Google Scholar
  330. Mazumder, R. 1971. Studies on polypeptide chain initiation factors F, and F2. FEBS Lett. 18: 64–66.PubMedGoogle Scholar
  331. Mazumder, R. 1972. IF-2-dependent ribosomal binding ofN-formylmethionyl-tRNA without added GTP. Proc. Nat. Acad. Sci. USA. 69: 2770–2773.PubMedGoogle Scholar
  332. McConkey, E. H., and Hauber, E. J. 1975. Evidence for heterogeneity of ribosomes within the HeLa cell. J. Biol. Chem. 250: 1311–1318.PubMedGoogle Scholar
  333. McCorquodale, D. J., Oleson, A. E., and Buchanan, J. M. 1967. Control of virus-induced enzyme synthesis in bacteria. In: Colter, S. J., and W. Paranchych, eds., The Molecular Biology of Viruses., New York, Academic Press, p. 31–54.Google Scholar
  334. McCroskey, R. P., Zasloff, M., and Ochoa, S. 1972. Polypeptide chain initiation and stepwise elongation with Artemia. ribosomes and factors. Proc. Nat. Acad. Sci. USA. 69: 2451–2455.PubMedGoogle Scholar
  335. McKnight, G. S., and Schimke, R. T. 1974. Ovalbumin mRNA. Proc. Nat. Acad. Sci. USA. 71: 4327–4331.PubMedGoogle Scholar
  336. McLaughlin, C. S., Warner, J. R., Edmunds, M., Nakagato, H., and Vaughan, M. H. 1973. Poly(A) sequences in yeast mRNA. J. Biol. Chem. 248: 1466–1471.PubMedGoogle Scholar
  337. McNeil, R. G., and McLaughlin, C. S. 1974. Differential biological activity of three species of methionyl-tRNA in yeast. Biochim. Biophys. Acta. 374: 176–186.PubMedGoogle Scholar
  338. Meier, D., Lee-Huang, S., and Ochoa, S. 1973. Factor requirements for initiation complex formation with natural and synthetic messengers in E. coli. systems. J. Biol. Chem. 248: 8613–8615.PubMedGoogle Scholar
  339. Merkel, C. G., Wood, T. G., and Lingal, J. B. 1976. Shortening of the poly(A) region of mouse globin mRNA. J. Biol. Chem. 251: 5512–5515.PubMedGoogle Scholar
  340. Mertes, M., Peters, M. A., Mahoney, W., and Yarus, M. 1972. Isoleucylation of tRNAFet (E. coli). by isoleucyl-tRNA synthetase from E. coli. J. Mol. Biol. 71: 671–685.Google Scholar
  341. Mescher, A., and Humphreys, T. 1974. Activation of maternal mRNA in the absence of poly(A) formation in fertilised sea urchin eggs. Nature. 249: 138–139.PubMedGoogle Scholar
  342. Metafora, S., Terada, M., Dow, L. W., Marks, P. A., and Bank, A. 1972. Increased efficiency of exogenous mRNA translation in a Krebs ascites cell lystate. Proc. Nat. Acad. Sci. USA. 69: 1299–1303.PubMedGoogle Scholar
  343. Meyer, M., Bout, W. S., de Vries, M., and Nanninga, N. 1974. Electron microscopic and sedimentation studies on rat-liver ribosomal subunits. Eur. J. Biochem. 42: 259–268.PubMedGoogle Scholar
  344. Miller, D. L., and Weissbach, H. 1974. Elongation factor Tu and the aminoacyl-tRNA EF-Tu GTP complex. Methods Enzymol. 30: 219–232.PubMedGoogle Scholar
  345. Miller, R. V., and Sypherd, P. S. 1973. Topography of the E. coli. 30 S ribosome revealed by the modification of ribosomal proteins. J. Mol. Biol. 78: 539–550.PubMedGoogle Scholar
  346. Milman, G., Goldstein, J., Scolnick, E., and Caskey, T. 1969. Peptide chain termination. Proc. Nat. Acad. Sci. USA. 63: 183–190.PubMedGoogle Scholar
  347. Min Jou; W., Haegeman, G., Ysebaert, M., and Fiers, W. 1972. Nucleotide sequence of the gene. coding for the bacteriophage MS2 coat protein. Nature. 237: 82–88.Google Scholar
  348. Miyazaki, M. 1974. Studies on the nucleotide sequence of pseudoruidine-containing 5 S RNA from S. cerevisiae. J. Biochem. 75: 1407–1410.Google Scholar
  349. Mizumoto, K., Iwasaki, K. Kazior, Y., Nojiri, C., and Yamada, Y. 1974. Studies on peptide EF-2 from pig liver. J. Biochem. 75: 1057–1062.Google Scholar
  350. Modolell, J. 1974. The initial steps in protein synthesis. Methods Enzymol. 30: 79–86.PubMedGoogle Scholar
  351. Monroy, A., Maggio, R., and Rinaldi, A. M. 1965. Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc. Nat. Acad. Sci. USA. 54: 107–111.PubMedGoogle Scholar
  352. Montagnier, L., Collandre, H., De Maeyer-Guiguard, J., and De Maeyer, E. 1974. Two forms of mouse interferon mRNA. Biochem. Biophys. Res. Comm. 59: 1031–1038.PubMedGoogle Scholar
  353. Moore, P. B., Engelman, D. M., and Schoenborn, B. P. 1974. Asymmetry in the 50 S ribosomal subunit of E. coli. Proc. Nat. Acad. Sci. USA. 71: 172–176.Google Scholar
  354. Moore, V. G., Atchison, R. E., Thomas, G., Moran, M., and Noller, H. F., 1975. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc. Nat. Acad. Sci. USA. 72: 844–848.PubMedGoogle Scholar
  355. Morel, C., Kayibanda, B. and Scherrer, K. 1971. Proteins associated with globin mRNA in avian erythroblasts. FEBS Lett. 18: 84–88.PubMedGoogle Scholar
  356. Morell, P., and Marmur, J. 1968. Association of 5 S RNA to 50 S subunits of E. coli. and B. subtilis. Biochemistry. 7: 1141–1152.Google Scholar
  357. Morikawa, N., and Imamoto, F. 1969. On the degradation of mRNA for the tryptophan operon in E. coli. Nature. 223: 37–40.Google Scholar
  358. Morinaga, T., Funatsu, G., Funatsu, M., and Wittmann, H. G. 1976. Primary structure of the 16 S rRNA binding protein Sl5 from E. coli. ribosomes. FEBS Lett. 64: 307–309.PubMedGoogle Scholar
  359. Munsche, D., and Wollgiehn, R. 1974. Altersabhängige labilität der ribosomalen RNA aus chloroplasten von Nicotiana rustica. Biochim. Biophys. Acta. 340: 437–445.Google Scholar
  360. Murthy, M. R. V. 1972. Free and membrane bound ribosomes of rat cerebral cortex. J. Biol. Chem. 247: 1936–1943.PubMedGoogle Scholar
  361. Musso, R. E., de Crombrugghe, B., Pastan, I., Sklar, J., Yot, P., and Weissman, S. 1974. The 5’-terminal nucleotide sequence of galactose mRNA of E. coli. Proc. Nat. Acad. Sci. USA. 71: 4941–4944.Google Scholar
  362. Muthukrishnan, S., Both, G. W., Furuichi, Y., and Shatkin, A. J. 1975. 5’-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature. 255: 33–37.Google Scholar
  363. Muto, A. 1970. Nucleotide distribution of E. coli. 16 S rRNA. Biochemistry. 9: 3683–3693.PubMedGoogle Scholar
  364. Naaktgeboren, N., Roobol, K., and Voorma, H. O. 1977. The effect of the initiation factor IF-1 on the dissociation of 70-S ribosomes of E. coli. Eur. J. Biochem. 72: 49–56.Google Scholar
  365. Nakamoto, T., Conway, T. W., Allende, J. E., Spyrides, G. J., and Lipmann, F. 1963. Formation of peptide bonds. Cold Spring Harbor Symp. Quant. Biol. 28: 227–232.Google Scholar
  366. Nakazato, H., Venkatesan, S., and Edmonds, M. 1975. Poly(A) sequences in E. coli. mRNA. Nature. 256: 144–146.PubMedGoogle Scholar
  367. Nanninga, A. 1973. Structural aspects of ribosomes. Int. Rev. Cytol. 35: 135–188.PubMedGoogle Scholar
  368. Natale, P. J., and Buchanan, J. M. 1974. Initiation characteristics for the synthesis of five T4 phage-specific mRNAs in vitro. Proc. Nat. Acad. Sci. USA. 71: 422–426.Google Scholar
  369. Nathans, D., and Lipmann, F. 1961. Amino acid transfer from aminoacyl-RNAs to protein on ribosomes of E. coli. Proc. Nat. Acad. Sci. USA. 47: 497–504.Google Scholar
  370. Nazar, R. N., Sitz, T. O., and Busch, H. 1975. Tissue specific differences in the 2’-O-methylation of eukaryotic 5.8 S ribosomal RNA. FEBS Lett. 59: 83–87.PubMedGoogle Scholar
  371. Nazar, R. N., Sitz, T. O., and Busch, H. 1976. Sequence homologies in mammalian 5.8 S rRNA. Biochemistry. 15: 505–508.PubMedGoogle Scholar
  372. Nesbitt, J. A., and Lennarz, W. J. 1968. Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis. J. Biol. Chem. 243: 3088–3095.PubMedGoogle Scholar
  373. Nishikawa, K., and Takemura, S. 1974. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 40: 106–109.Google Scholar
  374. Nishizuka, Y., and Lipmann, F. 1966. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli. system. Proc. Nat. Acad. Sci. USA. 55: 212–219.PubMedGoogle Scholar
  375. Nolan, R. D., Grasmuk, H., Högenauer, G., and Drews, J. 1974. EF-1 from Krebs II mouse ascites cells. Eur. J. Biochem. 45: 601–609.PubMedGoogle Scholar
  376. Nolan, R. D., Grasmuk, H., and Drews, J. 1975. The binding of tritiated EF-1 and EF-2 to ribosomes from Krebs II mouse ascites tumor cells. Eur. J. Biochem. 50: 391–402.PubMedGoogle Scholar
  377. Noller, H. F. 1974. Topography of 16 S RNA in 30 S ribosomal subunits. Biochemistry. 13: 4694–4703.PubMedGoogle Scholar
  378. Noller, H. F., and Herr, W. 1974. Nucleotide sequence of the 3’-terminus of E. coli. 16 S rRNA. Mol. Biol. Repts. 1: 437–439.Google Scholar
  379. Nomura, M. 1973. Assembly of bacterial ribosomes. Science. 179: 864–873.PubMedGoogle Scholar
  380. Nudel, U., LeBleu, B., Zehavi-Willner, T., and Revel, M. 1973. Messenger RNP and initiation factors in rabbit-reticulocyte polyribosomes. Eur. J. Biochem. 33: 314–322.PubMedGoogle Scholar
  381. Ohta, N., Sanders, M., and Newton, A. 1975. Poly(A) sequences in the RNA of Caulobacter crescentus. Proc. Nat. Acad. Sci. USA. 72: 2343–2346.Google Scholar
  382. Olsnes, S. 1970. Characterization of protein bound to rapidly-labeled RNA in polyribosomes from rat liver. Eur. J. Biochem. 15: 464–471.PubMedGoogle Scholar
  383. Ono, Y., Skoultchi, A., Klein, A.; and Lengyel, P. 1968. Discrimination against the initiator tRNA by microbial amino-acid polymerization factors. Nature. 220: 1304–1307.PubMedGoogle Scholar
  384. Otaka, T., and Kaji, A. 1974. Inhibitory effect of EF-G and GMPPCP on peptidyl transferase. FEBS Lett. 44: 324–329.PubMedGoogle Scholar
  385. Ouellette, A. J., and Malt, R. A. 1976. Accumulation and decay of mRNA in mouse kidney. Biochemistry. 15: 3358–3361.Google Scholar
  386. Pace, N. R. 1973. Structure and synthesis of the rRNA of prokaryotes. Bact. Rev. 37: 562–603.PubMedGoogle Scholar
  387. Pace, N. R., Walker, T. A., and Pace, B. 1974. The nucleotide sequence of chicken 5 S rRNA. J. Mol. Evol. 3: 151–159.PubMedGoogle Scholar
  388. Pain, V. N., and Clemens, M. J. 1973. The role of soluble protein factors in the translational control of protein synthesis in eukaryotic cells. FEBS Lett. 32: 205–212.PubMedGoogle Scholar
  389. Paradies, H. H., Franz, A., Pon, C. L., and Gualerzi, C. 1974. Conformational transition of the 30 S ribosomal subunit induced by IF-3. Biochem. Biophys. Res. Comm. 59: 600–607.PubMedGoogle Scholar
  390. Payne, P. I., Woledge, J., and Cony, M. J., 1973. No evidence for tissue-specific sequences of cytoplasmic 5 S and 5.8 S ribosomal RNAs in the broad bean. FEBS Lett. 35: 327–330.PubMedGoogle Scholar
  391. Peeters, B., Vanduffel, L., Depuydt, A., and Rombauts, W. 1973. The number and size of the proteins in the subunits of human placental ribosomes. FEBS Lett. 36: 217–221.PubMedGoogle Scholar
  392. Pemberton, R. E., Housman, D., Lodish, H., and Baglioni, C. 1972. Isolation of duck haemoglobin mRNA and its translation by rabbit reticulocyte cell-free system. Nature New Biol. 235: 99–102.PubMedGoogle Scholar
  393. Pene, J. J., Knight, E., and Darnell, J. E. 1968. Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J. Mol. Biol. 33: 609–624.PubMedGoogle Scholar
  394. Penman, S., Scherrer, K., Becker, Y., and Darnell, J. E. 1963. Polyribosomes in normal and poliovirus infected HeLa cells and their relationship to mRNA. Proc. Nat. Acad. Sci. USA. 49: 654–662.PubMedGoogle Scholar
  395. Perlman, S., Abelson, H., and Penman, S. 1973. Mitochondrial protein synthesis: RNA with the properties of eukaryotic mRNA. Proc. Nat. Acad. Sci. USA. 70: 350–353.PubMedGoogle Scholar
  396. Perlman, S., Hirsch, M., and Penman, S. 1972. Utilization of messenger in adenovirus-2-infected cells at normal and elevated temperatures. Nature New Biol. 238: 143–144.PubMedGoogle Scholar
  397. Perry, R. P., and Kelley, D. E. 1974. Existence of methylated mRNA in mouse L cells. Cell. I: 37–42.Google Scholar
  398. Perry, R. P., Kelley, D. E., and La Torre, J. 1972. Lack of poly(A) sequences in the mRNA of E. coli. Biochem. Biophys. Res. Comm. 48: 1593–1600.Google Scholar
  399. Perry, R. P., and Scherrer, K. 1975. The methylated constituents of globin mRNA. FEBS Lett. 57: 73–78.PubMedGoogle Scholar
  400. Person, S., and Osburn, M. 1968. The conversion of amber. suppressors to ochre. suppressors. Proc. Nat. Acad. Sci. USA. 60: 1030–1038.PubMedGoogle Scholar
  401. Petersen, N. S., and McLaughlin, C. S. 1973. Monocistronic mRNA in yeast. J. Mol. Biol. 81: 33–45.PubMedGoogle Scholar
  402. Petrissant, G. 1973. Evidence for the absence of the G-T-/t-C sequence from two mammalian initiator transfer RNAs. Proc. Nat. Acad. Sci. USA. 70: 1046–1049.PubMedGoogle Scholar
  403. Philipson, L., Wall, R., Glickman, G., and Darnell, J. E. 1971. Addition of poly(A) sequences to virus-specific RNA during adenovirus replication. Proc. Nat. Acad. Sci. USA. 68: 2806–2809.PubMedGoogle Scholar
  404. Pieczenik, G., Horiuchi, K., Model, P., McGill, C., Mazur, B. J., Vorts, G. F., and Zinder, N. D. 1975. Is mRNA transcribed from the strand complementary to it in a DNA duplex? Nature. 253: 131–132.Google Scholar
  405. Polya, G. M., and Phillips, D. R. 1976. The occurrence in amino acid sequences of extensive informational symmetries based on possible codon-codon complementarity in the encoding polynucleotides. Biochem. J. 153: 681–690.PubMedGoogle Scholar
  406. Pribula, C. D., Fox, G. E., and Woese, C. R. 1974. Nucleotide sequence of Bacillus megaterium. 5 S RNA. FEBS Lett. 44: 322–323.PubMedGoogle Scholar
  407. Pribula, C. D., Fox, G. E., and Woese, C. R. 1976. Nucleotide sequence of Clostridium pasteurianum. 5. S rRNA. FEBS Lett. 64: 350–352.PubMedGoogle Scholar
  408. Procunier, J. D., and Tartof, K. D. 1976. Restriction map of 5 S RNA genes of D. melanogaster. Nature. 263: 255–257.Google Scholar
  409. Puckett, L., Chambers, S., and Darnell, J. E. 1975. Short-lived mRNA in HeLa cells and its impact on the kinetics of accumulation of cytoplasmic polyadenylate. Proc. Nat. Acad. Sci. USA. 72: 389–393.PubMedGoogle Scholar
  410. Rawson, J. R., and Stutz, E. 1968. Characterization of Euglena. cytoplasmic ribosomes and rRNA by zone velocity sedimentation in sucrose gradients. J. Mol. Biol. 33: 309–314.PubMedGoogle Scholar
  411. Reid, B. R., Einarson, B., and Schmidt, J. 1972. Loop accessibility in transfer RNA. Biochimie. 54: 325–332.Google Scholar
  412. Reinbolt, J., and Schiltz, E. 1973. The primary structure of ribosomal protein S4 from E. coli. FEBS Lett. 36: 250–252.Google Scholar
  413. Retel, J., and Planta, R. J. 1968. Investigation of the rRNA sites in yeast DNA by the hybridization technique. Biochim. Biophys. Acta. 169: 416–429.PubMedGoogle Scholar
  414. Revel, M., Lelong, J. C., Brawerman, G., and Gros, F. 1968a. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli. Nature. 219: 1016 1020.Google Scholar
  415. Revel, M., Herzberg, H., Becarevic, A., and Gros, F. 1968b. Role of a protein factor in the functional binding of ribosomes to natural mRNA. J. Mol. Biol. 33: 231–249.PubMedGoogle Scholar
  416. Rho, H. M., and Green, M. 1974. The homopolyadenylate and adjacent nucleotides at the 3’-terminus of 30–40 S RNA subunits in the genome of murine sarcoma-leukemia virus. Proc. Nat. Acad. Sci. USA. 71: 2386–2390.PubMedGoogle Scholar
  417. Ricard, B., and Salser, W. 1974. Size and folding of the messenger for phage T4 lysozyme. Nature. 248: 314–317.PubMedGoogle Scholar
  418. Ricard, B., and Salser, W. 1975. Secondary structures formed by random RNA sequences. Biochem. Biophys. Res. Comm. 63: 548–554.PubMedGoogle Scholar
  419. Richter, D., Erdmann, V. A., and Sprinzl, M. 1973. Specific recognition of GTiiC loop (Loop IV) of tRNA by 50 S ribosomal subunits. Nature New Biol. 246: 132–135.PubMedGoogle Scholar
  420. Riley, W. T. 1973. Amino acid sequences and double-stranded messages-a means of directing the site of mutation? J. Theor. Biol. 40: 285–300.PubMedGoogle Scholar
  421. Ringer, D., and Chlâdek, S. 1974. Ribosomal peptidyl transferase: recognition points on the 3’-terminus of AA-tRNA. FEBS Lett. 39: 75–78.PubMedGoogle Scholar
  422. Ritter, E., and Wittmann-Liebold, B. 1975. The primary structure of protein L30 from E. coli. ribosomes. FEBS Lett. 60: 153–155.PubMedGoogle Scholar
  423. Roberts, R. J. 1972. Structure of two glycyl-tRNAs from Staphylococcus epidermidis. Nature New Biol. 237: 44–45.Google Scholar
  424. Robinson, E. A., Henriksen, O., and Maxwell, E. S. 1974. Elongation factor 2. J. Biol. Chem. 249: 5088–5093.PubMedGoogle Scholar
  425. Rohrbach, M. S., Dempsey, M. E., and Bodley, J. W. 1974. Preparation of homogeneous EF-G and examination of the mechanism of guanosine triphosphate hydrolysis. J. Biol. Chem. 249: 5094–5101.PubMedGoogle Scholar
  426. Ron, E. Z., Kohler, R. E., and Davis, B. D. 1968. Magnesium ion dependence of free and polysomal ribosomes from E. coli. J. Mol. Biol. 36: 83–90.Google Scholar
  427. Rosbash, M., and Ford, P. J. 1974. Poly(A)-containing RNA in Xenopus laevis. J. Mol. Biol. 85: 87–101.Google Scholar
  428. Rosen, J M., Woo, S. L. C., Holder, J W., Means, A. R., and O’Malley, B. W. 1975. Preparation and preliminary characterization of purified ovalbumin mRNA from the hen oviduct. Biochemistry. 14:69–78.Google Scholar
  429. Rubin, G. M. 1973. The nucleotide sequence of S. cerevisiae. 5.8 S rRNA. J. Biol. Chem. 248: 3860–3875.PubMedGoogle Scholar
  430. Rubin, G. M. 1974. Three forms of the 5.8 S ribosomal RNA species in S. cerevisiae. Eur. J. Biochem. 41: 197–202.Google Scholar
  431. Sabol, S., and Ochoa, S. 1974. Preparation of radioactive IF-3. Methods Enzymol. 30:39–53. Sabol, S., Sillero, M. A. G., Iwasaki, K. and Ochoa, S. 1970. Purification and properties of IF-3. Nature. 228: 1269–1273.Google Scholar
  432. Sadowski, P. D., and Howden, J. A. 1968. Isolation of two distinct classes of polysomes from a nuclear fraction of rat liver. J. Cell. Biol. 37: 163–181.Google Scholar
  433. Sager, R., and M. G. Hutchinson. 1967. Cytoplasmic and chloroplast ribosomes of Chlamydomonas. Science. 157: 709–711.Google Scholar
  434. Sagher, D., Edelman, M., and Jakob, K. M. 1974. Poly(A)-associated RNA in plants. Biochim. Biophys. Acta. 349: 32–38.PubMedGoogle Scholar
  435. Sampson, J., Mathews, M. B., Osburn, M., and Borghetti, A. F. 1972. Hemoglobin mRNA translation in cell-free systems from rat and mouse liver and Landschutz ascites cells. Biochemistry. 11. :3636–3640.Google Scholar
  436. Sanger, F. 1971. Nucleotide sequences in bacteriophage RNA. Biochem. J. 124: 833–843.PubMedGoogle Scholar
  437. Sankoff, D., Morel, C., and Cedergren, R. J. 1973. Evolution of 5 S RNA and the nonrandomness of base replacement. Nature New Biol. 245: 232–234.PubMedGoogle Scholar
  438. Santi, D. V., and Danenberg, P. V. 1971. Phenylalanyl tRNA synthetase from E. coli. Analysis of the phenylalanine binding site. Biochemistry. 10: 4813–4820.PubMedGoogle Scholar
  439. Santi, D. V., Danenberg, P. V., and Satterly, P. 1971. Phenylalanyl tRNA synthetase from E. coli. Reaction parameters and order of substrate addition. Biochemistry. 10: 4804–4812.PubMedGoogle Scholar
  440. Scharff, M. D., and Robbins, E. 1966. Polyribosome disaggregation during metaphase. Science. 151: 922–995.Google Scholar
  441. Schedl, P. D., Singer, R. E., and Conway, T. W. 1970. A factor required for the translation of bacteriophage f2 RNA in extracts of T4-infected cells. Biochem. Biophys. Res. Comm. 38: 631–637.PubMedGoogle Scholar
  442. Schiff, N., Miller, M. J. and Wahba, A. J. 1974. Purification and properties of chain IF-3 from T4-infected and uninfected E. coli. MRE600. J. Biol. Chem. 249: 3797–3802.PubMedGoogle Scholar
  443. Schutz,l E., and Reinbolt, J. 1975. Determination of the complete amino-acid sequence of protein S4 from E. coli. ribosomes. Eur. J. Biochem. 56: 467–481.Google Scholar
  444. Shimotohno, K., Kodama, Y., Hashimoto, J., and Miura, K. 1977. Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc. Nat. Acad. Sci. USA. 74: 2734–2738.PubMedGoogle Scholar
  445. Schlessinger, D., Marchesi, V. T., and Kwan, B. C. K. 1965. Binding of ribosomes to cytoplasmic reticulum of Bacillus megaterium. J. Bact. 90: 456–466.Google Scholar
  446. Schrier, P. I., Maassen, J. A., and Möller, W. 1973., Involvement of 50 S ribosomal proteins L6 and L10 in the ribosome dependent GTPase activity of EF-G. Biochem. Biophys. Res. Comm. 53: 90–98.Google Scholar
  447. Schrier, P. I., and Möller, W. 1975. The involvement of 50 S ribosomal protein L11 in the EF-G dependent GTP hydrolysis of E. coli. ribosomes. FEBS Lett. 54: 130–134.PubMedGoogle Scholar
  448. Scolnick, E., Tompkins, R., Caskey, T., and Nirenberg, M. 1968. Release factors differing in specificity for terminator codons. Proc. Nat. Acad. Sci. USA. 61: 768–774.PubMedGoogle Scholar
  449. Seal, S. N., and Marcus, A. 1973. Translation of the initial codons of satellite tobacco necrosis virus RNA in a cell-free system from wheat embryo. J. Biol. Chem. 248: 6577–6582.PubMedGoogle Scholar
  450. Shine, J., and Dalgarno, L. 1973. Occurrence of heat-dissociable rRNA in insects. J. Mol. Biol. 75: 57–72.PubMedGoogle Scholar
  451. Shine, J., and Dalgarno, L. 1974a. The 3’-terminal sequence of E. coli. 16 S ribosomal RNA. Proc. Nat. Acad. Sci. USA. 71: 1342–1346.PubMedGoogle Scholar
  452. Shine, J., and Dalgarno, L. 1974b. Identical 3’-terminal octanucleotide sequence in 18 S ribosomal ribonucleic acid from different eukaryotes. Biochem. J. 141: 609–615.PubMedGoogle Scholar
  453. Shine, J., and Dalgarno, L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature. 254: 34–38.PubMedGoogle Scholar
  454. Shine, J., Hunt, J. A., and Dalgarno, L. 1974. Studies on the 3’-terminal sequences of the large rRNA of different eukaryotes and those associated with `hidden’ breaks in heat-dissociable insect 26 S RNA. Biochem. J. 141: 617–625.PubMedGoogle Scholar
  455. Siddiqui, M. A. Q., and Hosokawa, N. 1968. Role of 5 S rRNA in polypeptide synthesis. Biochem. Biophys. Res. Comm. 32: 1–8.PubMedGoogle Scholar
  456. Siegert, W., Bauer, G., and Hofschneider, P. H. 1973. Direct evidence for messenger activity of influenza virion RNA. Proc. Nat. Acad. Sci. USA. 70: 2960–2963.PubMedGoogle Scholar
  457. Simsek, M., Petrissant, G., and Rajbhandary, U. L. 1973a. Replacement of the sequence G-T-a(rC-G(A) by G-A-U-C-G in initiator transfer RNA of rabbit liver cytoplasm. Proc. Nat. Acad. Sci. USA. 70: 2600–2604.PubMedGoogle Scholar
  458. Simsek, M., Ziegenmeyer, J., Heckman, J., and Rjbhandary, U. L. 1973b. Absence of the sequence G-T-ijr-C-G(A) in several eukaryotic cytoplasmic initiator transfer RNAs. Proc. Nat. Acad. Sci. USA. 70: 1041–1045.PubMedGoogle Scholar
  459. Singer, R. E., and Conway, T. W. 1973. Defective initiation of f2 RNA translation by ribosomes from bacteriophage T4-infected cells. Biochim. Biophys. Acta. 331: 102–116.PubMedGoogle Scholar
  460. Skogerson, L., and Wakatama, E. 1976. A ribosome-dependent GTPase from yeast distinct from EF-2. Proc. Nat. Acad. Sci. USA. 73: 73–76.PubMedGoogle Scholar
  461. Slack, J. M. W., and Loening, U. E. 1974. 28 S RNA from Xenopus laevis. contains a sequence of three adjacent 2’-O-methylations. Eur. J. Biochem. 43: 69–72.Google Scholar
  462. Slater, I., Gillespie, D., and Slater, D. W. 1973. Cytoplasmic adenylation and processing of maternal RNA. Proc. Nat. Acad. Sci. USA. 70: 406–411.PubMedGoogle Scholar
  463. Slayter, H., Kiho, Y., Hall, C. E., and Rich, A. 1968. An electron microscopic study of large bacterial polyribosomes. J. Cell Biol. 37: 583–590.PubMedGoogle Scholar
  464. Smith, I., Dubnau, D., Morrell, P., and Marmur, J. 1968. Chromosomal location of DNA base sequences complementary to tRNA and to 5 S, 16 S, and 23 S ribosomal RNA in B. subtilis. J. Mol. Biol. 33: 123–140.Google Scholar
  465. Smith, K. E., and Henshaw, E. C. 1975. Binding of met-tRNAf to native and derived 40 S ribosomal subunits. Biochemistry. 14: 1060–1067.PubMedGoogle Scholar
  466. Spencer, M., Pigram, W. J., and Littlechild, J. 1969. Studies on rRNA structure. Biochim. Biophys. Acta. 179: 348–359.PubMedGoogle Scholar
  467. Spierer, P, Zimmermann, R. A., and Mackie, G. A. 1975. RNA-protein interactions in the ribosome. Eur. J. Biochem. 52: 459–468.PubMedGoogle Scholar
  468. Spirin, A. S. 1969. Informosomes. Eur. J. Biochem. 10: 20–35.PubMedGoogle Scholar
  469. Stadler, H. 1974. The primary structure of the 16 S rRNA binding protein S8 from E. coli. ribosomes. FEBS Lett. 48: 114–116.PubMedGoogle Scholar
  470. Stadler, H., and Wittmann-Liebold, B. 1976. Determination of the amino-acid sequence of the ribosomal protein S8 of E. coli. Eur. J. Biochem. 66: 49–56.Google Scholar
  471. Stavnezer, J., and Juang, R. C. C. 1971. Synthesis of a mouse immunoglobin light chain in a rabbit reticulocyte cell-free system. Nature New Biol. 230: 172–176.PubMedGoogle Scholar
  472. Steitz, J. A. 1969. Polypeptide chain initiation. Nature. 224: 957–964.PubMedGoogle Scholar
  473. Steitz, J. A. 1973. Discriminatory ribosome rebinding of isolated regions of protein synthesis initiation from the RNA of bacteriophage R17. Proc. Nat. Acad. Sci. USA. 70: 2605–2609.PubMedGoogle Scholar
  474. Stevens, A. R., and Pachler, P. F. 1972. Discontinuity of 26 S rRNA inAcanthamoeba castellani. J. Mol. Biol. 66: 225–237.Google Scholar
  475. Steward, D. L., Shaeffer, J. R., and Humphrey, R. M. 1968. Breakdown and assembly of polyribosomes in synchronized Chinese hamster cells. Science. 161: 791–793.PubMedGoogle Scholar
  476. Stewart, J. W., Sherman, F., Shipman, N. A., and Jackson, M. 1971. Identification and mutational relocation of the AUG codon initiating translation of iso-l-cytochrome c. in yeast. J. Biol. Chem. 246: 7429–7445.PubMedGoogle Scholar
  477. Stiles, C. D., Lee, K.-L., and Kenney, F. T. 1976. Differential degradation of mRNAs in mammalian cells. Proc. Nat. Acad. Sci. USA. 73: 2634–2638.PubMedGoogle Scholar
  478. Stöffier, G., Hasenbank, R., Bodley, J. W., and Highland, J. H. 1974. Inhibition of protein L7/L12 binding to 50 S ribosomal cores by antibodies specific for L6, L10, and L18. J. Mol. Biol. 86: 171–174.Google Scholar
  479. Stöffler, G., Wool, I. G., Lin, A., and Rak, K.-H. 1974. The identification of the eukaryotic ribosomal proteins homologous with E. coli. proteins L7 and L12. Proc. Nat. Acad. Sci. USA. 71: 4723–4726.PubMedGoogle Scholar
  480. Stoltzfus, C. M., Shatkin, A. J., and Banerjee, A. K. 1973. Absence of poly(A) from reovirus mRNA. J. Biol. Chem. 248: 7993–7998.PubMedGoogle Scholar
  481. Strycharz, W. A., Ranki, M., and Dahl, H. H. M. 1974. A high-molecular-weight protein component required for natural messenger translation in ascites tumor cells. Eur. J. Biochem. 48: 303–310.PubMedGoogle Scholar
  482. Subramanian, A. R. 1974. Sensitive separation procedure for E. coli. ribosomal proteins and the resolution of high-molecular-weight components. Eur. J. Biochem. 45: 541–546.PubMedGoogle Scholar
  483. Subramanian, A. R., and Davis, B. D. 1970. Activity of IF3 in dissociating E. coli. ribosomes. Nature. 228: 1273–1275.PubMedGoogle Scholar
  484. Subramanian, A. R., Ron, E. Z., and Davis, B. D. 1968. A factor required for ribosome dissociation in E. coli. Proc. Nat. Acad. Sci. USA. 61: 761–767.Google Scholar
  485. Sundaric, R. M., Stringer, E. A. Schulman, L. D. H., and Maitra, U. 1976. Interaction of bacterial IF-2 with initiator tRNA. J. Biol. Chem. 251: 3338–3345.Google Scholar
  486. Sundquist, B., Persson, T., and Lindberg, U. 1977. Characterization of mRNA-protein complexes from mammalian cells. Nucl. Acids Res. 4: 899–915.PubMedGoogle Scholar
  487. Sussman, M. 1966. Protein synthesis and the temporal control of genetic transcription during slime mold development. Proc. Nat. Acad. Sci. USA. 55: 813–818.PubMedGoogle Scholar
  488. Szer, W., Hermoso, J. M., and Leffler, S. 1975. Ribosomal protein Si and polypeptide chain initiation in bacteria. Proc. Nat. Acad. Sci. USA. 72: 2325–2329.PubMedGoogle Scholar
  489. Szer, W., and Leffler, S. 1974. Interaction of E. coli. 30 S ribosomal subunits with MS2 phage RNA in the absence of initiation factors. Proc. Nat. Acad. Sci. USA 71: 3611–3615.PubMedGoogle Scholar
  490. Takagi, M., Tanaka, T., and Ogatu, K. 1970. Chromosome activity and cell function in polytenic cells. Biochim. Biophys. Acta 217: 108–119.Google Scholar
  491. Tate, W. P., Beaudet, A. L., and Caskey, C. T. 1973. Influence of guanine nucleotides and elongation factors on interaction of release factors with the ribosome. Proc. Nat. Acad. Sci. USA. 70: 2350–2352.PubMedGoogle Scholar
  492. Terao, K., and Ogata, K. 1975. Studies on structural proteins of the rat liver ribosomes. Biochim. Biophys. Acta. 402: 214–229.PubMedGoogle Scholar
  493. Teraoka, H., and Tanaka, K. 1973. Effect of polyamines on the binding of dihydrostreptomycin and N-acetylphenylalanyl-tRNA to ribosomes from E. coli. Eur. J. Biochem. 40: 423429.Google Scholar
  494. Terhorst, C., Möller, W., Laursen, R., and Wittmann-Liebold, B. 1973. The primary structure of an acidic protein which is involved in GTP hydrolysis dependent on elongation factors G and T. Eur. J. Biochem. 34: 138–152.PubMedGoogle Scholar
  495. Terhorst, C., Wittmann-Liebold, B., and Möller, W. 1972. 50 S ribosomal proteins. Eur. J. Biochem. 25: 13–19.Google Scholar
  496. Toivonen, J. E., and Nierlich, D. P. 1974. Biological decay of the 5’-triphosphate termini of the RNA of E. coli. Nature. 252: 74–76.Google Scholar
  497. Träeger, L. 1970. Termination der Proteinsynthese. Naturwissenschaften. 57: 560–564.Google Scholar
  498. Tsiapalis, C. M., Dorson, J. W., De Sante, D. M., and Bollum, F. J. 1973. Terminal riboadenylate transferase. Biochem. Biophys. Res. Comm. 50: 737–743.PubMedGoogle Scholar
  499. Tsurugi, K., Morita, T., and Ogata, K. 1974. Mode of degradation of ribosomes in regenerating rat liver in vivo. Eur. J. Biochem. 45: 119–126.Google Scholar
  500. Ulbrich, B., and Nierhaus. K. H., 1975. Pools of ribosomal proteins in E. coli. Eur. J. Biochem. 57: 49–54.Google Scholar
  501. Van, N. T., Holder, J. W., Woo, S. L. C., Means, A. R., and O’Malley, B. W. 1976. Secondary structure of ovalbumin mRNA. Biochemistry. 15: 2054–2062.PubMedGoogle Scholar
  502. Vandekerckhove, J., Francq, H., and Van Montagu, M. 1969. The amino acid sequence of the coat protein of the bacteriophage MS-2 and localization of the amber mutation in the coat mutants growing on a sul suppressor. Arch. Intern. Physiol. Biochim. 77: 175–180.Google Scholar
  503. Vandekerckhove, J., Rombauts, W., Peeters, B., and Wittmann-Liebold, B. 1975. Determination of the complete amino-acid sequence of protein S21 from E. coli. Hoppe-Seyler’s Z. Phys. Chem. 356: 1955–1976.Google Scholar
  504. Vandekerckhove, J., Rombauts, B., and Wittmann-Liebold, B. 1977. The primary structure of protein S16 from E. coli. ribosomes. FEBS Lett. 73: 18–21.PubMedGoogle Scholar
  505. Van de Walle, C. 1973. Poly(A) sequences in plant RNA. FEBS Lett. 34: 31–34.PubMedGoogle Scholar
  506. Van Dieijen, G., Van der Laken, C. J., van Knippenberg, P. H., and Van Duin, J. 1975. Function of E. coli. ribosomal protein S1 in translation of natural and synthetic mRNA. J. Mol. Biol. 93: 351–366.PubMedGoogle Scholar
  507. Van Duin, J., and van Knippenberg, P. H. 1974. Requirement of protein S1 for translation. J. Mol. Biol. 84: 185–195.PubMedGoogle Scholar
  508. Van Duin, J., van Knippenberg, P. H., Dieben, M., and Kurland, C. G. 1972. Functional heterogeneity of the 30 S ribosomal subunit of E. coli. Mol. Gen. Genetics. 116: 181–191.Google Scholar
  509. van Knippenberg, P. H. 1975. A possible role of the 5’-terminal sequence of 16 S rRNA in the recognition of initiation sequences for protein synthesis. Nucl. Acids Res. 2: 79–85.PubMedGoogle Scholar
  510. van Knippenberg, P. H., Hooykass, P. J. J., and Van Duin, J. 1974. The stoichiometry of E. coli 30S ribosomal protein S1 on in vivo and in vitro polyribosomes. FEBS Lett. 41: 323–326.Google Scholar
  511. Vaquero, C., Reibel, L., Delaunay, J., and Schapiro, G. 1973. Translation of globin mRNA among eukaryotes. Biochem. Biophys. Res. Comm. 54: 1171–1177.PubMedGoogle Scholar
  512. Vaughn, M. H., and Hansen, D. S., 1973. Control of initiation of protein synthesis in human cells. J. Biol. Chem. 248: 7087–7096.Google Scholar
  513. Vigne, R., Jordan, B. R., and Monier, R. 1973. A common conformational feature in several prokaryotic and eukaryotic 5 S RNAs. J. Mol. Biol. 76: 303–311.PubMedGoogle Scholar
  514. Visentin, L. P., Matheson, A. T., and Yaguchi, M. 1974. Homologies in procaryotic ribosomal proteins. FEBS Lett. 41: 310–314.PubMedGoogle Scholar
  515. Volckaert, G., and Fiers, W. 1973. Studies on the bacteriophage MS2. G-U-G as the initiation codon of the A-protein cistron. FEBS Lett. 35: 91–96.PubMedGoogle Scholar
  516. Volkin, E., and Astrachan, L. 1956. Phosphorus incorporation in E. coli. RNA after infection with bacteriophage T2. Virology. 2: 149–161.PubMedGoogle Scholar
  517. Vournakis, J., and Rich, A. 1972. Ribosomal transformations during protein synthesis. In: Cox, R. A., and A. A. Hadjiolov, eds., Functional Units in Protein Biosynthesis., New York, Academic Press, p. 287–299.Google Scholar
  518. Wade, M., Laursen, R. A., and Miller, D. L. 1975. Amino acid sequence of EF-Tu. FEBS Lett. 53: 37–39.PubMedGoogle Scholar
  519. Wahba, A. J., Mazumder, R., Iwasaki, K., Choe, Y. B., Miller, M. J., Sillero, M. A. G., and Ochoa, S. 1968. Role of ribosome factors in polypeptide chain initiation. Abstr. Fed. Eur. Biochem. Soc., Madrid., p. 9.Google Scholar
  520. Wahba, A. J., and Miller, M. J. 1974. Chain initiation factors from E. coli. Meth. Enzym. 30: 3–18.Google Scholar
  521. Walker, T. A., Betz, J. L., Olah, J., and Pace, N. R. 1975. The nucleotide sequence of dolphin and bovine 5 S rRNA. FEBS Lett. 54: 241–244.PubMedGoogle Scholar
  522. Weber, K., and Koenigsberg, W. 1967. Amino acid sequence of the f2 coat protein. J. Biol. Chem. 242: 3563–3578.Google Scholar
  523. Wegnez, M., Monier, R., and Denis, H. 1972. Sequence heterogeneity of 5 S RNA in Xenopus laevis. FEBS Lett. 25: 13–20.Google Scholar
  524. Wei, C. M., Gershowitz, A., and Moss, B. 1976. 5’-terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry. 15: 397–401.Google Scholar
  525. Weiner, A. M., and Weber, K. 1973. A single UGA codon functions as a natural termination signal in the coliphage Qß coat protein cistron. J. Mol. Biol. 80: 837–855.PubMedGoogle Scholar
  526. Weissbach, H., Redfield, B., and Moon, H. M. 1973. Further studies on the interactions of EF-1 from animal tissues. Arch. Biochem. Biophys. 156: 267–275.PubMedGoogle Scholar
  527. Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H. 1973. Structure and function of phage RNA. Ann. Rev. Biochem. 42: 303–328.PubMedGoogle Scholar
  528. Welfie, H., Stahl, J., and Bielka, H. 1972. Studies on proteins of animal ribosomes. FEBS Lett. 26: 228–232.Google Scholar
  529. Wells, G. N., and Beevers, L. 1974. Protein synthesis in the cotyledons of Pisum sativum. L. Biochem. J. 139: 61–69.PubMedGoogle Scholar
  530. Wen, W. N., León, P. E., and Hague, D. R. 1974. Multiple gene sites for 5 S and 18 + 28 S RNA on chromosomes of Glyptotendipes barvipes. J. Cell Biol. 62: 132–144.Google Scholar
  531. Westover, K. C., and Jacobson, L. A. 1974. Control of protein synthesis in E. coli. J. Biol. Chem. 249: 6272–6279.Google Scholar
  532. White, H. B., Laux, B. E., and Dennis, D. 1972. Messenger RNA structure: Compatibility of hairpin loops with protein sequence. Science. 175: 1264–1266.PubMedGoogle Scholar
  533. Wice, M., and Kennell, D. 1974. Decay of mRNA from the tryptophan operon of E. coli. as a function of growth temperature. J. Mol. Biol. 84: 649–652.PubMedGoogle Scholar
  534. Wigle, D. T., and Smith, A. E. 1973. Specificity in initiation of protein synthesis in a fractionated mammalian cell-free system. Nature New Biol. 242: 136–140.PubMedGoogle Scholar
  535. Williamson, A. R., and Schweet, R. 1964. Role of the genetic message in initiation and release of the polypeptide chain. Nature. 202: 435–437.PubMedGoogle Scholar
  536. Williamson, R. 1973. The protein moieties of animal messenger ribonucleoproteins. FEBS Lett. 37: 1–6.PubMedGoogle Scholar
  537. Williamson, R., and Brownlee, G. G. 1969. The sequence of 5 S ribosomal RNA from two mouse cell lines. FEBS Lett. 3: 306–308.PubMedGoogle Scholar
  538. Williamson, R., Morrison, M., Lanyon, G., Eason, R., and Paul, J. 1971. Properties of mouse globin mRNA and its preparation in milligram quantities. Biochemistry. 70: 3014–3020.Google Scholar
  539. Wittmann, H. G. 1976. Structure, function and evolution of ribosomes. Eur. J. Biochem. 61: 1–13.PubMedGoogle Scholar
  540. Wittmann-Liebold, B. 1973. Studies on the primary structure of 20 proteins from E. coli. ribosomes by means of an improved protein sequenator. FEBS Lett. 36: 247–249.PubMedGoogle Scholar
  541. Wittmann-Liebold, B., and Dzionara, M. 1976a. Comparison of amino acid sequences among ribosomal proteins of E.coli. FEBS Lett. 61: 14–19.Google Scholar
  542. Wittman-Liebold, B., and Dzionara, M. 1976b. Studies on the significance of sequence homologies among proteins from E. coli. ribosomes. FEBS Lett. 65: 281–283.Google Scholar
  543. Wittmann-Liebold, B., Greuer, B., and Pannenbecker, R. 1975. The primary structure of protein L32 from the 50 S subunit of E. coli. ribosomes. Hoppe-Seyler’s Z. Phys. Chem. 356: 1977–1979.Google Scholar
  544. Wittman-Liebold, B., Marzinzig, E., and Lehmann, A. 1976. Primary structure of protein S20 from the small ribosomal subunit of E. coli. FEBS Lett. 68: 110–114.Google Scholar
  545. Wittmann-Liebold, B., and Pannenbecker, R. 1976. Primary structure of protein L33 from the large subunit of the E. coli. ribosome. FEBS Lett. 68: 115–118.PubMedGoogle Scholar
  546. Woese, C. R. 1972. Evolution of macromolecular complexity. J. Theor. Biol. 33: 29–34.Google Scholar
  547. Woledge, J., Corry, M. J., and Payne, P. I. 1974. Ribosomal RNA homologies in flowering plants. Biochim. Biophys. Acta. 349: 339–350.PubMedGoogle Scholar
  548. Wong, J. T. F. 1975. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA. 72: 1909–1912.PubMedGoogle Scholar
  549. Wong, K. L., Bolton, P. H., and Kearns, D. R. 1975. Tertiary structure in E. coli. tRNAArg and tRNAva’ Biochim. Biophys. Acta. 383: 446–451.PubMedGoogle Scholar
  550. Wong, Y. P., Reid, B. R., and Kearns, D. R. 1973. Conformation of charged and uncharged tRNAPhe. Proc. Nat. Acad. Sci. USA. 70: 2193–2195.PubMedGoogle Scholar
  551. Woodley, C. L., Chen, Y. C., and Gupta, N. K. 1974. Purification and properties of the peptide chain initiation factors from rabbit reticulocytes. Methods Enzymol. 30: 141–153.PubMedGoogle Scholar
  552. Yaguchi, M. 1975. Primary structure of protein S18 from the small E. coli. ribosomal subunit. FEBS Lett. 59: 217–220.PubMedGoogle Scholar
  553. Yaguchi, M., Matheson, A. T., and Visentin, L. P. 1974. Procaryotic ribosomal proteins: N-terminal sequence homologies and structural correspondence of 30 S ribosomal proteins from E. coli. and Bacillus stearothermophilus. FEBS Lett. 46: 296–300.Google Scholar
  554. Yamada, Y., Whitaker, P. A., and Nakada, D. 1974. Functional instability of T7 early mRNA. Nature. 248: 335–338.PubMedGoogle Scholar
  555. Yanofsky, C., and Ito, J. 1966. Nonsense codons and polarity in the tryptophan operon. J. Mol. Biol. 21: 313–334.PubMedGoogle Scholar
  556. Yams, M. 1972. Phenylalanyl-tRNA synthetase and isoteucy1-tRNAphe: A possible verification mechanism for aminoacyl-tRNA. Proc. Nat. Acad. Sci. USA. 69: 1915–1919.Google Scholar
  557. Yarus, M., and Barrell, B. G. 1971. The sequence of nucleotides in tRNA1e from E. coli. B. Biochem. Biophys. Res. Comm. 43: 729–733.PubMedGoogle Scholar
  558. Yogo, Y., and Wimmer, E. 1972. Poly(A) at the 3’-terminus of poliovirus RNA. Proc. Nat. Acad. Sci. USA. 69: 1877–1882.PubMedGoogle Scholar
  559. Yokosawa, H., Inoue-Yokosawa, N., Arai, K.-i., Kawakita, M., and Kaziro, Y. 1973. The role of guanosine triphosphate hydrolysis in EF-Tu-promoted binding of aminoacyl tRNA to ribosomes. J. Biol. Chem. 248: 375–377.PubMedGoogle Scholar
  560. Yu, R. S. T., and Wittmann, H. G. 1973. The sequence of steps in the attachment of 5 S RNA ta cores of E. coli. ribosomes. Biochim. Biophys. Acta. 324: 375–385.PubMedGoogle Scholar
  561. Zalik, S., and Jones, B. L. 1973. Protein biosynthesis. Ann. Rev. Plant Physiol. 24: 47–68.Google Scholar
  562. Zasloff, M., and Ochoa, S. 1971. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc. Nat. Acad. Sci. USA. 68: 3059–3063.PubMedGoogle Scholar
  563. Zasloff, M., and Ochoa, S. 1973. Polypeptide chain initiation in eukaryotes. J. Mol. Biol. 73: 65–76.PubMedGoogle Scholar
  564. Zinder, N. 1963. Properties of a bacteriophage containing RNA. Perspectives Virol. 3: 58–67.Google Scholar
  565. Zylber, E. A., and Penman, S. 1971. Synthesis of 5 S and 4 S RNA in metaphase-arrested HeLa cells. Science. 172: 947–949.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations