The Genetic Mechanism: I DNA, Nucleoids, and Chromatin

  • Lawrence S. Dillon


Now that it has been made clear that the earliest protobiont had to possess a genetic mechanism before further evolution could occur, clues to two major questions will be sought as the basis for inheritance is reviewed in this present and the following two chapters. The first of these pertains to the nature of the genetic apparatus that probably existed in the very first forms of life, and the second involves the sequence of events that led to its present state of complexity. Fortunately data are available that indicate a probable series of developments, but to appreciate their significance fully, each aspect of the genetical processes must first be scrutinized. The most logical point for departure is an investigation of deoxyribose nucleic acid (DNA), the central ingredient in prevailing doctrines. Thus, this molecule, its mode of replication, and its organization in living cells are the topics of the present discussion, after some preliminary points have been established.


Exonuclease Activity Physarum Polycephalum Adenine Thymine Deoxyribose Nucleic Acid Repair Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H. 1957. Some aspects of paleobiochemistry. Ann. N.Y. Acad. Sci. 69: 274–285.Google Scholar
  2. Adams, R. L. P. 1974. Newly synthesised DNA is not methylated. Biochim. Biophys. Acta. 335: 365–373.Google Scholar
  3. Adams, R. L. P., and Hogarth, C. 1973. DNA methylation in isolated nuclei: Old and new DNAs are methylated. Biochem. Biophys. Acta. 331: 214–220.PubMedGoogle Scholar
  4. Adler, K., Beyreuther, K., Fanning, E., Geisler, N., Gronenborn, B., Klemm, A., Muller-Hill, B., Pfahl, M., and Schmitz, A. 1972. How lac. repressor binds to DNA. Nature. 237: 322–327.PubMedGoogle Scholar
  5. Alberts, B., Amodio, F., Jenkins, M., Gutmann, E., and Ferris, F. 1968. DNA-binding proteins from E. coli. Cold Spring Harbor Symp. Quant. Biol. 33: 289–305.Google Scholar
  6. Alberts, B., and Frey, L. 1970. T4 bacteriophage gene 32. Nature. 227: 1313–1318.PubMedGoogle Scholar
  7. Andersen, H. A. 1974. Replication of macronuclear DNA in the cytoplasm of Tetrahymena pyriformis. J. Cell Sci. 14: 289–300.Google Scholar
  8. Antonov, A. C., Favorova, O. O., and Belozerskii, A. N. 1962. Dokl. Akad. Nauk SSSR. 147: 1480.Google Scholar
  9. Aposhian, H. V., and Kornberg, A. 1962. The polymerase formed after T2 bacteriophage infection of E. coli: A new enzyme. J. Biol. Chem. 237: 519–525.PubMedGoogle Scholar
  10. Arber, W., and Linn, S. 1969. Messenger RNA. Ann. Rev. Biochem. 38: 647–676.Google Scholar
  11. Arnberg, A. C., and Arwert, F. 1976. DNA-protein complex in circular DNA from Bacillus. bacteriophage GA-1. J. Virol. 18: 783–784.PubMedGoogle Scholar
  12. Arnott, S., and Hukins, D. W. L. 1972. Optimized parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Corn. 47: 1504–1509.Google Scholar
  13. Arnott, S., and Hukins, D. W. L. 1973. Refinement of the structure of B-DNA and implications for the analysis of X-ray diffraction data from fibers of biopolymers. J. Mol. Biol. 81: 93–105.PubMedGoogle Scholar
  14. Arrighi, F. E., and Hsu, T. C. 1971. Localization of heterochromatin in human chromosomes. Cytogenetics. 10: 81–86.PubMedGoogle Scholar
  15. Auld, D. S., Kawaguchi, H., Livingston, D. M., and Vallee, B. L. 1974. RNA-dependent DNA polymerase from avian myeloblastosis virus: A zinc metalloenzyme. Proc. Nat. Acad. Sci. USA. 71: 2091–2095.PubMedGoogle Scholar
  16. Baase, W. A., and Wang, J. C. 1974. An w protein from Drosophila melanogaster. Biochemistry. 13: 4299–4303.Google Scholar
  17. Bada, J. L. 1972. The dating of fossil bones using the racemization of isoleucine. Earth Planet. Sci. Lett. 15: 223–231.Google Scholar
  18. Bada, J. L., Luyendyk, B. P., and Maynard, J. B. 1970. Marine sediments: Dating by the racemization of amino acids. Science. 170: 730–732.PubMedGoogle Scholar
  19. Bada, J. L., and Protsch, R. 1973. Racemization reaction of aspartic acid and its use in dating fossil bones. Proc. Nat. Acad. Sci. USA. 70: 1331–1334.PubMedGoogle Scholar
  20. Balhorn, R., Chalkley, R., and Granner, D. 1972. Lysine-rich histone phosphorylation. A positive correlation with cell replication. Biochemistry. 11. :1094–1098.Google Scholar
  21. Balhorn, R., Jackson, V., Granner, D., and Chalkley, R. 1975. Phosphorylation of the lysine-rich histones throughout the cell cycle. Biochemistry. 14: 2504–2511.PubMedGoogle Scholar
  22. Balhorn, R., Rieke, W. O., and Chalkley, R. 1971. A reinvestigation of phosphorylation of lysine-rich histone during rat liver regeneration. Biochemistry. 10: 3952–3958.PubMedGoogle Scholar
  23. Balls, M., and F. S. Billett, eds. 1973. The Cell Cycle in Development and Differentiation. Cambridge, Cambridge University Press.Google Scholar
  24. Baltimore, D. 1970. Viral RNA-dependent DNA polymerase. Nature. 226: 1209–1211.PubMedGoogle Scholar
  25. Banks, G. R., and Spanos, A. 1975. The isolation and properties of a DNA unwinding protein from Ustilago maydis. J. Mol. Biol. 93: 63–77.Google Scholar
  26. Baril, E. F., Brown, O. E., Jenkins, M. D., and Laszlo, J. 1971. DNA polymerase with rat liver ribosomes and smooth membranes. Biochemistry. 10: 1981–1992.PubMedGoogle Scholar
  27. Baril, E. F., Jenkins, M. D., Brown, O. E., Laszlo, J., and Morris, H. P. 1973. DNA polymerase I and II in regenerating rat liver and Morris hepatomas. Cancer Res. 33: 1187–1193.PubMedGoogle Scholar
  28. Baril, E. F., and Laszlo, J. 1971. Sub-cellular localization and characterization of DNA polymerases from rat liver and hepatomas. Adv. Enzyme Regulation. 9: 183–204.Google Scholar
  29. Barker, S. T., Kurtz, H., Taylor, B. A., and Ackerman, W. W. 1973. A covalently linked DNA- RNA molecule from human leukemia cells. Biochem. Biophys. Res. Comm. 50: 1068–1074.PubMedGoogle Scholar
  30. Barry, J., Hama-Inaba, H., Moran, L., Alberts, B., and Wilberg, J. 1973. Proteins of the T4 bacteriophage replication apparatus. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., Univ. Park Press, p. 195–214.Google Scholar
  31. Barzilai, R., and Thomas, C. A. 1970. Spontaneous renaturation of newly-synthesized bacteriophage T7 DNA. J. Mol. Biol. 51: 145–156.PubMedGoogle Scholar
  32. Baudy, P., Bram, S., Vastel, D., Lepault, J., and Kitzis, A. 1976. Chromatin subunit small angle neutron scattering. Biochem. Biophys. Res. Comm. 72: 176–183.PubMedGoogle Scholar
  33. Bekkaring-Kuylaars, S. A. M., and Campagnari, F. 1974. Characterization and properties of a DNA polymerase partially purified from the nuclei of calf thymus cells. Biochim. Biophys. Acta. 349: 277–295.Google Scholar
  34. Berendes, H. D., and Keyl, H. G. 1967. Distribution of DNA in heterochromatin and euchromatin of polytene nuclei of Drosophila hydei. Genetics. 57: 1–13.Google Scholar
  35. Berezney, R., and Coffey, D. S. 1975. Nuclear protein matrix: Association with newly synthesized DNA. Science. 189: 291–293.PubMedGoogle Scholar
  36. Beridze, T. 1975. DNA nuclear satellites of the genus Brassica: Variation between species. Biochim. Biophys. Acta. 395: 274–279.PubMedGoogle Scholar
  37. Bernal, J. D. 1967. The Origin of Life., Cleveland, Ohio, World Publishing Co.Google Scholar
  38. Bernard, O., Momparler, R. L., and Brent, T. P. 1974. Effect of DNA polymerase on nuclei from different phases of cell cycle. Eur. J. Biochem. 49: 565–571.PubMedGoogle Scholar
  39. Bersier, D., and Braun, R. 1974. Pools of deoxyribonucleoside triphosphates in the mitotic cycle of Physarum. Biochim. Biophys. Acta. 340: 463–471.Google Scholar
  40. Bianchi, N. O., and Ayres, J. 1971. Polymorphic patterns of heterochromatin distribution in guinea pig chromosomes. Chromosoma. 34: 254–260.Google Scholar
  41. Billen, D. 1968. Methylation of the bacterial chromosome: An event at the “replication point”. J. Mol. Biol. 31: 477–486.PubMedGoogle Scholar
  42. Billett, M. A., and Barry, J. M. 1974. Role of histones in chromatin condensation. Eur. J. Biochem. 49: 477–484.PubMedGoogle Scholar
  43. Bimboim, H. C., and Straus, N. A. 1975. DNA from eukaryotic cells contains unusually long pyrimidine sequences. Can. J. Biochem. 53: 640–643.Google Scholar
  44. Birnstiel, M. L., and Hyde, B. B. 1963. Protein synthesis by isolated pea nucleoli. J. Cell Biol. 18: 41–50.PubMedGoogle Scholar
  45. Bishop, J. M., Faras, A. J., Garapin, A. C., Goodman, H. M., Levinson, W. E., Stavneger, J., Taylor, J. M., and Varmus, H. E. 1973. Characteristics of the transcription of RNA by the DNA polymerase of Rous sarcoma virus. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., Univ. Park Press, p. 341–359.Google Scholar
  46. Blakley, R. L., and Vitols, E. 1968. The control of nucleotide biosynthesis. Ann. Rev. Biochem. 37: 201–224.PubMedGoogle Scholar
  47. Boffa, L., Saccomani, G., Tamburro, A. M., Scatturin, A., and Vidali, G. 1971. Chromosomal nucleoproteins: C.D. studies on reconstituted nucleohistones from avian erythrocytes. Int. J. Protein Res. 3: 357–363.PubMedGoogle Scholar
  48. Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., and Slonimski, P. P. 1971. La recombinaison des mitochondries chez S. cerevisiae. Bull. Inst. Pasteur. 69: 215–239.Google Scholar
  49. Bonner, J., Dahmus, M. E., Fambrough, D., Huang, R. C., Marushige, K., and Tuan, D. Y. H. 1968. The biology of isolated chromatin. Science. 159: 47–56.Google Scholar
  50. Bonner, W. M. 1975. Protein migration into nuclei. J. Cell Biol. 64: 431–437.PubMedGoogle Scholar
  51. Botchan, M. R., 1974. Bovine satellite I DNA consists of repetitive units 1,400 base pairs in length. Nature. 251: 288–292.PubMedGoogle Scholar
  52. Botchan, M. R., Kram, R., Schmid, C., and Hearst, J. E. 1971. Isolation and chromosomal localization of highly repeated DNA sequences in D. melanogaster. Proc. Nat. Acad. Sci. USA. 68: 1125–1129.Google Scholar
  53. Boyer, H. W., 1971. DNA restriction and modification mechanisms in bacteria. Ann. Rev. Microbiol. 25: 153–176.Google Scholar
  54. Bayer, H. W., 1974. Restriction and modification of DNA: Enzymes and substrates. Fed. Proc. 33: 1125–1127.Google Scholar
  55. Bradbury, E. M., Inglis, R. J., Matthews, H. R., and Langan, T. A. 1974. Molecular basis of control of mitotic cell division in eukaryotes. Nature. 249: 553–555.PubMedGoogle Scholar
  56. Brahms, J., and Mommaerts, W. H. F. M. 1964. A study of conformation of nucleic acids in solution by means of circular dichroism. J. Mol. Biol. 10: 73–88.PubMedGoogle Scholar
  57. Bram, S. 1975. A double coil chromatin subunit model. Biochimie. 57: 1301–1306.PubMedGoogle Scholar
  58. Bram, S., Hellio, R., and Kouprach, S. 1975. Études préliminaires des sous-unités de la chromatine par cryodécapage. C. R. Acad. Sci., Paris. D281: 847–849.Google Scholar
  59. Brandt, W. F., and von Holt, C. 1976. The occurrence of histone H3 and H4 in yeast. FEBS Lett. 65: 386–390.PubMedGoogle Scholar
  60. Brasch, K., Adams, G. H. M., and Neelin, J. M. 1974. Evidence for erythrocyte-specific histone modification and structural changes in chromatin during goose erythrocyte maturation. J. Cell Sci. 15: 659–677.PubMedGoogle Scholar
  61. Brasch, K., and Setterfield, G. 1974. Structural organization of chromosomes in interphase nuclei. Expt. Cell Res. 83: 175–185.Google Scholar
  62. Brasch, K., Setterfield, G., and Neelin, J. M. 1972. Effects of sequential extraction of histone proteins on structural organization of avian erythrocyte and liver nuclei. Exp. Cell Res. 74: 27–41.Google Scholar
  63. Brewer, E. N. 1972. DNA replication in Physarum polycephalum. J. Mol Biol. 68: 401–412.Google Scholar
  64. Britten, R. J. 1968. Reassociation of nonrepeated DNA. Carnegie Inst. Year Book. 67: 330–332.Google Scholar
  65. Britten, R. J., and Kohne, D. E. 1968. Repeated sequences in DNA. Science. 161: 529–540.PubMedGoogle Scholar
  66. Brown, D. D., and Sugimoto, K. 1973. 5 S DNAs of Xenopus laevis. and Xenopus mulleri: Evolution of a gene family. J. Mol. Biol. 78: 397–415.Google Scholar
  67. Brown, I. R., and Church, R. B. 1971. RNA transcription from nonrepetitive DNA in mouse. Biochem. Biophys. Res. Comm. 42: 850–856.PubMedGoogle Scholar
  68. Brown, R. L., Pathak, S., and Hsu, T. C. 1975. The possible role of histones in the mechanism of chromosomal G banding. Science. 189: 1090–1091.PubMedGoogle Scholar
  69. Brown, W. V., and Bertke, E. M. 1974. Textbook of Cytology., 2nd Ed., St. Louis, Missouri, The C. V. Mosby Company.Google Scholar
  70. Brunk, C. F., and Hanawalt, P. C. 1967. Repair of damaged DNA in a eucaryotic cell: Tetrahymena pyriformis. Science. 158: 663–664.Google Scholar
  71. Brutlag, D., and Kornberg, A. 1972. A proofreading function for the 3’-5’ exonuclease activity in DNA polymerases. J. Biol. Chem. 247: 241–248.PubMedGoogle Scholar
  72. Buchowicz, J. 1974. Is the cytoplasm a site of nuclear DNA synthesis? Nature. 249: 350.PubMedGoogle Scholar
  73. Burgoyne, L. A. 1972. DNA synthesis in mammalian systems. Biochem. J. 130: 959–964.PubMedGoogle Scholar
  74. Byrd, E. W., and Kasinsky, H. E. 1973. Histone synthesis during early embryogenesis in Xenopus laevis. Biochemistry. 12: 246–253.Google Scholar
  75. Byrnes, J. J., Downey, K. M., Jurmark, B. S., and So, A. G. 1974a. Reticulocyte DNA polymerase. Nature. 248: 687–689.PubMedGoogle Scholar
  76. Byrnes, J. J., Downey, K. M., and So, A. G. 1974b. Metabolic regulation of cytoplasmic DNA synthesis. Proc. Nat. Acad. Sci. USA. 71: 205–208.PubMedGoogle Scholar
  77. Cabradilla, C. D., and Toliver, A. P. 1975. S-phase dependent forms of DNA-nuclear membrane complexes in HeLa cells. Biochim. Biophys. Acta. 402: 188–198.PubMedGoogle Scholar
  78. Cairns, J. 1963a. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6: 208–213.PubMedGoogle Scholar
  79. Cairns, J. 1963b. The chromosome of E. coli. Cold Spring Harbor Symp. Quant. Biol. 28: 43–46.Google Scholar
  80. Cairns-Smith, A. G. 1966. The origin of life and the nature of the primitive gene. J. Theoret. Biol. 10: 53–88.Google Scholar
  81. Cairns-Smith, A. G. 1971. The Life Puzzle: On Crystals and Organisms and on the Possibility of a Crystal as an Ancestor., Toronto, University of Toronto Press.Google Scholar
  82. Callan, H. G. 1973. Replication of DNA in eukaryotic organism. Brit. Med. Bull. 29: 192–195.PubMedGoogle Scholar
  83. Cameron, I. L., and Nachtwey, D. S. 1967. DNA synthesis in relation to cell division in Tetrahymena pyriformis. Exp. Cell Res. 46: 385–395.Google Scholar
  84. Capesius, I., Bierweiler, B., Bachmann, K., Rucker, W., and Nagl, W. 1975. An AT-rich satellite DNA in a monocotyledonous plant, Cymbidium. Biochim. Biophys. Acta. 395: 67–73.Google Scholar
  85. Carlton, B. C., and Smith, M. P. W. 1974. Size distribution of the closed circular DNA molecules of Bacillus megaterium. J. Bact. 117: 1201–1209.Google Scholar
  86. Case, S. T., and Baker, R. F. 1975. Position of regularly spaced single-stranded regions relative to 5-bromodeoxyuridine sensitive areas in sea urchin morula DNA. Nature. 253: 64–66.PubMedGoogle Scholar
  87. Case, S. T., Mongeon, R. L., and Baker, R. F. 1974. Single-stranded regions in DNA isolated from different developmental stages of the sea urchin. Biochim. Biophys. Acta. 349: 1–12.PubMedGoogle Scholar
  88. Cavalieri, L. F. 1963. Nucleic acids and information transfer. J. Cell. Comp. Physiol. 62; suppl. 1: 111–122.Google Scholar
  89. Cavalieri, L. F., and Carroll, E. 1970. RNA as a template with E. coli. DNA polymerase. Biochem. Biophys. Res. Comm. 41: 1055–1060.PubMedGoogle Scholar
  90. Cavalieri, L. F., and Rosenberg, B. H. 1963. Nucleic acids and information transfer. Progr. Neucleic Acid Res. 2: 1–18.Google Scholar
  91. Cech, T. R., and Hearst, J. E. 1976. Organization of highly repeated sequences in mouse main-band DNA. J. Mol. Bio. 100: 227–256.Google Scholar
  92. Champoux, J. J., and Dulbecco, R. 1972. An activity from mammalian cells that untwists super-helical DNA-a possible swivel for DNA replication. Proc. Nat. Acad. Sci. USA. 69: 143146.Google Scholar
  93. Champoux, J. J., and McConaughy, B. L. 1975. Priming of superhelical SV40 DNA by E. coli. RNA polymerase for in vitro. DNA synthesis. Biochemistry. 14: 307–316.PubMedGoogle Scholar
  94. Chandra, H. S., and Brown, S. W. 1975. Chromosome imprinting and the mammalian X chromosome. Nature. 253: 165–168.PubMedGoogle Scholar
  95. Chang, L. M. S., and Bollum, F. J. 1972a. Antigenic relationships in mammalian DNA polymerase. Science. 175: 1116–1117.PubMedGoogle Scholar
  96. Chang, L. M. S., and Bollum, F. J. 1972b. Low molecular weight DNA polymerase from rabbit bone marrow. Biochemistry. 11: 1264–1272.PubMedGoogle Scholar
  97. Chang, L. M. S., and Bollum, F. J. 1972c. Variation of DNA polymerase activities during rat liver regeneration. J. Biol. Chem. 247: 7948–7950.PubMedGoogle Scholar
  98. Chang, L. M. S., Brown, M., and Bollum, F. J. 1973. Induction of DNA polymerase in mouse L cells. J. Mol. Biol. 74: 1–8.PubMedGoogle Scholar
  99. Chapman, G. E., Hartman, P. G., and Bradbury, E. M. 1976. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. Eur. J. Biochem. 61: 69–75.PubMedGoogle Scholar
  100. Chargoff, E. 1950. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia. 6: 201–209.Google Scholar
  101. Chargoff, E. 1951. Structure and function of nucleic acids as cell constituents. Fed. Proc. 10: 654–659.Google Scholar
  102. Chiu, J. F., and Hnilica, L. S. 1977. Nuclear nonhistone proteins: Chemistry and function. In: Li, H. J., and R. A. Eckhardt, eds., Chromatin and Chromosome Structure. New York, Academic Press, p. 193–254.Google Scholar
  103. Chin, B., and Bernstein, I. A. 1968. ATP and synchronous mitosis in Physarum polycephalum. J. Bacteriol. 96: 330–337.Google Scholar
  104. Clark, R. J., and Felsenfeld, G. 1974. Chemical probes of chromatin structure. Biochemistry. 13: 3622–3628.PubMedGoogle Scholar
  105. Clark-Walker, G. D., and Miklos, G. L. G. 1974. Localization and quantification of circular DNA in yeast. Eur. J. Biochem. 41: 359–365.PubMedGoogle Scholar
  106. Clowes, R. C. 1972. Molecular structure of bacterial plasmids. Bacteriol. Rev. 36: 361–405.PubMedGoogle Scholar
  107. Comings, D. E., Avelino, E., Okada, T. A., and Wyandt, H. E. 1973. The mechanism of C- and G-banding of chromosomes. Exp. Cell Res. 77: 469–493.PubMedGoogle Scholar
  108. Comings, D. E., and Kakefuda, T. 1968. Initiation of DNA replication at the nuclear membrane in human cells. J. Mol. Biol. 33: 225–229.PubMedGoogle Scholar
  109. Comings, D. E., and Mattoccia, E. 1972. DNA of mammalian and avian heterochromatin. Exp. Cell Res. 71: 113–131.PubMedGoogle Scholar
  110. Comings, D. E., and Okada, T. A. 1976. Fine structure of the heterochromatin of the kangaroo rat Dipodomys ordii. and examination of the possible role of actin and myosin in heterochromatin condensation. J. Cell Sci. 21: 465–477.PubMedGoogle Scholar
  111. Cook, J. S., and McGrath, J. R. 1967. Photoreactivating-enzyme activity in Metazoa. Proc. Nat. Acad. Sci. USA. 58: 1359–1365.PubMedGoogle Scholar
  112. Cooper, J. E. K., and Hsu, T. C. 1972. The C-band and G-band patterns of Microtus agrestis. chromosomes. Cytogenetics. 11: 295–304.PubMedGoogle Scholar
  113. Coulter, M., Flintoff, W., Paetkan, V., Pulleyblank, D., and Morgan, A. R. 1974. In vitro. synthesis and detection of DNAs with co-valently linked complementary sequences. Biochemistry. 13: 1603–1609.Google Scholar
  114. Courtois, Y., Dastugue, B., Kamiyama, M., and Kruk, J. 1975. Binding of chromosomal non-histone proteins to DNA and to nucleohistones. FEBS Lett. 50: 253–256.PubMedGoogle Scholar
  115. Crick, F. H. C., 1971. General model for the chromosomes of higher organisms. Nature. 234: 25–27.PubMedGoogle Scholar
  116. Croes, A. F. 1966. Duplication of DNA during meiosis in baker’s yeast. Exp. Cell Res. 41: 452–468.PubMedGoogle Scholar
  117. Crothers, D. M. 1969. On the mechanism of DNA unwinding. Acc. Chem. Res. 2: 225–232.Google Scholar
  118. Cummins, J. E., and Rusch, H. P. 1966. Limited DNA synthesis in the absence of protein synthesis in Physarum polycephalum. J. Cell Biol. 31: 577–583.Google Scholar
  119. D’Anna, J. A., and Isenberg, I. 1974. A histone cross-complexing pattern. Biochemistry. 13: 4992–4997.PubMedGoogle Scholar
  120. Darlington, C. D. 1942. Chromosome chemistry and gene action. Nature. 149: 66–69.Google Scholar
  121. Davidson, J. N. 1963. Biochemical aspects of normal and malignant growth. Scottish Med. J. 8: 87–96.Google Scholar
  122. Davidson, J. N. 1972. The Biochemistry of the Nucleic Acids. 7th Ed., New York, Academic Press.Google Scholar
  123. Davidson, R. H., Hough, B. R., Chamberlin, M. E., and Butten, R. J. 1974. Sequence repetition in the DNA of Nassaria (Ilyanassa) obsoleta. Dev. Biol. 25: 445–463.Google Scholar
  124. Davies, D. R. 1967. X-ray diffraction studies of macromolecules. Ann. Rev. Biochem. 36: 321–364.PubMedGoogle Scholar
  125. Davis, F. C. 1975. Unique sequence DNA transcripts present in mature oocytes of Urechis canpo. Biochim. Biophys. Acta. 390: 33–45.Google Scholar
  126. Dawid, I. B. 1974. 5-methylcytidylic acid: Absence from mitochondrial DNA of frogs and HeLa cells. Science. 184: 80–81.Google Scholar
  127. Day, R. O., Seeman, N. C., Rosenberg, J. M., and Rich, A. 1973. A crystalline fragment of the double helix. Proc. Nat. Acad. Sci. USA. 70: 849–853.PubMedGoogle Scholar
  128. Delius, H., Mantell, N. J., and Alberts, B. 1972. Characterization by electronmicroscopy of the complex formed between T4 bacteriophage gene 32-protein and DNA. J. Mol. Biol. 67: 341–350.PubMedGoogle Scholar
  129. DeLucia, P., and Cairns, J. 1969. Isolation of an E. coli. strain with a mutation affecting DNA polymerase. Nature. 224: 1164–1166.PubMedGoogle Scholar
  130. Deutscher, M. P., and Kornberg, A. 1969a. The pyrophosphate exchange and pyrophosphorolysis reactions of DNA polymerase. J. Biol. Chem. 244: 3019–3028.PubMedGoogle Scholar
  131. Deutscher, M. P., and Komberg, A. 1969b. Hydrolysis of DNA from the 5’-terminus by an exonuclease function of DNA polymerase. J. Biol. Chem. 244: 3029–3027.PubMedGoogle Scholar
  132. De Waard, A., Paul, A. V., and Lehman, I. R. 1965. The structural gene for DNA polymerase in bacteriophages T4 and T5. Proc. Nat. Acad. Sci. USA. 54: 1241–1248.PubMedGoogle Scholar
  133. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S. 1974. Genetic regulation: The lac control region. Science. 187: 27–35.Google Scholar
  134. Dingman, C. W. 1974. Bidirectional chromosome replication. J. Theor. Biol. 43: 187–195.PubMedGoogle Scholar
  135. Dingman, C. W., Fisher, M. P., and Ishizawa, M. 1974. DNA replication in Escherichia coli: Physical and kinetic studies of the replication point. J. Mol. Biol. 84: 275–295.PubMedGoogle Scholar
  136. Dobner, P., and Flickinger, R. A. 1976. Repetitive DNA transcripts in frog embryo cytoplasm. Biochim. Biophys. Acta. 432: 401–403.PubMedGoogle Scholar
  137. Donnelly, G., and Sisken, J. E. 1967. RNA and protein synthesis required for entry of cells into mitosis and during the mitotic cycle. Exp. Cell Res. 46: 93–105.PubMedGoogle Scholar
  138. Drets, M. E., and Shaw, M. W. 1971. Specific banding patterns of human chromosomes. Proc. Nat. Acad. Sci. USA. 68: 2073–2077.PubMedGoogle Scholar
  139. Dujon, B., Slonimski, P. P., and Weill, L. 1974. A model for recombination and segregation of mitochondria] genomes in S. cerevisiae. Genetics. 78: 415–437.Google Scholar
  140. Dunn, D. B., and Smith, J. D. 1958. The occurrence of 6-methylaminopurine in DNA. Biochem. J. 68: 627–636.PubMedGoogle Scholar
  141. DuPraw, E. J. I965a. The organization of nuclei and chromosomes in honeybee embryonic cells. Proc. Nat. Acad. Sci. USA. 53: 161–168.Google Scholar
  142. DuPraw, E. J. 1965b. Macromolecular organization of nuclei and chromosomes. Nature. 206: 338–343.Google Scholar
  143. DuPraw, E. J. 1968. Cell and Molecular Biology., New York, Academic Press.Google Scholar
  144. DuPraw, E. J., and Bahr, G. F. 1968. Abstr. Publ. 3rd Intern. Congr. Histochem. Cytochem., New York. ( X II, XVII, XVIII ).Google Scholar
  145. Ehrlich, M., Ehrlich, K., and Mayo, J. A. 1975. Unusual properties of the DNA from Xanthomonas. phage XP-12 in which 5-methylcytosine completely replaces cytosine. Biochim. Biophys. Acta. 395: 109–119.PubMedGoogle Scholar
  146. Eker, A. P. M., and Fichtinger-Schepman, A. M. J. 1975. Studies on a DNA photoreactivating enzyme from Streptomyces griseus. Biochim. Biophys. Acta. 378: 54–63.Google Scholar
  147. Elton, R. A. 1973a. The relationship of DNA base composition and individual protein composition in micro-organisms. J. Mol. Evol. 2: 263–276.PubMedGoogle Scholar
  148. Elton, R. A. 1973b. Doublet frequencies in the DNA of genetic code limit organisms. J. Mol. Evol. 2: 293–302.PubMedGoogle Scholar
  149. Engberg, J., Nilsson, J. R., Pearlman, R. E., and Leick, V. 1974. Induction of nucleolar and mitochondrial DNA replication in Tetrahymena pyriformis. Proc. Nat. Acad. Sci. USA. 71: 894–898.Google Scholar
  150. Englund, P. T. 1971. The initial step of in vitro. synthesis of DNA by T4 DNA polymerase. J. Biol. Chem. 246: 5684–5687.PubMedGoogle Scholar
  151. Ergle, D. R., and Katterman, F. R. H. 1961. DNA of cotton. Plant Physiol. 36: 811–815.PubMedGoogle Scholar
  152. Ergle, D. R., Katterman, F. R. H., and Richmond, T. R. 1961. Aspects of nucleic acid composition in Gossypium. Plant Physiol. 39: 145–150.Google Scholar
  153. Etkin, W. 1973. A representation of the structure of DNA. BioScience. 23: 652–653.Google Scholar
  154. Fambrough, D. M., Fujimura, F., and Bonner, J. 1968. Quantitative distribution of histone components in the pea plant. Biochemistry. 7: 575–585.Google Scholar
  155. Fasman, G. D., Schaffrausen, B., Goldsmith, L., and Adler, A. 1970. Conformational changes associated with f-1 histone-DNA complexes. Biochemistry. 9: 2814–2822.PubMedGoogle Scholar
  156. Fausler, B. S., and Loeb, L. A. 1974. Sea urchin nuclear DNA polymerase. Methods Enzymol. 29: 53–70.Google Scholar
  157. Fazal, M., and Cole, R. D. 1977. Anomalies encountered in the classification of histones. J. Biol. Chem. 252: 4068–4072.PubMedGoogle Scholar
  158. Felden, R. A., Sanders, M. M., and Morris, N. R. 1976. Presence of histones in Aspergillus nidulans. J. Cell Biol. 68: 430–439.Google Scholar
  159. Flickinger, C. J. 1965. The fine structure of the nuclei of Tetrahymena pyriformis. throughout the cell cycle. J. Cell Biol. 47: 619–630.Google Scholar
  160. Fournier, M. J., Miller, W. L., and Doctor, B. P. 1974. Clustering of tRNA cistrons in E. coli. DNA. Biochem. Biophys. Res. Comm. 60: 1148–1154.PubMedGoogle Scholar
  161. Fox, S. W., and Dose, K. 1972. Molecular Evolution and the Origin of Life., San Francisco, W. H. Freeman and Company.Google Scholar
  162. Franco, L., Johns, E. W., and Navlet, J. M. 1974. Histones from baker’s yeast. Eur. J. Biochem. 45: 83–89.PubMedGoogle Scholar
  163. Freese, E. B., and Freese, E. 1963. The rate of DNA strand separation. Biochemistry. 2: 707–715.PubMedGoogle Scholar
  164. Fridland, A. 1973. DNA precursors in eukaryotic cells. Nature New Biol. 243: 105–107.PubMedGoogle Scholar
  165. Friedberg, E. C., and King, J. J. 1969. Endonucleolytic cleavage of UV-irradiated DNA controlled by the p+ gene in phage T4. Biochem. Biophys. Res. Comm. 37: 646–651.PubMedGoogle Scholar
  166. Friedman, D. L. 1974. On the mechanism of DNA replication in isolated nuclei from HeLa cells. Biochim. Biophys. Acta. 353: 447–462.PubMedGoogle Scholar
  167. Fry, K., Poon, R., Whitcome, P., Idriss, J., Salser, W., Mazrimas, J., and Hatch, F. 1973. Nucleotide sequence of HS-ß satellite DNA from kangaroo rat, Dipodomys ordii. Proc. Nat. Acad. Sci. USA. 70: 2642–2646.Google Scholar
  168. Fry, M., and Weissbach, 1973. The utilization of synthetic RNA templates by a new DNA polymerase from cultured murine cells. J. Biol. Chem. 248: 2678–2683.PubMedGoogle Scholar
  169. Fujita, H., Imamura, A., and Nogata, C. 1974. A molecular orbital study of stability and the conformation of double-stranded DNA-like polymers. J. Theor. Biol. 45: 411–433.PubMedGoogle Scholar
  170. Fujiwara, Y. 1972. Effect of cycloheximide on regulatory protein for initiating mammalian DNA replication at the nuclear membrane. Cancer Res. 32: 2089–2095.PubMedGoogle Scholar
  171. Fuller, W., Wilkins, M. H. F., Wilson, H. R., and Hamilton, L. D. 1965. The molecular configuration of DNA. J. Mol. Biol. 12: 60–80.PubMedGoogle Scholar
  172. Gall, J. G. 1974. Repetitive DNA in Drosophila. In: Hamkalo, B. A., and J. Papaconstantinou, eds., Molecular Cytogenetics., New York, Plenum Publishing Corp., p. 59–74.Google Scholar
  173. Gall, J. G., and Atherton, D. D. 1974. Satellite DNA sequences in Drosophila virilis. J. Mol. Biol. 85: 633–664.Google Scholar
  174. Gallo, R. C., Sarin, P. S., Smith, R. G., Bobrow, S. N., Sarngadharan, M. G., Reitz, M. S., and Abrell, J. W. 1973. RNA-directed and -primed DNA polymerase activities in tumor viruses and human lymphocytes. In: Wells, R. D., and R. B. Inman, eds., DNA synthesis in vitro., Baltimore, Md., University Press, p. 250–286.Google Scholar
  175. Gambarini, A. G., and Lara, F. J. S. 1974. Under-replication of ribosomal cistrons in polytene chromosomes of Rhynchosciara. J. Cell Biol. 62: 215–222.Google Scholar
  176. Ganesan, A. T., Laipis, P. J., and Yehle, C. O. 1973. In vitro. DNA synthesis and function of DNA polymerases in Bacillus subtilis. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 405–436.Google Scholar
  177. Garcia-Herdugo, G., Fernandez-Gomez, M. E., Hidalgo, J., and Lopez-Saez, J. F. 1974. Effects of protein synthesis inhibition during plant mitosis. Exp. Cell Res. 89: 336–342.PubMedGoogle Scholar
  178. Garrard, W. T. 1976. Two forms of rat liver histone H3. FEBS Lett. 64: 323–325.PubMedGoogle Scholar
  179. Gautschi, J. R., and Clarkson, J. M. 1975. Discontinuous DNA replication in mouse P-815 cells. Eur. J. Biochem. 50: 403–412.PubMedGoogle Scholar
  180. Gautschi, J. R., and Kern, R. M. 1973. DNA replication in mammalian cells in the presence of cycloheximide. Exp. Cell Res. 80: 15–26.PubMedGoogle Scholar
  181. Gefter, M. L., Hirota, Y., Kornberg, T., Wechsler, J. A., and Barnoux, C. 1971. Analysis of DNA polymerase II and III in mutants of E. coli. thermosensitive for DNA synthesis. Proc. Nat. Acad. Sci. USA. 68: 3150–3153.PubMedGoogle Scholar
  182. Gelderman, A. H., Rake, A. V., and Britten, R. J. 1971. Transcription of nonrepeated DNA in neonatal and fetal mice. Proc. Nat. Acad. Sci. USA. 68: 172–176.PubMedGoogle Scholar
  183. Georgiev, G. P., Ilyin, Y. V., Ryskov, A. P., Tehurikov, N. A., Yenikolopov, G. N., Gvozdev, V. A., and Ananiev, E. V. 1977. Isolation of eukaryotic DNA fragments containing structural genes and the adjacent sequences. Science. 195: 394–397.PubMedGoogle Scholar
  184. Geraci, D., Eremenko, T., Cocchiara, R., Granieri, A., Scarano, F., and Volpe, P. 1974. Correlation between synthesis and methylation of DNA in HeLa cells. Biochem. Biophys. Res. Comm. 57: 353–358.PubMedGoogle Scholar
  185. Getz, M. J., Birnie, G. D., and Paul, J. 1974. Transcription of in vitro. polyadenylated RNA with reverse transcriptase. Biochemistry. 13: 2235–2240.PubMedGoogle Scholar
  186. Gierer, A. 1966. Model for DNA and protein interactions and the function of the operator. Nature. 212: 1480–1481.PubMedGoogle Scholar
  187. Gilbert, W., and Maxam, A. 1973. The nucleotide sequence of the lac. operator. Proc. Nat. Acad. Sci. USA. 70: 3581–3584.PubMedGoogle Scholar
  188. Gilmour, R. S., and Paul, J. 1970. Role of non-histone components in determining organ specificity of rabbit chromatins. FEBS Lett. 9: 242–244.PubMedGoogle Scholar
  189. Glickman, B. W. 1974. The role of DNA polymerase I in pyrimidine dimer excision and repair replication in E. coli. K12 following ultraviolet irradiation. Biochim. Biophys. Acta. 335: 115–122.Google Scholar
  190. Goebel, W. 1974. Studies on the initiation of plasmid DNA replication. Eur. J. Biochem. 41: 51–62.PubMedGoogle Scholar
  191. Goebel, W., Royer-Pokora, B., Lindenmaier, W., and Bujard, H. 1974. Plasmids controlling synthesis of hemolysin in E. coli: Molecular properties. J. Bact. 118: 964–973.PubMedGoogle Scholar
  192. Gold, M., and Hurwitz, J. 1964a. Purification and properties of the DNA-methylating activity of E. coli. J. Biol. Chem. 239: 3858–3865.Google Scholar
  193. Gold, M., and Hurwitz, J. 1964b. Further studies on the properties of the DNA methylation reaction. J. Biol. Chem. 239: 3866–3874.PubMedGoogle Scholar
  194. Gorovsky, M. A., Keevert, J. B., and Pleger, G. L. 1974. Histone F1 of Tetrahymena. macronudei. J. Cell. Biol. 61: 134–145.PubMedGoogle Scholar
  195. Gottesfeld, J. M., Garrard, W. T., Bagi, G., Wilson, R. F., and Bonner, J. 1974. Partial purification of the template-active fraction of chromatin. Proc. Nat. Acad. Sci. USA. 71: 2193–2197.PubMedGoogle Scholar
  196. Gough, H. M., and Lederberg, S. 1966. Methylated bases in the host-modified DNA of E. coli. and bacteriophage Jt J. Bact. 91: 1460–1468.PubMedGoogle Scholar
  197. Goulian, M., Lucas, Z. J., and Kornberg, A. 1968. Purification and properties of DNA polymerase induced by infection with phage T4. J. Biol. Chem. 243: 627–638.PubMedGoogle Scholar
  198. Green, G., and Mahler, H. R. 1971. Conformational changes of DNA and polydeoxynucleotides in water and ethylene glycol. Biochemistry. 10: 2200–2216.PubMedGoogle Scholar
  199. Grippo, P., Locorotondo, G., and Caruso, A. 1975. Characterization of the two major DNA polymerase activities in oocytes and eggs of Xenopus laevis. FEBS Lett. 51: 137–142.Google Scholar
  200. Gronow, M., and Thackrah, T. 1973. The nonhistone nuclear proteins of some rat tissues. Arch. Biochem. Biophys. 158: 377–386.PubMedGoogle Scholar
  201. Grossman, L., Garvick, B. M., Ono, H. K., Braun, A. G., Hamilton, L. D. G., and Mahler, I. 1973. Mechanisms of excision-repair. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 27–34.Google Scholar
  202. Gulati, S. C., Kacian, D. L., and Spiegelman, S 1974. Conditions of using DNA polymerase I as an RNA-dependent DNA polymerase. Proc. Nat. Acad. Sci. USA. 71: 1035–1039.PubMedGoogle Scholar
  203. Hachmann, H. J., and Lezius, A. G. 1975. High-molecular-weight DNA polymerases from mouse myeloma. Purification and properties of three enzymes. Eur. J. Biochem. 50: 357–366.PubMedGoogle Scholar
  204. Haggis, G. H., Michie, D., Muir, A. R., Roberts, K. B., and Walker, P. B. M. 1964. Introduction to Molecular Biology. London, Longmans.Google Scholar
  205. Hall, R. H. 1971. The Modified Nucleosides in Nucleic Acids. New York, Columbia University Press.Google Scholar
  206. Hamilton, L., Mahler, I., and Grossman, L. 1974. The biochemical and biological repair properties of a DNA polymerase from Micrococcus luteus. Biochemistry. 13: 1886–1896.Google Scholar
  207. Hamilton, R. T., and Wu, R. 1974. Conditions for the incorporation of ribonucleotides and deoxynucleotides into single-stranded areas of long double-stranded DNAs. J. Biol. Chem. 249: 2466–2472.PubMedGoogle Scholar
  208. Hand, R., and Tamm, I. 1973. DNA replication. J. Cell Biol. 58: 410–418.PubMedGoogle Scholar
  209. Hand, R., and Tamm, I. 1974. Initiation of DNA replication in mammalian cells and its inhibition by reovirus infection. J. Mol. Biol. 82: 175–183.PubMedGoogle Scholar
  210. Harbers, E., and Vogt, M. 1966. Studies on the properties of nucleohistones. In: Busch, H., ed., The Cell Nucleus., New York, Academic Press, p. 165–177.Google Scholar
  211. Hardin, J. A., Einem, G. E., and Lindsay, D. T. 1967. Simultaneous synthesis of histone and DNA in synchronously dividing Tetrahymena pyriformis. J. Cell Biol. 32: 709–717.Google Scholar
  212. Harris, H. 1974. Nucleus and Cytoplasm. 3rd Ed. Oxford, Clarendon Press.Google Scholar
  213. Hayes, W. 1966. Introduction: What are. episomes and plasmids? In: Wolstenholme, G. E. W., and M. O’Connor, Bacterial Episomes and Plasmids., London, J. & A. Churchill, Ltd., p. 4–8.Google Scholar
  214. Hayman, D. L., and Martin, P. G. 1965. Sex chromosome mosaicism in the marsupial genera Isoodon and Perameles. Genetics. 52: 1201–1206.Google Scholar
  215. Heitz, E. 1934. Über a-.und ß-heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol. Zentralbl. 54: 588–609.Google Scholar
  216. Heitz, E. 1942. Über mutative Intersexualität und Sexualität und Geschlecht-sunwandlung bei den Lebermoosen Pellia neesiana. und Sphaerocarpus donnellii. Naturwissenschaften. 30: 751.Google Scholar
  217. Helinski, D. R., and Clewell, D. B. 1971. Circular DNA. Ann. Rev. Biochem. 40: 899–942.PubMedGoogle Scholar
  218. Helinstetter, C. E. 1974. Initiation of chromosome replication in E. coli. J. Mol. Biol. 84: 1–19.Google Scholar
  219. Hendler, R. W., Pereira, M., and Scharff, R. 1975. DNA synthesis involving a complexed form of DNA polymerase I in extracts of E. coli. Proc. Nat. Acad. Sci. USA. 72: 2099–2103.Google Scholar
  220. Henneberry, R. C., and Carlton, B. C. 1973. Characterization of the polydisperse closed circular DNA molecules of Bacillus megaterium. J. Bact. 114: 625–631.Google Scholar
  221. Hennig, W. 1972. Highly repetitive DNA sequences in the genome of Drosophila hydei. J. Mol. Biol. 71: 419–432.Google Scholar
  222. Hennig, W., Hennig, I., and Stern, H. 1970. Repeated sequences in DNA of Drosophila. and their localization in giant chromosomes. Chromosoma. 32: 31–63.PubMedGoogle Scholar
  223. Hereford, L. M., and Hartwell, L. H. 1973. Role of protein synthesis in the replication of yeast DNA. Nature New Biol. 244: 129–131.PubMedGoogle Scholar
  224. Hereford, L. M., and Hartwell, L. H. 1974. Sequential gene function in the initiation of S. cerevisiae. DNA synthesis. J. Mol. Biol. 84: 445–461.PubMedGoogle Scholar
  225. Hershfield, M. S., and Nossal, N. G. 1972. Hydrolysis of template and newly synthesized DNA by the 3’ to 5’ exonuclease activity of T4 DNA polymerase. J. Biol. Chem. 247: 3393–3403.PubMedGoogle Scholar
  226. Hewish, D. R., and Burgoyne, L. A. 1973. Chromatin substructure. Biochem. Biophys. Res. Comm. 52: 504–510.PubMedGoogle Scholar
  227. Heyden, H. W., and Zachau, H. 1971. Characterization of RNA in fractions of calf thymus chromatin. Biochim. Biophys. Acta. 232: 651–660.Google Scholar
  228. Hohmann, P., Tobey, R. A., and Gurley, L. R. 1976. Phosphorylation of distinct regions of fl histone. J. Biol. Chem. 251: 3685–3692.PubMedGoogle Scholar
  229. Holliday, R., and Pugh, J. E. 1975. DNA modification mechanisms and gene activity during development. Science. 187: 226–232.PubMedGoogle Scholar
  230. Holmes, D. S., Mayfield, J. E., Sander, G., and Bonner, J. 1972. Chromosomal RNA: Its properties. Science. 177: 72–74.PubMedGoogle Scholar
  231. Honda, B. M., Baillie, D. L., and Candido, E. P. M. 1974. The subunit structure of chromatin. FEBS Lett. 48: 156–159.PubMedGoogle Scholar
  232. Hori, T., and Lark, K. G. 1973. Effect of puromycin on DNA replication in Chinese hamster cells. J. Mol. Biol. 77: 391–404.PubMedGoogle Scholar
  233. Howard, A., and Pelc, S. R. 1953. Synthesis of DNA in normal and irradiated cells and its relation to chromosome breakage. Heredity., Suppl. 6: 261–273.Google Scholar
  234. Huang, R. C. 1969. Effect of protein-bound RNA associated with chick embryo chromatin on template specificity of the chromatin. J. Mol. Biol. 39: 365–378.PubMedGoogle Scholar
  235. Huberman, J. A. 1973. Structure of chromosome fibers and chromosomes. Ann. Rev. Biochem. 42: 335–378.Google Scholar
  236. Huberman, J. A., Kornberg, A., and Albert, B. 1971. Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J. Mol. Biol. 62: 39–52.PubMedGoogle Scholar
  237. Huberman, J. A., and Riggs, A. D. 1968. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32: 327–341.PubMedGoogle Scholar
  238. Hurwitz, J., and Wickner, S. 1974. Involvement of two protein factors and ATP in in vitro. DNA synthesis catalyzed by DNA polymerase III of E. coli. Proc. Nat. Arad. Sci. USA. 71: 6–10.Google Scholar
  239. Huzyk, L., and Clark, D. J. 1971. Nucleoside triphosphate pools in synchronous cultures of E. coli. J. Bact. 108: 74–81.Google Scholar
  240. Hwang, K. M., Murphree, S. A., Shansky, C. W., and Sartorelli, A. C. 1974. Sequential biochemical events related to DNA replication in the regenerating rat liver. Biochim. Biophys. Acta. 366: 143–148.PubMedGoogle Scholar
  241. Ihler, G., and Kawaii, Y. 1971. Alternate fates of the complementary strands of k DNA after infection of E. coli, J. Mol. Biol. 61: 311–328.Google Scholar
  242. Ilyin, Y. V., Varshaysky, A. Y., Mickelsaar, U. N., and Georgiev, G. P. 1971. Studies on deoxyribonucleoprotein structure. Eur. J. Biochem. 22: 235–245.PubMedGoogle Scholar
  243. Imai, H. T. 1975. Evidence for nonrandom localization of the centromere on mammalian chromosomes, J. Theor. Biol. 49: 111–123.PubMedGoogle Scholar
  244. Jackson, V., Shires, A., Tanphaichitr, N., and Chalkley, R. 1976. Modifications to histones immediately after synthesis. J. Mol. Biol. 104: 471–483.PubMedGoogle Scholar
  245. Jacob, F., and Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318–356.PubMedGoogle Scholar
  246. Japha, G. 1939. Die Meiosis bei Oenothera. Zeit. Bot. 34: 321–369.Google Scholar
  247. Jerzmanowski, A., Staron, K., Tyniec, B., Bernhardt-Smigielska, J., and Toczko, K. 1976.Google Scholar
  248. Subunit structure of Physarum polycephalum. chromatin. FEBS Lett. 62:251–254.Google Scholar
  249. Jockusch, B. M., and Walker, I. O. 1974. The preparations and preliminary characterisation of chromatin from the slime mould Physarum polycephalum. Eur. J. Biochem. 48: 417–425.Google Scholar
  250. Jones, D. D. 1975. Amino acid properties and side chain orientation in proteins. J. Theor. Biol. 50: 167–183.PubMedGoogle Scholar
  251. Jones, K. W. 1970. Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature. 225: 912–915.PubMedGoogle Scholar
  252. Kalf, G. F., and Ch’ih, F. F. 1968. Purification and properties of DNA polymerase from rat liver mitochondria. J. Biol. Chem. 243: 4904–4916.PubMedGoogle Scholar
  253. Kalt, M. R., and Gall, J. G. 1974. Observations on early germ cell development and premeiotic ribosomal DNA amplification in Xenopus laevis. J. Cell Biol. 62: 460–472.Google Scholar
  254. Kalousek, F., and Morris, N. R. 1968. DNA methylase activity in rat spleen. J. Biol. Chem. 143: 2440–2442.Google Scholar
  255. Kamiyama, M., Dastugue, B., Defer, N., and Kruh, J. 1972. Liver chromatin non-histone proteins. Biochim. Biophys. Acta. 277: 576–583.PubMedGoogle Scholar
  256. Kaplan, J. C., Kushner, S. R., and Grossman, L. 1969. Purification of two enzymes involved in the excision of thymine dimers from UV-irradiated DNA. Proc. Nat. Acad. Sci. USA. 63: 144–151.PubMedGoogle Scholar
  257. Kappler, J. W. 1970. The kinetics of DNA methylation in cultures of a mouse adrenal cell line. J. Cell Physiol. 75: 21–32.PubMedGoogle Scholar
  258. Kaye, A. M., Salomon, R., and Fridlender, B. 1967. Base composition and presence of methylated bases in DNA from a blue-green alga Plectronema boryanum. J. Mol. Biol. 24: 479–484.Google Scholar
  259. Keir, H. M. 1965. DNA polymerases from mammalian cells. Prog. Nucleic Acid Res. 4: 82–128.Google Scholar
  260. Keir, H. M., Smellie, R. M. S., and Siebert, G. 1962. Intracellular location of DNA nucleotidyltransferase. Nature. 196: 752–754.PubMedGoogle Scholar
  261. Keller, W. 1972. RNA-primed DNA synthesis in vitro. Proc. Nat. Acad. Sci. USA. 69: 1560–1564.Google Scholar
  262. Kelly, R. B., Atkinson, M. R., Huberman, J. A., and Kornberg, A. 1969. Excision of thymine dimers and other mismatched sequences by DNA polymerase of E. coli. Nature. 224: 495–501.Google Scholar
  263. Kelner, A. 1949a. Effect of visible light on the recovery of Streptomyces griseus. conidia from ultraviolet irradiation injury. Proc. Nat. Acad. Sci. USA. 35: 73–79.PubMedGoogle Scholar
  264. Kelner, A. 1949b. Photoreactivation of ultraviolet-irradiated E. coli., with special reference to the dose-reduction principle and to ultraviolet-induced mutation. J. Bact. 58: 511–522.Google Scholar
  265. Kierzenbaum, A. L., and Tres, L. L. 1975. Structural and transcriptional features of the mouse spermatid genome. J. Cell Biol. 65: 258–270.Google Scholar
  266. Kim, J. H., Gelbard, A. S., and Perez, A. G. 1968. Inhibition of DNA synthesis by actinomycin D and cycloheximide in synchronized HeLa cells. Exp. Cell Res. 53: 478–487.Google Scholar
  267. Kirtikar, D. M., Slaughter, J., and Goldthwait, D. A. 1975. Endonuclease II of E. coli: Degradation of y-irradiated DNA. Biochemistry. 14: 1235–1244.PubMedGoogle Scholar
  268. Kit, S. 1961. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. Mol. Biol. 3: 711–716.PubMedGoogle Scholar
  269. Klein, A., and Sauerbier, W. 1965. Role of methylation in host controlled modification of phage Ti. Biochem. Biophys. Res. Comm. 18: 440–445.PubMedGoogle Scholar
  270. Klenow, H., and Overgaard-Hansen, K. 1973. Concerted effect of pancreatic DNase and the large fragment of DNA polymerase I. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 13–25.Google Scholar
  271. Klett, R. P., Cerami, A., and Reich, E. 1968. Exonuclease VI, a new nuclease activity associated with E. coli. DNA polymerase. Proc. Nat. Acad. Sci. USA. 60: 943–950.PubMedGoogle Scholar
  272. Knippers, R. 1970. DNA polymerase II. Nature. 228: 1050–1053.PubMedGoogle Scholar
  273. Koch. J. 1973. Cytoplasmic DNAs consisting of unique nuclear sequences in hamster cells. FEBS Lett. 32: 22–26.PubMedGoogle Scholar
  274. Koch, J., and Götz, D. 1972. Transport of nuclear DNA into the cytoplasm in animal cells. FEBS Lett. 27: 9–12.PubMedGoogle Scholar
  275. Koch, J., and von Pfeil, H. 1972. Transport of nuclear DNA into the cytoplasm in cultured animal cells. FEBS Lett. 24: 53–56.PubMedGoogle Scholar
  276. Koike, K., and Wolstenholme, D. R. 1974. Evidence for discontinuous replication of circular mitochondrial DNA molecules from Novikoff rat ascites hepatoma cells. J. Cell Biol. 61: 14–25.PubMedGoogle Scholar
  277. Kolata, G. B. 1974. Lac system: New research on how a protein binds to DNA. Science. 184: 52–53.PubMedGoogle Scholar
  278. Kornberg, A. 1957. Pyrophosphorylases and phosphorylases in biosynthetic reactions. Adv. Enzymol. 18: 191–240.Google Scholar
  279. Kornberg, A. 1961. The Enzymatic Synthesis of DNA., London, John Wiley & Sons.Google Scholar
  280. Kornberg, A. 1966. The biosynthesis of DNA. In: Koningsberger, V. V., and L. Bosch, eds., Regulation of Nucleic Acid and Protein Synthesis., Amsterdam, Elsevier Publishing Co., p. 22–38.Google Scholar
  281. Kornberg, A. 1969. Active center of DNA polymerase. Science., 163: 1410–1418.PubMedGoogle Scholar
  282. Kornberg, R. D. 1974. Chromatin structure: A repeating unit of histones and DNA. Science. 184: 868–871.PubMedGoogle Scholar
  283. Kornberg, R. D., and Thomas, J. O. 1974. Chromatin structure: Oligomers of the histones. Science. 184: 865–868.PubMedGoogle Scholar
  284. Kornberg, T., and Gefter, M. L. 1971. Properties of DNA polymerase III. Proc. Nat. Acad. Sci. USA. 68: 761–764.PubMedGoogle Scholar
  285. Kornberg, T., and Gefter, M. L. 1974. DNA polymerase II (E. coli. K12). Methods Enzymol. 29: 22–26.PubMedGoogle Scholar
  286. Kornberg, T., Lockwood, A., and Worcel, A. 1974. Replication of the E. coli. chromosome with a soluble enzyme system. Proc. Nat. Acad. Sci. USA. 71: 3189–3193.PubMedGoogle Scholar
  287. Koslov, A. V., and Svetlikova, S. B. 1974. Properties and composition of DNP of Escherichia coli. B. J. Mol. Biol. 7: 519–526.Google Scholar
  288. Kössel, H., and Roychoudhury, R. 1974. Proofreading function of DNA polymerase I from E. coli, J. Biol. Chem. 249: 4049–4099.Google Scholar
  289. Kostraba, N. C., Montagna, R. A., and Wang, T. Y. 1975. Study of the loosely bound non-histone chromatin proteins. J. Biol. Chem. 250: 1548–1555.PubMedGoogle Scholar
  290. Kowalski, C. J., and Cheevers, W. P. 1976. Synthesis of high molecular weight DNA strands during S phase. J. Mol. Biol. 104: 603–615.PubMedGoogle Scholar
  291. Kowalski, C. J., Nasjleti, C. E., and Harris, J. E. 1976. Human chromosomes. Evidence for autosomal sexual dimorphism. Exp. Cell Res. 100: 56–62.PubMedGoogle Scholar
  292. Kriegstein, H. J., and Hogness, D. S. 1974. Mechanism of DNA replication in Drosophila. chromosomes: Structure of replication forks and evidence for bidirectionality. Proc. Nat. Acad. Sci. USA. 71: 135–139.PubMedGoogle Scholar
  293. Kuprijanova, N. S., and Timofieva, M. J. 1974. Repeated nucleotide sequences in the loach genome. Eur. J. Biochem. 44: 59–65.PubMedGoogle Scholar
  294. Kurashige, S., and Mitsuhashi, S. 1973. The possible presence of RNA-dependent DNA polymerase in the immune response. Jpn. J. Microbiol. 17: 105–109.PubMedGoogle Scholar
  295. LaCour, L. F., and Wells, B. 1974. Fine structure and staining behaviour of heterochromatic segments in two plants. J. Cell Sci. 14: 505–521.Google Scholar
  296. Laland, S. G., Overend, W. G., and Webb, M. 1952. The properties and composition of the DNAs from certain animal, plant, and bacterial sources. J. Chem. Soc. 1952: 3224–3231.Google Scholar
  297. Lange, C. S. 1974. The organization and repair of mammalian DNA. FEBS Lett. 44: 153–156.PubMedGoogle Scholar
  298. Langridge, R., Wilson, H. R., Hooper, C. W., and Wilkins, M. H. F. 1960a. X-ray diffraction study of a crystalline form of the lithium salt. J. Mol. Biol. 2: 19–37.Google Scholar
  299. Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., and Hamilton, L. D. 1960b. Molecular models and their Fourier transforms. J. Mol. Biol. 2: 38–62.Google Scholar
  300. Lark, C. 1968a. Studies on the in vivo. methylation of DNA in E. coli. 15T- J. Mol. Biol. 31: 389–400.PubMedGoogle Scholar
  301. Lark, C. 1968b. Effects of methionine analogs, ethionine and norleucine, on DNA synthesis in E. coli. 15T-. J. Mol. Biol. 31: 401–414.PubMedGoogle Scholar
  302. Leavitt, R. W., Wohlhieter, J. A., Johnson, E. M., Olson, G. E., and Baron, L. S. 1971. Isolation of circular DNA from Salmonella typhosa. hybrids obtained from matings with E. coli. Hfr donors. J. Bact. 108: 1357–1365.PubMedGoogle Scholar
  303. Ledoux, L., Huart, R., and Jacobs, M. 1974. DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Nature. 249: 17–21.Google Scholar
  304. Lee, C. S., and Collins, L. 1977. Q- and C-bands in the metaphase chromosomes of Drosophila nasutoides. Chromosoma. 61: 57–60.Google Scholar
  305. Lehman, I. R. 1974a. T4 DNA polymerase. Methods Enzymol. 29: 46–53.PubMedGoogle Scholar
  306. Lehman, I. R. 1974b. DNA ligase: Structure mechanism, and function. Science. 186: 790–797.PubMedGoogle Scholar
  307. Lehman, I. R., and Stevens, S. 1975. Postreplication repair of DNA in chick cells. Biochim. Biophys. Acta. 402: 179–187.Google Scholar
  308. Leis, J., Berkower, I., and Hurwitz, J. 1973. Characterization of AMV stimulatory protein and RNase H-associated activity. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 287–308.Google Scholar
  309. Lesk, A. M. 1974. A combinatorial study of the effects of admitting non-Watson-Crick base pairings and of base composition on the helix-forming potential-polynucleotides of random sequence, J. Theory Biol. 44: 7–17.Google Scholar
  310. Lett, J. T., Klucis, E. S., and Sun, C. 1970. On the size of the DNA in the mammalian chromosome structural subunits. Biophys. J. 10: 277–292.PubMedGoogle Scholar
  311. Levinthal, C., and Crane, H. R. 1956. On the unwinding of DNA. Proc. Nat. Acad. Sci. USA. 42: 436–438.PubMedGoogle Scholar
  312. Lezius, A. G., and Scheit, K. H. 1967. Enzymatic synthesis of DNA with 4-thio-thymidine triphosphate as substitute for dTTP. Eur. J. Biochem. 3: 85–94.PubMedGoogle Scholar
  313. Li, H. J. 1977. Chromatin subunits. In: Li, H. J., and R. A. Eckhardt, eds., Chromatin and Chromosome Structure., New York, Academic Press, p. 143–166.Google Scholar
  314. Lieberman, M. W., and Poirier, M. C. 1974a. Distribution of deoxyribonucleic acid repair synthesis among repetitive and unique sequences in the human diploid genome. Biochemistry. 13: 3018–3023.PubMedGoogle Scholar
  315. Lieberman, M. W., and Poirier, M. C. 1974b. Intragenomal distribution of DNA repair synthesis: Repair in satellite and mainband DNA in cultured mouse cells. Proc. Nat. Acad. Sci. USA. 71: 2461–2465.PubMedGoogle Scholar
  316. Lin, H. J. 1974. Isolation of a short, cytosine-rich repeating unit from the DNA of E. coli, Biochim, Biophys. Acta. 349: 13–22.Google Scholar
  317. Lin, M. S., and Davidson, R. L. 1974. Centric fusion, satellite DNA, and DNA polarity in mouse chromosomes. Science. 185: 1179–1181.PubMedGoogle Scholar
  318. Lindsay, J. G., Berryman, S., and Adams, R. L. P. 1970. Characteristics of DNA polymerase activity in nuclear and supernatant fractions of cultured mouse cells. Biochem. J. 119: 839–848.PubMedGoogle Scholar
  319. Littlefield, J. W., and Jacobs, P. S. 1965. The relation between DNA and protein synthesis in mouse fibroblasts. Biochim. Biophys. Acta. 108: 652–658.PubMedGoogle Scholar
  320. Livingston, D. M., Hinkle, D. C., and Richardson, C. C. 1975. DNA polymerase III of E. coli. J. Biol. Chem. 250: 461–469.Google Scholar
  321. Livingston, D. M., and Richardson, C. C. 1975. DNA polymerase III of E. coli. Characterization of associated exonuclease activities. J. Biol. Chem. 250: 470–478.PubMedGoogle Scholar
  322. Lobeer, G. 1961. Struktur and Inhalt der Geschlectschromosomen. Ber. Deuts. Bot. Gesell. 59: 369–375.Google Scholar
  323. Loeb, L. A. Tartof, K. D., and Travaglini, E. C. 1973. Copying natural RNAs with E. coli. DNA polymerase I. Nature New Biol. 242: 66–69.Google Scholar
  324. Lohr, D., and Van Holde, K. E. 1975. Yeast chromatin subunit structure. Science. 188: 165–166.PubMedGoogle Scholar
  325. Longuet-Higgins, H. C., and Zimm, B. H. 1960. Calculation of the rate of uncoiling of the DNA molecule. J. Mol. Biol. 2: 1–4.Google Scholar
  326. Louarn, J.-M., and Bird, R. E. 1974. Size distribution and molecular polarity of newly replicated DNA in E. coli. Proc. Nat. Acad. Sci. USA. 71: 329–333.Google Scholar
  327. Low, R. L., Rashbaum, S. A., and Cozzarelli, N. R. 1976. Purification and characterization of DNA polymerase III from B. subtilis. J. Biol. Chem. 251: 1311–1325.Google Scholar
  328. Luria, S. E. 1953. Host-induced modifications of viruses. Cold Spring Harbor Symp. Quant. Biol. 18: 237–244.PubMedGoogle Scholar
  329. Luria, S. E., and Human, M. L. 1952. A nonhereditary, host-induced variation of bacterial viruses. J. Bact. 64: 557–569.PubMedGoogle Scholar
  330. MacGillivray, A. J., and Rickwood, D. 1974. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur. J. Biochem. 41: 181–190.PubMedGoogle Scholar
  331. Macgregor, H. C., and Kezer, J. 1971. The chromosomal localization of a heavy satellite DNA in the testis of Plethodon c. cinereus. Chromosoma. 33: 167–82.Google Scholar
  332. Magnusson, G., Pigret, V., Winnacker, E. L., Abrams, R., and Reichard, P. 1973. RNA-linked short DNA fragments during polyoma replication. Proc. Nat. Acad. Sci USA. 70: 412–415.PubMedGoogle Scholar
  333. Maniloff, J. 1969. Collision lifetimes and recognition times for macromolecular synthesis. J. Theor. Biol. 25: 339–342.PubMedGoogle Scholar
  334. Marinus, M. G., and Morris, N. R. 1974. Biological function for 6-methyladenine residues in the DNA of E. coli. K12. J. Mol. Biol. 85: 309–322.PubMedGoogle Scholar
  335. Marushige, Y., and Marushige, K. 1974. Properties of chromatin isolated from bull spermatozoa. Biochim. Biophys. Acta. 340: 498–508.PubMedGoogle Scholar
  336. Marvin, D. A., Spencer, M., Wilkins, M. H. F., and Hamilton, L. D. 1961. The molecular configuration of DNA: X-ray diffraction study of the C form of the lithium salt. J. Mol. Biol. 3: 547–565.PubMedGoogle Scholar
  337. Marzluff, W. F., White, E. L., Benjamin, R., and Huang, R. C. C. 1975. Low molecular weight RNA species from chromatin. Biochemistry. 14: 3715–3724.PubMedGoogle Scholar
  338. Massie, H. R., Thompson, D. S., and Colarusso, L. J. 1975. Discontinuous DNA replication and molecular events preceding DNA replication in B. subtilis. Arch. Biochem. Biophys. 167: 213–229.Google Scholar
  339. Masters, M., and Broda, P., 1971. Evidence for the bidirectional replication of the E. coli. chromosome. Nature New Biol. 232: 137–140.PubMedGoogle Scholar
  340. Mayer, R. J., Smith, R. G., and Gallo, R. C. 1974. Reverse transcriptase in normal rhesus monkey placenta. Science. 185: 864–867.PubMedGoogle Scholar
  341. Mayfield, J., and Bonner, J. 1972. A partial sequence of nuclear events in regenerating rat liver. Proc. Nat. Acad. Sci. USA. 69: 7–10.PubMedGoogle Scholar
  342. Mazia, D. 1974. The cell cycle. Sci. Am. 230. (I): 54–64.Google Scholar
  343. McGavin, S. 197la. Models of specifically paired like (homologous) nucleic acid structures. J. Mol. Biol. 55: 293–298.Google Scholar
  344. McGavin, S. 1971b. A four strand nucleic acid model with a specific pairing of like Watson-Crick double helices and its properties. First Eur. Biophys. Congr., Baden, Austria., p. 259–262.Google Scholar
  345. McGavin, S. 1973. An attitude to nucleic acid models. Bull. Math. Biol. 35: 407–409.Google Scholar
  346. McGavin, S., Wilson, H. R., and Barr, G. C. 1966. Intercalated nucleic acid double helices: A sterochemical possibility. J. Mol. Biol. 22: 187–191.Google Scholar
  347. McGhee, J. D., and Engel, J. D. 1975. Subunit structure of chromatin is the same in plants and animals. Nature. 254: 449–450.PubMedGoogle Scholar
  348. Meltz, M. L., and Painter, R. B. 1973. Distribution of repair replication in the HeLa cell genome. Int. J. Radiat. Biol. 23: 637–640.Google Scholar
  349. Meselson, M., Yuan, R., and Heywood, J. 1972. Restriction and modification of DNA. Ann. Rev. Biochem. 41: 447–466.PubMedGoogle Scholar
  350. Messing, J., Staudenbauer, W. L., and Hofschneider, P. H. 1974. Replication of the minicircular DNA of E. coli 15. Eur. J. Biochem. 44: 293–297.Google Scholar
  351. Metz, C. W. 1938. Chromosome behavior, inheritance, and sex determination in Sciara, Am. Nat. 72: 485–520.Google Scholar
  352. Meynell, E., Meynell, G. G., and Datta, N. 1968. Phylogenetic relationships of drug-resistant factors and other transmissible bacterial plasmids. Bacteriol. Rev. 32: 55–83.PubMedGoogle Scholar
  353. Meynell, G. G. 1973. Bacterial Plasmids. Cambridge, Mass., The M. I. T. Press.Google Scholar
  354. Michalke, H., and Bremer, H. 1969. RNA synthesis in E. coli. after irradiation with ultraviolet light. J. Mol. Biol. 41: 1–23.PubMedGoogle Scholar
  355. Miller, O. J., Schnedl, W., Allen, J., and Erlanger, B. F. 1974. 5-methylcytosine localised in mammalian constitutive heterochromatin. Nature. 251: 636–637.Google Scholar
  356. Miller, S. L., and Orgel, L. E. 1974. The Origins of Life on the Earth., Englewood Cliffs, New Jersey, Prentice-Hall, Inc.Google Scholar
  357. Minato, S., and Werbin, H. 1971. Spectral properties of the chromophoric material associated with the DNA photoreactivating enzyme isolated from baker’s yeast. Biochemistry. 10: 4503–4508.PubMedGoogle Scholar
  358. Mitchison, J. M. 1971. The Biology of the Cell Cycle., Cambridge, Cambridge University Press.Google Scholar
  359. Mizuno, N. S., Stoop, C. E., and Sinha, A. A. 1971. DNA synthesis associated with the nuclear envelope. Nature New Biol. 229: 22–24.PubMedGoogle Scholar
  360. Moll, R., and Wintersberger, E. 1976. Synthesis of yeast histones in the cell cycle. Proc. Nat. Acad. Sci. USA. 73: 1863–1867.PubMedGoogle Scholar
  361. Momparler, R. L., Rossi, M., and Labitan, A. 1973. Partial purification and properties of two forms of DNA polymerase from calf thymus. J. Biol. Chem. 248: 285–293.PubMedGoogle Scholar
  362. Monahan, J. J., and Hall, R. H. 1973. Chromatin low molecular weight RNA components. Can. J. Biochem. 51: 903–912.PubMedGoogle Scholar
  363. Monahan, J. J., and Hall, R. H. 1974a. Chromatin, and gene regulation in eukaryotic cells at the transcriptional level. CRC Crit. Rev. Biochem. 2: 67–112.PubMedGoogle Scholar
  364. Monahan, J. J., and Hall, R. H. 1974b. An RNA fraction in chromatin of L-929 cells associated with DNA. Nucleic Acid Res. 1: 1421–1437.PubMedGoogle Scholar
  365. Monahan, J. J., and Hall, R. H. 1975. A high molecular weight RNA fraction in chromatin. Biochim. Biophys. Acta. 383: 40–55.PubMedGoogle Scholar
  366. Monesi, V. 1969. DNA, RNA, and protein synthesis during the mitotic cell cycle. In: Lima-deFaria, A., ed., Handbook of Molecular Cytology., Amsterdam, North-Holland Publishing Co., p. 472–499.Google Scholar
  367. Monty, K. J., Litt, M., Kay, E. R. M., and Dounce, A. L. 1956. Isolation and properties of liver cell nucleoli. J. Biophys. Biochem. Cyt. 2: 127–145.Google Scholar
  368. Moore, D. 1974. Dynamic unwinding of DNA helices: A mechanism of genetic recombination. J. Theor. Biol. 43: 167–186.PubMedGoogle Scholar
  369. Moritz, K. B., and Roth, G. E. 1976. Complexity of germline and somatic DNA in Ascaris. Nature. 259: 55–57.Google Scholar
  370. Moses, R. E. 1974. The isolation and properties of DNA polymerase II from E. coli. Methods Enzymol. 29: 13–22.Google Scholar
  371. Mowbray, S. L., Berbi, S. A., and Landy, A. 1975. Interdigitated repeated sequences in bovine satellite DNA. Nature. 253: 367–370.PubMedGoogle Scholar
  372. Mueller, G. C., Kajiwara, K., Stubblefield, E., and Rueckert, R. R. 1962. The effect of puromycin on the duplication of DNA. Cancer Res. 22: 1084–1090.PubMedGoogle Scholar
  373. Nagl, W. 1974. DNA synthesis in tissue and cell cultures. In: Street, H. E., ed., Tissue Culture and Plant Science., New York, Academic Press, p. 19–42.Google Scholar
  374. Nagl, W. 1975. Organization and replication of the eukaryotic chromosome. Prog. Bot. 37: 186–210.Google Scholar
  375. Nath, K., and Hurwitz, J. 1974. Covalent attachment of polyribonucleotides to polydeoxyribonucleotides catalyzed by DNA ligase. J. Biol. Chem. 249: 3680–3688.PubMedGoogle Scholar
  376. Nes, I. F., and Kleppe, K. 1974. Multiple DNA polymerases in Actinobacter calcoaceticus. FEBS Lett. 43: 180–184.Google Scholar
  377. Neskovié, B. A. 1968. Developmental phases in intermitosis and the preparation for mitosis of mammalian cells in vitro. Int. Rev. Cytol. 24: 71–97.Google Scholar
  378. Neubort, S., and Bases, R. 1974. RNA-DNA covalent complexes in HeLa cells. Biochim. Biophys. Acta. 340: 31–39.Google Scholar
  379. Neuhard, J. 1966. On the regulation of the deoxyadenosine triphosphate and deoxycytidine triphosphate pools in E. coli. Biochim. Biophys. Acta. 129: 104–115.Google Scholar
  380. Newlon, C. S., Petes, T. D., Hereford, L. M., and Fangman, W. L. 1974. Replication of yeast chromosomal DNA. Nature. 247: 32–35.PubMedGoogle Scholar
  381. Nexe; B. A. 1975. Ribo-and deoxyribonucleotide triphosphate pools in synchronized populations of Tetrahymena pyriformis. Biochim. Biophys. Acta. 378: 12–17.Google Scholar
  382. Nilsson, J. R. 1970. Suggestive structural evidence for macronuclear “subnuclei” in Tetrahymena pyriformis. J. Protozool. 17: 539–548.Google Scholar
  383. Noguti, T., and Kada, T. 1975. A cellular factor acting on y-irradiated DNA and promoting its priming activity for DNA polymerase I. Biochim. Biophys. Acta. 395: 284–293.Google Scholar
  384. Noll, M. 1974. Subunit structure of chromatin. Nature. 251: 249–251.PubMedGoogle Scholar
  385. Novick, R. P. 1969. Extrachromosomal inheritance in bacteria. Bact. Rev. 33: 210–263.PubMedGoogle Scholar
  386. Nusslein, V., Otto, B., Bonhoeffer, F., and Schaller, H. 1971. Function of DNA polymerase III in DNA replication. Nature New Biol. 234: 285–286.PubMedGoogle Scholar
  387. O’Brien, R. L., Sanyal, A. B., and Stanton, R. H. 1972. Association of DNA with the nuclear membrane of HeLa cells. Exp. Cell Res. 70: 106–112.PubMedGoogle Scholar
  388. Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K., Kainuma, R., Sugino, A., and Iwatsuki, N. 1968a. In vivo mechanism of DNA chain growth. Cold Spring Harbor Symp. Quant. Biol. 33: 129–143.Google Scholar
  389. Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K., and Sugino, A. 1968b. Possible discontinuity and unusual secondary structure of newly synthesized DNA chains. Proc. Nat. Acad. Sci. USA. 59: 598–605.PubMedGoogle Scholar
  390. Okazaki, T., and Kornberg, A. 1964. Purification and properties of a polymerase from B. subtilis. J. Biol. Chem. 239: 259–268.Google Scholar
  391. Olins, A. L., and Olins, D. E. 1973. Spheroid chromatin units (v bodies). J. Cell Biol. 59: 252a.Google Scholar
  392. Olins, A. L., Senior, M. B., and Olins, D. E. 1976. Ultrastructural features of chromatin v bodies. J. Cell Biol. 68: 787–792.PubMedGoogle Scholar
  393. Olivera, B. M., and Bonhoeffer, F. 1974. Replication of E. coli. requires DNA polymerase I. Nature. 250: 513–514.PubMedGoogle Scholar
  394. Pardon J. F., and Wilkins, M. H. F. 1972. A supercoil model for nucleohistone. J. Mol. Biol. 68: 115–124.PubMedGoogle Scholar
  395. Pardue, M. L., and Gall, J. G. 1970. Chromosomal localization of mouse satellite DNA. Science. 168: 1356–1358.PubMedGoogle Scholar
  396. Pearson, C. K., Davis, P. B., Taylor, A., and Amos, N. A. 1976. The involvement of RNA in the initiation of DNA synthesis in mammalian cells. Eur. J. Biochem. 62: 451–459.PubMedGoogle Scholar
  397. Pearson, G. D., and Hanawalt, P. C. 1971. Isolation of DNA replication complex from uninfected and adenovirus-infected HeLa cells. J. Mol. Biol. 62: 65–80.PubMedGoogle Scholar
  398. Perlgut, L. E., Byers, D. L., Jope, R. S., and Khamvinwathna, V. 1975. Formation of triple-stranded bovine DNA in vitro. Nature. 254: 86–87.Google Scholar
  399. Pettersson, U. 1973. Some unusual properties of replicating adenovirus type 2 DNA. J. Mol. Biol. 81., 521–527.PubMedGoogle Scholar
  400. Pettijohn, D. E., Hecht, R. M., Stonington, O. G., and Stamato, T. D. 1973. Factors stabilizing DNA folding in bacterial chromosomes. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 145–162.Google Scholar
  401. Pflug, H. D., Meinel, W., Neumann, K. H., and Meinel, M. 1969. Entwicklungstendenzen des Frühen Lebens auf der Erde. Naturwissenschaften. 56: 10–14.Google Scholar
  402. Philippsen, P., Streeck, R. E., and Zachau, H. G. 1974. Defined fragments of calf, human, and rat DNA produced by restriction nucleases. Eur. J. Biochem. 45: 479–488.PubMedGoogle Scholar
  403. Piessens, J. P., and Eker, A. P. M. 1975. Photoreactivation of template activity of UV-irradiated DNA in an RNA-polymerase system. FEBS Lett. 50: 125–129.PubMedGoogle Scholar
  404. Pimpinelli, S., Gatti, M., De Marco, A. 1975. Evidence for heterogeneity in heterochromatin of D. melanogaster. Nature. 256: 335–337.Google Scholar
  405. Pivec, L., Horskâ, K., Vítek, A., and Doskoéil, J. 1974. Plurimodal distribution of base composition in DNA of some higher plants. Biochem. Biophys. Acta. 340: 199–206.PubMedGoogle Scholar
  406. Platz, R., Stein, G. S., and Kleinsmith, L. J. 1973. Changes in the phosphorylation of nonhistone chromatin proteins during the cell cycle of HeLa S3 cells. Biochem. Biophys. Res. Comm. 51: 735–740.PubMedGoogle Scholar
  407. Poiesz, B. J., Seal, G., and Loeb, L. A. 1974. Reverse transcriptase: Correlation of zinc content with activity. Proc. Nat. Acad. Sci. USA. 71: 4892–4896.PubMedGoogle Scholar
  408. Pospelor, V. A., Svetlikova, S. B., and Vorob’ev, V. I. 1977. Heterogeneity of chromatin subunits. FEBS Lett. 74: 229–233.Google Scholar
  409. Poulson, R., Krasny, J., and Zbarsky, S. H. 1974. Characterisation of nuclear and cytoplasmic DNA polymerases from rat intestinal mucosa. Can. J. Biochem. 52: 162–169.PubMedGoogle Scholar
  410. Prescott, D. M. 1966. The syntheses of total macronuclear protein, histone, and DNA during the cell cycle in Euplotes eurystomus. J. Cell Biol. 3: 1–9.Google Scholar
  411. Prescott, D. M. 1973. The cell cycle in amoebae. In: Jeon, K. W., ed., The Biology of Amoeba., New York, Academic Press, p. 467–478.Google Scholar
  412. Price, T. D., Darmstadt, R. A., Hinds, H. A., and Zamenhof, S. 1967. Mechanism of synthesis of deoxyribonucleic acid in vivo. J. Biol. Chem. 242: 140–151.Google Scholar
  413. Pulleyblank, D. E., and Morgan, A. R. 1975. The sense of naturally occurring super-helices and the unwinding angle of intercalated ethidium. J. Mol. Biol. 91: 1–13.PubMedGoogle Scholar
  414. Rae, P. M. M. 1966. Whole mount electronmicroscopy of Drosophila. salivary chromosomes. Nature. 212: 139–142.PubMedGoogle Scholar
  415. Rae, R. M. M. 1973. 5-hydroxymethyluracil in the DNA of a dinoflagellate. Proc. Nat. Acad. Sci. USA. 70: 1141–1145.Google Scholar
  416. Rastogi, A. K., and Koch, J. 1974. Generation in vivo of “covalently closed” circular mitochondria) DNA free of superhelical turns. Eur. J. Biochem. 46: 583–588.PubMedGoogle Scholar
  417. Reeves, R., and Jones, A. 1976. Genomic transcriptional activitiy and the structure of chromatin. Nature. 260: 495–500.PubMedGoogle Scholar
  418. Richardson, C. C., Campbell, J. L., Chase, J. W., Hinkle, D. C., Livingston, D. M., Muleahy, H. L., and Shizuya, H. 1973. DNA polymerases of E. coli. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 65–69.Google Scholar
  419. Ris, H. 1955. The submicroscopic structure of chromosomes. In: Hogeboom, G. H. et al., eds., Symposium on the Fine Structure of Cells., New York, Interscience, p. 160–167.Google Scholar
  420. Ris, H. 1959. Microstructure of the nucleus during spermiogenesis. Colloq. Ges. Physiol. Chem. 9: 1–30.Google Scholar
  421. Ris, H. 1966. Fine structure of chromosomes. Proc. Roy, Soc. Lond. B164: 246–257.Google Scholar
  422. Ris, H., and Chandler, B. L. 1963. The ultrastructure of genetic systems in prokaryotes and eukaryotes. Cold Spring Harbor Symp. Quant. Biol. 28: 1–8.Google Scholar
  423. Robbins, E., and Scharff, M. D. 1966. Some macromolecular characteristics of synchronized HeLa cells. In: Cameron, I., and G. Padilla, eds., Cell Synchrony., New York, Academic Press, Inc. p. 353–374.Google Scholar
  424. Robson, B. 1974. Analysis of the code relating sequence to conformation in globular proteins. Biochem. J. 141: 853–867.PubMedGoogle Scholar
  425. Robson, B., and Pain, R. H. 1974a. Analysis of the code relating sequence to conformation in the globular proteins. Development of a stereochemical alphabet on the basis of intra-residue information. Biochem. J. 141: 869–882.PubMedGoogle Scholar
  426. Robson, B., and Pain, R. H. 1974b. An informational analysis of the residue in determining the conformation of its neighbors in the primary sequence. Biochem. J. 141: 883–897.PubMedGoogle Scholar
  427. Robson, B., and Pain, R. H. 1974c. The distribution of residue pairs in turns and kinks in the backbone chain. Biochem. J. 141: 899–904.PubMedGoogle Scholar
  428. Rodriguez, L. V., and Becker, F. F. 1976. Rat liver chromatin. Distribution of histone and nonhistone proteins in eu-and heterochromatin. Arch. Biochem. Biophys. 173: 438–447.PubMedGoogle Scholar
  429. Rosenberg, E. 1965. D-mannose as a constituent of the DNA of a mutant strain of bacteriophage SP8. Proc. Nat. Acad. Sci. USA. 53: 836–841.PubMedGoogle Scholar
  430. Rosenberg, J. M., Seeman, N. C., Kim, J. J. P., Suddath, F. L., Nicholas, H. B., and Rich, A. 1973. Double helix at atomic resolution. Nature. 243: 150–154.Google Scholar
  431. Roth, R. 1973. Chromosome replication during meiosis. Proc. Nat. Acad. Sci. USA 70: 3087–3091.PubMedGoogle Scholar
  432. Roychoudhury, R. 1973. Transcriptional role in DNA replication. J. Biol. Chem. 248: 84658473.Google Scholar
  433. Rubinow, S. I., and Yen, A. 1972. Quantitation of some DNA precursor data. Nature New Biol. 239: 73–74.PubMedGoogle Scholar
  434. Rudner, R., Karkas, J. D., and Chargaff, E. 1968. Separation of B. subtilis DNA into complementary strands. Proc. Nat. Acad. Sci. USA 60: 630–635.PubMedGoogle Scholar
  435. Rudner, R., Karkas, I. D., and Chargaff, E. 1969. Separation of microbial DNAs into complementary strands. Proc. Nat. Acad. Sci. USA 63: 152–159.PubMedGoogle Scholar
  436. Russell, G. J., McGeoch, D. J., Elton, R. A., and Subak-Sharpe, J. H. 1973. Doublet frequency analysis of bacterial DNAs. J. Mol. Evol. 2: 277–292.Google Scholar
  437. Sadowski, P., McGeer, A., and Becker, A. 1974. Terminal cross-linking of DNA catalyzed by an enzyme system containing DNA ligase, DNA polymerase, and exonuclease of bacteriophage T7. Can J. Biochem. 52: 525–535.PubMedGoogle Scholar
  438. Sager, R. 1972. Cytoplasmic Genes and Organelles, New York, Academic Press.Google Scholar
  439. Sager, R., and Kitchin, R. 1975. Selective silencing of eukaryotic DNA. Science. 189: 426–433.PubMedGoogle Scholar
  440. Sager, R., and Lane, D. 1972. Molecular basis of maternal inheritance. Proc. Nat Acad. Sci. USA 69: 2410–2413.PubMedGoogle Scholar
  441. Sager, R., and Ramanis, Z. 1974. Mutations that alter the transmission of chloroplast genes in Chlamydomonas. Proc. Nat. Acad. Sci. USA 71:4698-4702.Google Scholar
  442. Saito, N., and Werbin, H. 1970. Purification of a blue-green algal DNA photo-reactivating enzyme. Biochemistry. 9: 2610–2620.PubMedGoogle Scholar
  443. Sakamaki, T., Fukuei, K., Takahashi, N., and Tanifuji, S. 1975. Rapidly labeled intermediates in DNA replication in higher plants. Biochim. Biophys. Acta. 395: 314–321.Google Scholar
  444. Salser, W., Fry, K., Brunk, C., and Poon, R. 1972. Nucleotide sequencing of DNA: Preliminary characterization of the products of specific cleavages at guanine, cytosine, or adenine residues. Proc. Nat. Acad. Sci. USA. 69: 238–242.PubMedGoogle Scholar
  445. Salser, W., Fry, K., Wesley, R. D., and Simpson, L. 1973. Use of nucleic acid fingerprints to estimate the complexity of minicircle DNA. Biochim. Biophys. Acta. 319: 267–280.Google Scholar
  446. Salzman, N., Moore, D., and Mendelsohn, J. 1966. Isolation and characterization of human metaphase chromosomes. Proc. Nat. Acad. Sci. USA. 56: 1449–1456.PubMedGoogle Scholar
  447. Sato, S., Ariake, S., Saito, M., and Sugimura, T. 1972. RNA bound to nascent DNA in Ehrlich ascites tumor cells. Biochem. Biophys. Res. Comm. 49: 827–834.PubMedGoogle Scholar
  448. Saunders, G. F., Shirakawa, S., Saunders, P. P., Arrighi, F. E., and Hsu, T. C. 1972. Populations of repeated DNA sequences in the human genome. J. Mol. Biol. 63: 323–334.PubMedGoogle Scholar
  449. Scarano, E. 1969. Ann. Embryol. Morphogén. Suppl. 1: 51–61.Google Scholar
  450. Scarano, E., Iaccarino, M., Grippo, P., and Winckelmans, D. 1965. On methylation of DNA during development of the sea urchin embryo. J. Mol. Biol. 14: 603–607.PubMedGoogle Scholar
  451. Schachman, H. K., Adler, J., Radding, C. M., Lehman, I. R., and Kornberg, A. 1960. Enzymatic synthesis of dexoyribonucleic acid J. Biol. Chem. 235: 3242–3249.PubMedGoogle Scholar
  452. Scharff, M. D., and Robbins, E. 1965. Synthesis of ribosomal RNA in synchronized HeLa cells. Nature., 208: 464–466.PubMedGoogle Scholar
  453. Scharff, M. D., and Robbins, E. 1966. Polyribosome disaggregation during metaphase. Science. 151: 992–995.PubMedGoogle Scholar
  454. Schekman, R., Wickner, W., Westergaard, O., Brutlag, D., Geider, K., Bertsch, L. L., and Kornberg, A. 1972. Synthesis of 4X174 replicative form requires RNA synthesis resistant to rifampicin. Proc. Nat. Acad. Sci. USA. 69: 2691–2695.PubMedGoogle Scholar
  455. Schekman, R., Wickner, W., Westergaard, O., Brutlag, D., Geider K., Bertsch, L. L., and Kornberg, A. 1973. Initiation of DNA synthesis. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro., Baltimore, Md., University Park Press, p. 175–183.Google Scholar
  456. Schekman, R., Weiner, A., and Kornberg, A. 1974. Multienzyme systems of DNA replication. Science. 186: 987–993.PubMedGoogle Scholar
  457. Schweizer, D. 1973. Differential staining of plant chromosomes with Giemsa. Chromosoma. 40: 307–320.Google Scholar
  458. Scolnick, E. M., Aaronson, S. A., Todaro, G. J., and Parks, W. P. 1971. RNA dependent DNA polymerase activity in mammalian cells. Nature. 229: 318–321.PubMedGoogle Scholar
  459. Sedgwick, W. D., Wang, T. S., and Korn, D. 1972. Purification and properties of nuclear and cytoplasmic DNA polymerases from human KB cells. J. Biol. Chem. 247: 5026–5033.Google Scholar
  460. Seki, S. and Mueller, G. C. 1975. A requirement for RNA protein and DNA synthesis in the establishment of DNA replicase activity in synchronized HeLa cells. Biochim. Biophys. Acta. 378: 354–362.PubMedGoogle Scholar
  461. Sen, A., and Levine, A. J. 1974. SV40 nucleoprotein complex activity unwinds superhelical turns in S V40 DNA. Nature. 249: 343–344.PubMedGoogle Scholar
  462. Senior, M. B., Olins, A. L., and Olins, D. E. 1975. Chromatin fragments resembling y bodies. Science. 181: 173–175.Google Scholar
  463. Setlow, P. 1974. DNA polymerase I from E. coli. Methods Enzymol. 29: 3–12.Google Scholar
  464. Setlow, R. B. 1970. The photochemistry, photobidlogy, and repair of polynucleotides. Progr. Nucl. Acid. Res. Mol. Biol. 8: 257–295.Google Scholar
  465. Shea, M., and Kleinsmith, L. J. 1973. Template specific stimulation of RNA synthesis by phosphorylated nonhistone chromatin proteins. Biochem. Biophys. Res. Comm. 50: 473–477.PubMedGoogle Scholar
  466. Sheehans, D. M., and Olins, D. E. 1974. The binding of nuclear nonhistone protein to DNA. Biochim. Biophys. Acta. 353: 438–446.Google Scholar
  467. Sheid, B., Srinivasan, P. R., and Borek, E. 1968. DNA methylase of mammalian tissues. Biochemistry. 7: 280–285.PubMedGoogle Scholar
  468. Shenkin, A., and Burdon, R. H. 1974. Deoxyadenylate-rich and deoxyguanylate-rich regions in mammalian DNA. J. Mol. Biol. 85: 19–39.PubMedGoogle Scholar
  469. Shih, T. Y., and Fasman, G. D. 1971. C.D. studies of DNA complexes with arginine-rich histone IV. Biochemistry. 10: 1675–1683.PubMedGoogle Scholar
  470. Shiosaka, T., Aoki, M., and Tujii, S. 1974. Decrease in molecular weight of cytoplasmic DNA polymerase on treatment with bromelain plus RNase and DNase. J. Biochem. 75: 1399–1401.PubMedGoogle Scholar
  471. Shires, A., Carpenter, M. P., and Chalkley, R. 1975. New histones found in mature mammalian testes. Proc. Nat. Acad. Sci. USA. 72: 2714–2718.PubMedGoogle Scholar
  472. Sinclair, J., Wells, R., Deumling, B., and Ingle, J. 1975. The complexity of satellite DNA in a higher plant. Biochem. J. 149: 31–38.PubMedGoogle Scholar
  473. Sinonaglu, O. 1968. Solvent effects on molecular associations. In: Pullman, B., ed., Molecular Associations in Biology., New York, Academic Press, p. 427–445.Google Scholar
  474. Sinsheimer, R. L. 1959. A single-stranded DNA from bacteriophage 4X174. J. Mol. Biol. 1: 43–53.Google Scholar
  475. Skinner, D. M., and Beattie, W. G. 1973. Cs2SO4 gradients containing both Hg2+ and Ag+ effect the complete separation of satellite DNAs having identical densities in neutral CsCl gradients. Proc. Nat. Acad. Sci. USA. 70: 3108–3110.PubMedGoogle Scholar
  476. Skinner, D. M., Beattie, W. G., Blattner, F. R., Stark, B. P., and Dahlberg, J. E. 1974. The repeat sequence of a hermit crab satellite DNA is (TAGG), (ATCC)n. Biochemistry. 13: 3930–3937.PubMedGoogle Scholar
  477. Skinner, D. M., Beattie, W. G., Kerr, M. S., and Graham, D. E. 1970. Satellite DNAs in Crustacea: Two different satellites with the same density in neutral CsC1 gradients. Nature. 227: 837–839.PubMedGoogle Scholar
  478. Smith, D. W., Schaller, H. E., and Bonhoeffer, F. J. 1970. DNA synthesis in vitro. Nature. 226: 711–713.Google Scholar
  479. Smith, H. W., and Halls, S. 1967. The transmissible nature of the genetic factor in E. coli. that controls haemolysin production. J. Gen. Microbiol. 47: 153–161.PubMedGoogle Scholar
  480. Smith-Sonneborn, J., and Klass, M. 1974. Changes in the DNA synthesis pattern of Paramecium. with increased clonal age and interfission time. J. Cell Biol. 61: 591–598.PubMedGoogle Scholar
  481. Smythies, J. R., Benington, F., Bradley, R. J., Morin, R. D., and Romine, W. O. 1974a. On the mechanism of interaction between histone I and DNA and histone III and DNA. J. Theor. Biol. 47: 309–315.PubMedGoogle Scholar
  482. Smythies, J. R., Benington, F., Bradley, R. J., Morin, R. D., and Romine, W. O. 1974b. On the mechanisms of interaction between histone IIB1 and DNA and histone IIB2 and DNA. J. Theor. Biol. 47: 383–395.PubMedGoogle Scholar
  483. Söderhäll, S., and Lindahl, T. 1976. DNA ligases of eukaryotes. FEBS Lett. 67: 1–8.PubMedGoogle Scholar
  484. Sotelo, J. R., 1969. Ultrastructure of the chromosomes at meiosis. In: Lima-de-Faria, A., ed., Handbook of Molecular Cytology., Amsterdam, North-Holland Publishing Co., p. 412–434.Google Scholar
  485. Southern, E. M. 1970. Base sequence and evolution of guinea-pig a-satellite DNA. Nature. 227: 794–798.PubMedGoogle Scholar
  486. Spadafora, C., and Geraci, G. 1975. The subunit structure of sea urchin sperm chromatin: A kinetic approach. FEBS Lett. 57: 79–82.PubMedGoogle Scholar
  487. Spear, B. B., and Gall, J. G. 1973. Independent control of ribosomal gene replication in polytene chromosomes of D. melanogaster. Proc. Nat. Acad. Sci. USA. 70: 1359–1363.Google Scholar
  488. Sperling, R., and Bustin, M. 1974. Self assembly of histone F2a1. Proc. Nat. Acad. Sci. USA., 71: 4625–4629.PubMedGoogle Scholar
  489. Spiegelman, S. 1971. DNA and the RNA viruses. Proc. Roy. Soc. London., B177: 87–108.Google Scholar
  490. Spiegelman, S., Burny, A., Das, M. R., Kaydar, J., Schlom, J., Travnicek, M., and Watson, K. 1970a. Characterization of the products of RNA-directed DNA polymerases in oncogenic RNA viruses. Nature. 227: 563–567.PubMedGoogle Scholar
  491. Spiegelman, S., Burny, A., Das, M. R., Kaydar, J., Schlom, J., Travnicek, M. and Watson, K. 1970b. Synthetic DNA-RNA hybrids and RNA-RNA duplexes as templates for the polymerases of the oncogenic RNA viruses. Nature. 228: 430–432.PubMedGoogle Scholar
  492. Spiegelman, S., Watson, K. B., and Kacian, D. L. 1971. Synthesis of DNA complements of natural RNAs: A general approach. Proc. Nat. Acad. Sci. USA. 68: 2843–2845.PubMedGoogle Scholar
  493. Spiker, S. 1975. An evolutionary comparison of plant histones. Biochim. Biophys. Acta. 400: 461–467.PubMedGoogle Scholar
  494. Srinivasan, P. R., and Borek, E. 1966. Enzymatic alteration of macromolecular structure. Progr. Nucl. Acid Res. 5: 157–189.Google Scholar
  495. Srivastava, B. I. S. 1974. Deoxynucleotide-polymerizing enzymes in normal and malignant human cells. Cancer Res. 34: 1015–1026.PubMedGoogle Scholar
  496. Srivastava, B. I. S., and Bardos, T. J. 1973. Inhibition of some DNA polymerase activities from cultured Burkitt cells by thiolated RNAs. Life Sci. 13: 47–53.PubMedGoogle Scholar
  497. Srivastava, B. I. S., and Minowada, J. 1972. Ribonuclease-sensitive endogenous DNA polymerase activity and DNA-directed DNA polymerase in human tissue culture cell lines. Cancer Res. 32: 2481–2486.PubMedGoogle Scholar
  498. Stack, S. M. 1975. Differential Giemsa staining of kinetochores in meiotic chromosomes of two higher plants. Chromosoma. 51: 357–363.Google Scholar
  499. Stack, S. M., and Clarke, C. R. I973a. Pericentromeric chromosome banding in higher plants. Can. J. Genet. Cyt. 15: 367–369.Google Scholar
  500. Stack, S. M., and Clarke, C. R. 1973b. Differential Giemsa staining of the telomeres of Allium cepa. chromosomes. Can. J. Genet. Cyt. 15: 619–624.Google Scholar
  501. Stack, S. M., Clarke, C. R., Cary, W. E., and Muffly, J. T. 1974. Different kinds of heterochromatin in higher plant chromosomes. J. Cell Sci. 14: 499–504.PubMedGoogle Scholar
  502. Stein, G. S., and Baserga, R. B. 1970. The synthesis of acidic nuclear proteins in the prereplicative phase of the isoproterenol-stimulated salivary gland. J. Biol. Chem. 245: 6097–6105.PubMedGoogle Scholar
  503. Stein, G. S., and Baserga, R. B. 1972. Nuclear proteins and the cell cycle. Adv. Cancer Res. 15: 287–319.PubMedGoogle Scholar
  504. Stein, G. S., and Borun, T. W. 1972. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. J. Cell Biol. 52: 292–307.PubMedGoogle Scholar
  505. Stein, G. S., and Farber, J. L. 1972. Role of nonhistone chromosomal proteins in the restriction of mitotic chromatin template activity. Proc. Nat. Acad. Sci. USA. 69: 2918–2921.PubMedGoogle Scholar
  506. Stein, G. S., and Matthews, D. E. 1973. Nonhistone chromosomal protein synthesis: Utilization of preexisting and newly transcribed mRNAs. Science. 181: 71–73.PubMedGoogle Scholar
  507. Stein, G. S., and Stein, J. 1976. Chromosomal proteins and their role in the regulation of gene expression. BioScience. 26: 488–498.Google Scholar
  508. Stern, H., and Hotta, Y. 1973. Biochemical controls of meiosis. Ann. Rev. Gen. 7: 37–66.Google Scholar
  509. Sternglanz, H., and Bugg, C. E. 1973. Conformation of N6-methyladenine, a base involved in DNA modification: restriction processes. Science. 182: 833–834.PubMedGoogle Scholar
  510. Sternglanz, R., Wang, H. F., and Donegan, J. J. 1976. Evidence that both growing DNA chains at a replication fork are synthesized discontinuously. Biochemistry. 15: 1838–1843.PubMedGoogle Scholar
  511. Stevens, L. 1970. The biochemical role of naturally occurring polyamines in nucleic acid synthesis. Biol. Rev. 45: 1–27.PubMedGoogle Scholar
  512. Stone, L. B., Scolnick, E., Takemoto, K. K., and Aaronson, S. A. 1971. Visna virus: A slow virus with an RNA dependent DNA polymerase. Nature. 229: 257–258.PubMedGoogle Scholar
  513. Stonington, O. G., and Pettijohn. D. E., 1971. The folded genome of E. coli. isolated in a proteinDNA-RNA complex. Proc. Nat. Acad. Sci. USA. 68: 6–9.PubMedGoogle Scholar
  514. Strauss, B. S. 1968. DNA repair mechanisms and their relation to mutation and recombination. Curr. Top. Microbiol. Immunol. 44: 1–85.PubMedGoogle Scholar
  515. Sueoka, N. 1961. Variation and heterogeneity of base composition of DNAs: A compilation of old and new data. J. Mol. Biol. 3: 31–40.Google Scholar
  516. Sundaralingam, M. 1969. Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono-, di-, tri-, tetraphosphates, nucleic acids, and polynucleotides. Biopolymers. 7: 821–860.Google Scholar
  517. Sutherland, B. M., Chamberlin, M. J., and Sutherland, J. C. 1973. DNA photoreactivating enzyme from E. coli. J. Biol. Chem. 248: 4200–4205.Google Scholar
  518. Sutherland, B. M., Runge, P., and Sutherland, J. C. 1974. DNA photoactivating enzyme from placental mammals. Biochemistry. 13: 4710–4715.PubMedGoogle Scholar
  519. Tait, R. C., Harris, A. L., and Smith, D. W. 1974. DNA repair in E. coli mutants deficient in DNA polymerases I, II, and/or III. Proc. Nat. Acad. Sci. USA. 71: 675–679.PubMedGoogle Scholar
  520. Tait, R. C., and Smith, D. W. 1974. Roles for E. coli polymerases I, II, and III in DNA replication. Nature. 249: 116–120.Google Scholar
  521. Tavitian, A., Hamelin, R., Tchen, P., Olofsson, B., and Boiron, M. 1974. Extent of transcription of mouse sarcoma-leukemia virus by RNA-directed DNA polymerase. Proc. Nat. Acad. Sci. USA. 71: 755–759.PubMedGoogle Scholar
  522. Taylor, J. H., 1974. Units of DNA replication in chromosomes of eukaryotes. Int. Rev. Cytol. 37: 1–20.PubMedGoogle Scholar
  523. Temin, H. M., and Mizutani, S. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 226: 1211–1213.PubMedGoogle Scholar
  524. Temussi, P. A. 1975. Automatic comparison of the sequences of calf thymus histones. J. Theor. Biol. 50: 25–33.PubMedGoogle Scholar
  525. Thomas, A. J., and Sherratt, H. S. A. 1956. The isolation of nucleic acid fractions from plant leaves and their purine and pyrimidine composition. Biochem. J. 62: 1–4.PubMedGoogle Scholar
  526. Thrall, C. L., Park, W. D., Rashba, H. W., Stein, J. L., Mans, R. J., and Stein, G. S. 1974. In vitro. synthesis of DNA complementary to polyadenylated histone messenger RNA. Biochem. Biophys. Res. Comm. 61: 1443–1449.Google Scholar
  527. Tobin, R. S., and Seligy, V. L. 1975. Characterization of chromatin-bound erythrocyte histone V (f2c). J. Biol. Chem. 250: 358–364.PubMedGoogle Scholar
  528. Tolstoshev, P., and Wells, J. R. E. 1974. Nature and origin of chromatin-associated RNA of avian reticulocytes. Biochemistry. 13: 103–111.PubMedGoogle Scholar
  529. Tomilin, N. V., and Svetlova, M. P. 1974. On the mechanism of postreplication repair in E. coli cells. FEBS Lett. 43: 185–188.Google Scholar
  530. Travaglini, E. C., and Loeb, L. A. 1974. RNA dependent DNA synthesis by E. coli DNA polymerase I. Biochemistry. 13: 3010–3017.Google Scholar
  531. Tsuruo, T., and Ukita, T. 1974. Purification and further characterization of three DNA polymerases of rat ascites hepatoma cells. Biochim. Biophys. Acta. 353: 146–159.PubMedGoogle Scholar
  532. Tunis, M. J. B., and Hearst, J. E. 1968. On the hydration of DNA. Biopolymers. 6: 1325–1344.PubMedGoogle Scholar
  533. Tunis-Schneider, M. J. B., and Maestre, M. F. 1970. C.D. spectra of oriented and unoriented DNA films. J. Mol. Biol. 52: 521–541.PubMedGoogle Scholar
  534. Vallentyne, J. R. 1956. Thermal degradation of amino acids. Cam. Inst. Year Book. 56: 185–186.Google Scholar
  535. Vandergrift, V., Serra, M., Moore, D. S., and Wagner, T. E. 1974. The role of the arginine-rich histones in the maintenance of DNA conformation in chromatin. Biochemistry. 13: 5087–5092.Google Scholar
  536. van de Sande, J. H., Lin, C. C., and Jorgenson, K. F. 1977. Reverse banding on chromosomes produced by a guanosine-cytosine specific DNA binding antibiotic. Science. 195: 400–402.PubMedGoogle Scholar
  537. van der Vleiet, P. C., and Sussenbach, G. S. 1972. The mechanism of adenovirus DNA synthesis in isolated nuclei. Eur. J. Biochem. 33: 584–592.Google Scholar
  538. van Holde, K. E., Sahasrabuddhe, C. G., Shaw, B. R., Van Bruggen, E. F. J., and Amberg, A. C. 1974. Electron microscopy of chromatin subunit particles. Biochem. Biophys. Res. Comm. 60: 1365–1370.PubMedGoogle Scholar
  539. Vanyushin, B. F., and Belozerskii, A. N. 1959. A comparative study of the composition of RNA in higher plants. Dokl. Akad. Nauk SSSR. 127: 196–199.Google Scholar
  540. Vincent, W. S. 1952. The isolation and chemical properties of the nucleoli of starfish oocytes. Proc. Nat. Acad. Sci. USA. 38: 139–145.PubMedGoogle Scholar
  541. Viola, M. V. 1973. Reverse transcriptase and 70 S RNA in supernatant from a human cell line. J. Nat. Cancer Inst. 50: 1175–1178.PubMedGoogle Scholar
  542. Voet, D., and Rich, A. 1970. The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog. Nucl. Acid. Res. Mol. Biol. 10: 183–265.Google Scholar
  543. Volpe, P., and Eremenko, T. 1974. Preferential methylation of regulatory genes in HeLa cells. FEBS Lett. 44: 121–126.PubMedGoogle Scholar
  544. Vorob’ev, V. I., and Kosjuk, G. N. 1974. Distribution of repetitive and non-repetitive nucleotide sequences in the DNA of sea urchin. FEBS Lett. 47: 43–46.PubMedGoogle Scholar
  545. Vosa, C. G., and Marchi, P. 1972. Quinacrine fluorescence and Giemsa staining in plants. Nature New Biol. 237: 191–192.PubMedGoogle Scholar
  546. Votavovâ, H., and Sponar, J. 1974. Satellite components of calf thymus DNA. Chromatographic isolation of the native components and characterization of their sequence heterogeneity. Col. Czechoslov. Chem. Comm. 39: 2312–2324.Google Scholar
  547. Votavovâ, H., and Sponar, J. 1975a. Reassociation kinetics of three satellite components of calf thymus DNA. Nucl. Acid Res. 2: 185–196.Google Scholar
  548. Votavovâ, H., and Sponar, J. 1975b. Identification and separation of components of calf thymus DNA using a CsCl-netrospsin density gradient. Nucl. Acid. Res. 2: 431–446.Google Scholar
  549. Wainfan, E., Srinivasan, P. R., and Borek, E. 1965. Alterations in tRNA methylases after bacteriophage infection or induction. Biochemistry. 4: 2845–2848.PubMedGoogle Scholar
  550. Walker, P. M. B. 1969. The specificity of molecular hybridization in relation to studies on higher organisms. Progr. Nucl. Acid. Res. Mol. Biol. 9: 301–328.Google Scholar
  551. Walker, P. M. B. 1971. “Repetitive” DNA in higher organisms. Progr. Biophys. Mol. Biol. 23: 145–190.Google Scholar
  552. Wallace, P. G., Hewish, D. R., Yenning, M. M., and Burgoyne, L. A. 1971. Multiple forms of mammalian DNA polymerase. Biochem. J. 125: 47–54.PubMedGoogle Scholar
  553. Wallace, R. D., and Kates, J. 1972. State of adenovirus 2 DNA in the nucleus and its mode of transcription. J. Virol. 9: 627–635.PubMedGoogle Scholar
  554. Walton, S. W., 1971. Sex-chromosome mosaicism in pouch young of marsupials Peraméles and Isoodon. Cytogenetics. 10: 115–120.PubMedGoogle Scholar
  555. Wang, H. F., and Popenoe, E. A. 1977. Variation of DNA polymerase activities during avian erythropoiesis. Biochim. Biophys. Acta. 474: 98–108.PubMedGoogle Scholar
  556. Wang, H. F., and Sternglanz, R. 1974. Thymine-labelled deoxyoligonucleotide involved in DNA chain growth in B. subtilis. Nature. 248: 147–150.Google Scholar
  557. Wang, J. C. 1971. Interaction between DNA and an E. coli. protein ce. J. Mol. Biol. 55: 523–534.PubMedGoogle Scholar
  558. Wang, J. C. 1973. Protein w: A DNA. In: Wells, R. D., and R. B. Inman, eds., DNA Synthesis in Vitro, Baltimore, Md., University Park Press., p. 163–174.Google Scholar
  559. Waqar, M. A., and Huberman, J. A. 1973. Evidence for attachment of RNA to pulse-labeled DNA in slime mold, Physarum polycephalum. Biochem. Biophys. Res. Comm. 51. :174–181.Google Scholar
  560. Ward, D. C., Humphries, D. C., and Weinstein, I. B. 1972. Synthetic RNA-dependent DNA polymerase activity in normal rat liver and hepatomas. Nature. 237: 499–503.PubMedGoogle Scholar
  561. Warnecke, P., Kruse, K., and Harbers, E. 1973. Isolation and characterization of nonhistone proteins from euchromatic and heterochromatic deoxyribonucleo-protein of rat liver. Biochim. Biophys. Acta. 331: 295–304.PubMedGoogle Scholar
  562. Warner, H. P., and Barnes, J. E. 1966a. DNA synthesis in E. coli infected with some DNA polymerase-less mutants of bacteriophage T4. Virology. 28: 100–107.Google Scholar
  563. Warner, H. R., and Barnes, J. E. 1966b. Evidence for a dual role for the bacteriophage T4-induced deoxycytidine triphosphate nucleotidohydrolase. Proc. Nat. Acad. Sci. USA. 56: 1233–1240.PubMedGoogle Scholar
  564. Watson, J. D., and Crick, F. H. C. 1953a. A structure for DNA. Nature. 171: 736–738.Google Scholar
  565. Watson, J. D., and Crick, F. H. C. 1953b. Genetic implications of the structure of DNA. Nature. 171: 964–967.PubMedGoogle Scholar
  566. Weintraub, H., and Holtzer, H. 1972. Fine control of DNA synthesis in developing chick red blood cells. J. Mol. Biol. 66: 13–35.PubMedGoogle Scholar
  567. Weisbach, A., Schlabach, A., Friedlender, R. and Bolden, A. 1971. DNA polymerases from human cells. Nature New Biol. 231: 167–170.Google Scholar
  568. Werner, R. 1971a. Mechanism of DNA replication. Nature. 230: 570–572.PubMedGoogle Scholar
  569. Werner, R. 1971b. Nature of DNA precursors. Nature New Biol. 233: 99–103.PubMedGoogle Scholar
  570. West, E. S., and Todd, W. R. 1961. Textbook of Biochemistry. 3rd Ed., New York, The Macmillan Company.Google Scholar
  571. Westergaard, O., Brutlag, D., and Kornberg, A. 1973. Incorporation of RNA primer into the phage replicative form. J. Biol. Chem. 248: 1361–1364.PubMedGoogle Scholar
  572. Whitlock, J P., and Simpson, R. T. 1976. Removal of histone HI exposes a fifty base pair DNA segment between nucleosomes. Biochemistry. 15:3307–3314.Google Scholar
  573. Williams, C. A., and Ockey, C. H. 1970. Distribution of DNA replicator sites in mammalian nuclei after different methods of cell synchronization. Exp. Cell Res. 63: 365–372.PubMedGoogle Scholar
  574. Wintersberger, E. 1974. DNA polymerases from yeast. Further purification and characterization of DNA-dependent DNA polymerases A and B. Eur. J. Biochem. 50: 41–47.PubMedGoogle Scholar
  575. Wintersberger, U. 1974. Absence of a low-molecular-weight DNA polymerase from nuclei of the yeast S. cerevisiae. Eur. J. Biochem. 50: 197–202.Google Scholar
  576. Woese, C. R. 1967. The Genetic Code., New York, Harper and Row.Google Scholar
  577. Woese, C. R. 1970a. Concerning the accuracy of codon recognition. The allosteric ribosome model. J. Theor. Biol. 26: 83–88.PubMedGoogle Scholar
  578. Woese, C. R. 1970b. The problem of evolving a genetic code. BioScience. 20: 471–485.Google Scholar
  579. Woese, C. R., and Bleyman, M. A. 1972. Genetic code limit organisms-do they exist? J. Mol. Evol. 1: 223–229.PubMedGoogle Scholar
  580. Wolstenholme, D. R., Koike, K., and Cochran-Fouts, P. 1973. Replication of mitochondrial DNA. Cold Spring Harbor Symp. Quant. Biol. 38: 267–280.Google Scholar
  581. Wouters-Tyrou, D., Sautiere, P., and Biserte, G. 1976. Covalent structure of the sea urchin histone H4. FEBS Lett. 65: 225–228.PubMedGoogle Scholar
  582. Wu, A. M., and Gallo, R. C. 1975. Reverse transcriptase. Crit. Rev. Biochem. 3: 289–347.Google Scholar
  583. Wyatt, G. R. 1951. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem. J. 48: 584–590.PubMedGoogle Scholar
  584. Yamada, M., and Hanaoka, F. 1973. Periodic changes in the association of mamalian DNA with the membrane during the cell cycle. Nature New Biol. 243: 227–230.PubMedGoogle Scholar
  585. Yamagishi, H. 1970. Nucleotide distribution in the DNA of E. coli. J. Mol. Biol. 49: 603–608.Google Scholar
  586. Yamagishi, H. 1974. Nucleotide distribution in bacterial DNAs differing in G + C content. J. Mol. Evol. 3: 239–242.PubMedGoogle Scholar
  587. Yamagishi, H., and Takahashi, I. 1971. Heterogeneity in nucleotide composition of B. subtilis. DNA. J. Mol. Biol. 57: 369–372.PubMedGoogle Scholar
  588. Yamashita, T., and Shimojo, H. 1973. Replication of adenovirus 12 DNA in association with the nuclear membrane. Jpn. J. Microbiol. 17: 419–423.PubMedGoogle Scholar
  589. Yang, J. T., and Samejima, T. 1969. Optical rotatory dispersion and circular dichroism of nucleic acids. Progr. Nucl. Acid. Res. Mol. Biol. 9: 223–300.Google Scholar
  590. Yoshida, S., Kondo, T., and Ando, T. 1974. Multiple molecular species of cytoplasmic DNA polymerase from calf thymus. Biochim. Biophys. Acta. 353: 463–474.PubMedGoogle Scholar
  591. Young, C. W., Hendler, F. J., and Karnofsky, D. A. 1969. Synthesis of protein for DNA replication and cleavage events in the sand dollar embryo. Exp. Cell. Res. 58: 15–26.PubMedGoogle Scholar
  592. Yudelevich, A., Ginsberg, B., and Hurwitz, J. 1968. Discontinuous synthesis of DNA during replication. Proc. Nat. Acad. Sci. USA. 61: 1129–1136.PubMedGoogle Scholar
  593. Zimmerman, S. B., Cohen, G. H., and Davies, D. R. 1975. X-ray fiber diffraction and modelbuilding study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 92: 181–192.PubMedGoogle Scholar
  594. Zusman, D. R., Carbonell, A., and Haga, J. Y. 1973. Nucleoid condensation and cell division in E. coli. MX74T2ts52 after inhibition of protein synthesis. J. Bact. 115: 1167–1178.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations