The Precellular, or Simple Interacting Systems, Level (Stage III)

  • Lawrence S. Dillon


Although in certain aspects of the prebiotic synthesis and polymerization of life’s basic biochemical ingredients some problems still resist satisfactory solution, the number and diversity of procedures that have been successful promise that at least some portions of the theories proposed do approach reality. Nor should there be any real concern over which specific pathway was the one that had been followed exclusively on the primitive earth, for several, or even many, different processes may have been active during the billion or more years which the early stages seem to have occupied.


Equilibrium Liquid Living Thing Porphyrin Ring Iron Porphyrin Prebiotic Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. E., and Gillard, R. D. 1967. Stereoselective effects in peptide complexes. Chem. Commun. 1967: 1091–1092.Google Scholar
  2. Allen, W. V., and Ponnamperuma, C. 1967. Possible prebiotic synthesis of monocarboxylic acids. Curr. Mod. Biol. 1: 24–28.PubMedGoogle Scholar
  3. Aronoff, S. 1975. The number of biologically possible porphyrin isomers. Ann. N.Y. Acad. Sci. 244: 327–333.PubMedGoogle Scholar
  4. Bada, J. L. 1972. The dating of fossil bones using the racemization of isoleucine. Earth Planet. Sci. Lett. 15: 223–231.Google Scholar
  5. Bada, J. L., and Schroeder, R. A. 1972. Racemization of isoleucine in calcareous marine sediments-kinetics and mechanism. Earth Planet. Sci. Lett. 15: 1–7.Google Scholar
  6. Bada, J. L., Schroeder, R. A., and Carter, G. F. 1974. New evidence for the antiquity of man in North America deduced from aspartic acid racemization. Science. 184: 791–793.PubMedGoogle Scholar
  7. Bernal, J. D. 1967. The Origin of Life., New York, World Publishing Co.Google Scholar
  8. Bonner, W. A., and Flores, J. J., 1973. On the asymmetric adsorption of phenylalanine enantiomers by kaolin. Curr. Mod. Biol. 5: 103–113.PubMedGoogle Scholar
  9. Bonner, W. A., and Flores, J. J. 1975. Experiments on the origins of optical activity. Origins Life. 6: 187–194.Google Scholar
  10. Bonner, W. A., Kavasmaneck, P. R., Martin, F. S., and Flores, J. J. 1974. Asymmetric adsorption of alanine by quartz. Science. 186: 143–144.PubMedGoogle Scholar
  11. Bullock, E., and Elton, R. A. 1972. Dipeptide frequencies in proteins and the CpG deficiency in vertebrate DNA. J. Mol. Evol. 1: 315–325.PubMedGoogle Scholar
  12. Calvin, M. 1956. Chemical evolution and the origin of life. Am. Sci. 44: 248–263.Google Scholar
  13. Calvin, M. 1969. Chemical Evolution: Molecular Evolution Towards the Origin of Systems on the Earth and Elsewhere., Oxford, Oxford University Press.Google Scholar
  14. Calvin, M. 1975. Chemical evolution. Am. Sci. 63: 169–177.PubMedGoogle Scholar
  15. Chibnall, A. C., and Westall, R. W. 1932. The estimation of glutamine in the presence of asparagine. Biochem. J. 26: 122–132.PubMedGoogle Scholar
  16. Darge, W., Sass, R., and Thiemann, W. 1973. Enzymatic hydrolysis of poly-DL-lysine. Z. Naturforsch. 28: 116–119.Google Scholar
  17. Degens. E. T., Matheja, J., and Jackson, T. A. 1970. Template catalysis: asymmetric polymerization of amino-acids on clay minerals. Nature. 227: 492–493.Google Scholar
  18. de Jong, H. G. B. 1932. Die Koazervation und ihre Bedeutung für die Biologie. Protoplasma. 15: 110–176.Google Scholar
  19. de Jong, H. G. B. 1947. Distribution of the complex component, which is present in excess, between complex coacervate and equilibrium liquid. Proc. K. Nederland. Akad. Wetenschap. 50: 707–711.Google Scholar
  20. Dillon, L. S. 1974. Neovulcanism: A proposed replacement for continental drift. Mem. Amer. Assoc. Petrol. Geol. 23: 167–239.Google Scholar
  21. Dillon, L. S. 1978. Evolution: Concepts and Consequences. 2nd Ed., St. Louis, C. V. Mosby Co.Google Scholar
  22. Dose, K. 1971. Catalysis. In: Schwartz, A. W., ed., Theory and Experiment in Exobiology, Gronigen, Wolters-Noordhoff Publishing Co., Vol. 1, p. 43–71.Google Scholar
  23. Dose, K. 1974. Chemical and catalytical properties of thermal polymers of amino acids (proteinoids). Origins Life. 5: 239–252.Google Scholar
  24. Dose, K., and Zaki, L. 1971. Hämoproteinoide mit perodatischer and katalatischer Aktivitat. Z. Naturforsch. 26b: 144–148.Google Scholar
  25. Evreinova, T. N. 1964. Distribution of nucleic acids in coacervate droplets. Dokl. Akad. Nauk. SSSR. 141: 246–249.Google Scholar
  26. Evreinova, T. N., and Kuznetsova, A. 1959. Determination of the weight of separate coacervate drops by interference microscopy. Dokl. Akad. Nauk. SSSR. 124: 688–691.Google Scholar
  27. Evreinova, T. N., and Kuznetsova, A. 1961. Application of interference microscopy to coacervates. Biofizika. 6: 320–328.Google Scholar
  28. Evreinova, T. N., and Kuznetsova, A. 1963. Histone-protamine nucleic acid coacervate drops. Biofizika. 8: 459–463.Google Scholar
  29. Evreinova, T. N., Pogosova, A., Chukanova, T., and Larinovoa, T. 1962. Introduction of amino acids into coacervates. Naunchn. Dokl. Vysshei Shkoly. 1. :159–164.Google Scholar
  30. Evreinova, T. N., Mamontova, T. W., and Karnaukhov, V. N. 1972. Coacervate systems and evolution of matter. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 361–370.Google Scholar
  31. Evreinova, T. N., Mamontova, T. W., Karnaukhov, V. N., Stephanov, S. B., and Hrust, U. R. 1974. Coacervate systems and origin of life. Origins Life. 5: 201–205.Google Scholar
  32. Fisher, H., and Orth, H. 1972. Die Chemie des Pyrrols. Vol. 2. Leipzig, Akademische Verlag.Google Scholar
  33. Flatmark, T. 1964. Studies on the peroxidase effect of cytochrome c. II. Purification of beef heart cytochrome c by gel filtrations. Acta. Chem. Scand. 18: 1517–1527.Google Scholar
  34. Flatmark, T. 1967. Multiple molecular forms of bovine heart cytochrome c. V. A comparative study of their physiochemical properties and their reactions in biological systems. J. Biol. Chem. 242: 2454–2459.PubMedGoogle Scholar
  35. Flatmark, T., and Sletten, K. 1968. Multiple forms of cytochrome c in the rat. J. Bio. Chem. 243: 1623–1629.Google Scholar
  36. Flores, J. J., and Bonner, W. A. 1974. On the asymmetric polymerization of aspartic acid enantiomers by kaolin. J. Mol. Evol. 3: 49–50.PubMedGoogle Scholar
  37. Fox, R. F. 1972. A non-equilibrium thermodynamical analysis of the origin of life. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 79–99.Google Scholar
  38. Fox, S. W. 1964. Thermal polymerization of amino acids and production of formed microparticles on lava. Nature. 201: 336–337.PubMedGoogle Scholar
  39. Fox, S. W. 1965. A theory of macromolecular and cellular origins. Nature. 205: 328–339.PubMedGoogle Scholar
  40. Fox, S. W. 1968. Abiotic polymerization and self-organization. In: Mark, H. F., N. G. Gaylord, and N. M. Bikales, eds., Encyclopedia of Polymer Science and Technology., Vol. 9., New York, Interscience, p. 284–314.Google Scholar
  41. Fox, S. W. 1975. Stereomolecular interactions and microsystems in experimental protobiogenesis. BioSystems. 7: 22–36.PubMedGoogle Scholar
  42. Fox, S. W. 1976. The evolutionary significance of phase-separated microsystems. Origins Life. 7: 49–68.Google Scholar
  43. Fox, S. W., and Dose, K. 1972. Molecular Evolution and the Origin of Life., San Francisco, W. H. Freeman and Company.Google Scholar
  44. Fox, S. W., and Harada, K. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science. 128: 1214.PubMedGoogle Scholar
  45. Fox, S. W., and Harada, K. 1960. The thermal polymerization of amino acids common to protein. J. Am. Chem. Soc. 82: 3745–3752.Google Scholar
  46. Fox, S. W., and Harada, K. 1961. Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science. 133:1923–1924.Google Scholar
  47. Fox, S. W., Harada, K., and Vegotsky, A. 1959. Thermal polymerization of amino acids and a theory of biochemical origins. Experientia. 15: 81–84.PubMedGoogle Scholar
  48. Fox, S. W., Harada, K., Woods, K. R., and Windsor, C. R. 1963. Amino acid compositions of proteinoids. Arch. Biochem. Biophys. 102: 439–445.PubMedGoogle Scholar
  49. Fox, S. W., McCauley, R. J., and Wood, A. 1967. A model of primitive heterotrophic proliferation. Comp. Biochem. Physiol. 20: 773–778.Google Scholar
  50. Fox, S. W., Jungck, J. R., and Nakashima, T. 1974. From proteinoid microsphere to contemporary cell: Formation of internucleotide and peptide bonds by proteinoid particles. Origins Life. 5: 227–237.Google Scholar
  51. Fox, S. W., and Krampitz, G. 1964. Catalytic decomposition of glucose in aqueous solution by thermal proteinoids. Nature. 203: 1362–1364.PubMedGoogle Scholar
  52. Fox, S. W., and Suzuki, F. 1976. Linkages in thermal copolymers of lysine. BioSystems. 8: 40 14.Google Scholar
  53. Fox, S. W., and Yuyama, S. 1963. Abiotic production of primitive protein and formed microparticles. Ann. N.Y. Acad. Sci. 108: 487–494.PubMedGoogle Scholar
  54. Frydman, B., Frydman, R. B., Valasinas, A., Levy, S., and Feinstein, G. 1975. The mechanism of uroporphyrinogen biosynthesis. Ann. N.Y. Acad. Sci. 244: 371–395.PubMedGoogle Scholar
  55. Gilbert, J. B., Price, V. E., and Greenstein, J. P. 1949. Effect of anions on the coenzymatic deamidation of glutamine. J. Biol. Chem. 180: 209–218.PubMedGoogle Scholar
  56. Goldacre, R. J. 1958. Surface films, their collapse on compression, the shapes and sizes of cells and the origin of life. In: Danielli, J. R., K. G. A. Pankhurst, and A. C. Riddiford, eds., Surface Phenomena in Chemistry and Biology., London, Pergamon Press, p. 276–278.Google Scholar
  57. Harada, K., and Fox, S. W. 1975. Characterization of functional groups of acidic thermal polymers of a-amino acids. BioSystems. 7: 213–221.PubMedGoogle Scholar
  58. Hardebeck, H. G., Krampitz, G., and Wulf, L. 1968. Decarboxylation of pyruvic acid in aqueous solution by thermal proteinoids. Arch. Biochem. Biophys. 123: 72–81.PubMedGoogle Scholar
  59. Harfenist, E. J. 1953. The amino acid compositions of insulins isolated from beef, pork, and sheep glands. J. Am. Chem. Soc. 75: 5528–5533.Google Scholar
  60. Herrera, A. L. 1924. Biologia y plasmogenia. Mexico City, H. Hermanos Sucesores.Google Scholar
  61. Herrera, A. L. 1942. A new theory of the origin and nature of life. Science. 96: 14.PubMedGoogle Scholar
  62. Hodgson, G. W., and Ponnamperuma, C. A. 1968. Prebiological porphyrin synthesis: Porphyrins from electric discharge in methane, ammonia, and water vapor. Proc. Nat. Acad. Sci. USA. 59: 22–28.PubMedGoogle Scholar
  63. Hsu, L. L. 1972. Conjugation of proteinoid microspheres: A model of primordial recombination. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 371–378.Google Scholar
  64. Hsu, L. L., and Fox, S. W. 1976. Interactions between diverse proteinoids and microspheres in simulation of primordial evolution. BioSystems. 8: 89–101.PubMedGoogle Scholar
  65. Jackson, A. H., and Games, D. E. 1975. The later stages of porphyrin biosynthesis. Ann. N.Y. Acad. Sci. 244: 591–601.PubMedGoogle Scholar
  66. Jackson, T. A. 1971. Evidence for the selective adsorption and polymerization of the L-optical isomers of amino acids relative to the D-optical isomers on the edge faces of kaolinite. Experientia. 27: 242–243.PubMedGoogle Scholar
  67. Josse, J., Kaiser, A. D., and Kornberg, A. 1961. Enzymatic synthesis of DNA. VIII. J. Biol. Chem. 236: 864–875.PubMedGoogle Scholar
  68. Jukes, T. H. 1966. Molecules and Evolution., New York, Columbia University Press.Google Scholar
  69. Kambe, M., Sakamoto, Y., and Kurahashi, K. 1971. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis. ATCC8185. IV. Further separation of component II into two fractions. J. Biochem. 69: 1131–1133.PubMedGoogle Scholar
  70. Keim, P., Vigna, R. A., Morrow, J. S., Marshall, R. C., and Gurd, F. R. N. 1973. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues serine, threonine, aspartic and glutamic acids, asparagine, and glutamine. J. Bio. Chem. 248: 7811–7818.Google Scholar
  71. Kenyon, D. H., and Steinman, G. 1969. Biochemical Predestination., New York, McGraw-Hill Book Company.Google Scholar
  72. King, G. A. M. 1977. Symbiosis and the origin of life. Origins Life. 8: 39–53.Google Scholar
  73. Klabunoswkii, E. I. 1959. Absolute asymmetric synthesis and asymmetric catalysis. In: Oparin, A. I., ed., Origin of Life on Earth., London, Pergamon Press, p. 158–168.Google Scholar
  74. Kleinkauf, H., and Gevers, W. 1969. Nonribosomal polypeptide synthesis: The biosynthesis of a cyclic peptide antibiotic, gramidicin S. Cold Spring Harbor Symp. Quant. Biol. 34: 805–813.PubMedGoogle Scholar
  75. Krampitz, G. 1959. Untersuchungen und Aminosäure-Kopolymerisaten. Naturwissenschaften. 46: 558.Google Scholar
  76. Krampitz, G., Diehl, S., and Nakashima, T. 1967. Aminotransferase-Aktivität von Polyanhydro-aAminosäuren (Proteinoiden). Naturwissenschaften. 54: 516–517.PubMedGoogle Scholar
  77. Krampitz, G., Haas, W., and Baars-Diehl, S. 1968. Glutaminsäure-Oxydoreduktase-Aktivität von Polyanhydro-a-Aminosäuren (Proteinoiden). Naturwissenschaften. 55: 345–346.PubMedGoogle Scholar
  78. Lederberg, J. 1960a. A view of genetics. Science. 131: 269–276.PubMedGoogle Scholar
  79. Lederberg, J. 1960b. Exobiology: Approaches to life beyond the earth. Science. 132: 393–400.PubMedGoogle Scholar
  80. Lipmann, F. 1971. Attempts to map a process evolution of peptide biosynthesis. Science. 173: 875–884.PubMedGoogle Scholar
  81. Lipmann, F. 1972. A mechanism for polypeptide synthesis on a protein template. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Biology: Prebiological and Biological., New York, Plenum Press, p. 261–269.Google Scholar
  82. Lipmann, F., Gevers, W., Kleinkauf, H., and Roskoski, R. 1971. Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. 35: 1–34.PubMedGoogle Scholar
  83. McCullough, J. J., and Lemmon, R. M. 1974. The question of the possible asymmetric polymerization of aspartic acid on kaolinite. J. Mol. Evol. 3: 57–61.PubMedGoogle Scholar
  84. Noda, H., Mizutani, H., and Okihana, H. 1975. Marcromolecules and the origin of life. Origins Life. 6: 139–146.Google Scholar
  85. Noguchi, J., and Saito, T. 1962. In: Stahmann, M., ed. Polyamino Acids., Polypeptides., and Proteins. University Wisconsin Press, Madison, p. 313.Google Scholar
  86. Oparin, A. I. 1957. The Origin of Life on the Earth. 3rd Ed., New York, Academic Press. Oparin, A. I. 1968. Genesis and Evolutionary Development of Life., New York, Academic Press.Google Scholar
  87. Oparin, A. I. 1971. Coacervate drops as models of prebiological systems. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co. p. 1–7.Google Scholar
  88. Oparin, A. I. 1974. A hypothetical scheme for evolution of protobionts. Origins Life. 5: 223–226.Google Scholar
  89. Oparin, A. I., and Serebrovskaya, K. 1958. Activity of ribonuclease included into coacervate droplets. Dokl. Akad. Nauk SSSR. 122: 197–200.Google Scholar
  90. Oparin, A. I., Evreinova, T. N., Larionova, T. I., and Davydova, I. M. 1962. Synthesis and degradation of starch in coacervate droplets. Dokl. Akad. Nauk SSSR. 143: 980–983.Google Scholar
  91. Oparin, A. I., Serebrovskaya, K. B., Pantskava, S., and Vasil’eva, N. 1963. Enzymic synthesis of polyadenylic acid in coacervate drops. Biokhimiya. 28: 671–676.Google Scholar
  92. Oparin, A. I., Serebrovskaya, K. B., Vasil’eva, N. V., and Balaevskaya, T. O. 1964. [The formation of coacervates from polypeptides and polynucleotides]. Dokl. Akad. Nauk SSSR. 154: 471–472.Google Scholar
  93. Pattee, H. H. 1965. The recognition of hereditary order in primitive chemical systems. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 385–405.Google Scholar
  94. Robertson, J. D. 1959. Molecular theory of cell membrane structure. Verh. Internat. Kongr. E. M. 4: 159–171.Google Scholar
  95. Robertson, J. D. 1964. Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes. In: Locke, M., ed., Cellular Membranes in Development., New York, Academic Press, p. 1–81.Google Scholar
  96. Robinson, A. B. 1974. Evolution and the distribution of glutaminyl and asparaginyl residues in proteins. Proc. Nat. Acad. Sci. USA. 71: 885–888.PubMedGoogle Scholar
  97. Robinson, A. B., Irving, K., and McCrea, M. 1973a. Acceleration of the rate of deamidation of Gly Arg Asn Arg Gly and of human transferrin by addition. of L-ascorbic acid. Proc. Nat. Acad. Sci. USA. 70: 2122–2123.PubMedGoogle Scholar
  98. Robinson, A. B., Scotchler, J. W., and McKerrow, J. H. 19736. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. J. Am. Chem. Soc. 95: 8156–8159.Google Scholar
  99. Rohlfing, D. L. 1967. The catalytic decarboxylation of oxaloacetic acid by thermally prepared poly-a-amino acids. Arch. Biochem. Biophys. 118: 468–474.PubMedGoogle Scholar
  100. Rohlfing, D. L. 1975. Coacervate-like microspheres from lysine-rich proteinoid. Origins Life. 6: 203–209.Google Scholar
  101. Rohlfing, D. L., and Fox, S. W. 1967. The catalytic activity of thermal polyanhydro-a-amino acids for the hydrolysis of p-nitrophenyl acetate. Arch. Biochem. Biophys. 118: 122–126.Google Scholar
  102. Roskoski, R., Gevers, W., Kleinkauf, H., and Lipmann, F. 1970. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis. (ATCC8185). Biochemistry. 9: 4839–4845.PubMedGoogle Scholar
  103. Rubey, W. W. 1951. Geologic history of sea water: An attempt to state the problem. Bull. Geol. Soc. Am. 62: 1111–1148.Google Scholar
  104. Rubey, W. W. 1955. Development of the hydrosphere. Spec. Geol. Soc. Am. Pap. 62: 631–650.Google Scholar
  105. Russell, C. S. 1974. Biosynthesis of porphyrins. II. J. Theor. Biol. 47: 145–151.PubMedGoogle Scholar
  106. Rutten, M. G. 1971. The Origin of Life by Natural Causes. Amsterdam, Elsevier Publishing Co.Google Scholar
  107. Schneider-Bernloehr, H., Lohrmann, R., Orgel, L. E., Sulston, J., and Weimann, B. J. 1968. Partial resolution of DL-adenosine by template synthesis. Science. 162: 809–810.PubMedGoogle Scholar
  108. Schoffeniels, E. 1967. Cellular Aspects of Membrane Permeability., New York, Pergamon Press.Google Scholar
  109. Serebrovskaya, K. B., and Lozovaya, G. I. 1972. Modelling of structure and functional unity on coacervate systems. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New. York, Plenum Press, p. 353–360.Google Scholar
  110. Shemin, D. 1975. Porphyrin synthesis: Some particular approaches. Ann. N.Y. Acad. Sci. 244: 348–355.PubMedGoogle Scholar
  111. Steinman, G. 1967a. Sequence generation in prebiological peptide synthesis. Arch. Biochem. Biophys. 119: 76–82.PubMedGoogle Scholar
  112. Steinman, G. 1967b. Sequence generation in prebiological peptide synthesis. Arch. Biochem. Biophys. 121: 533–539.Google Scholar
  113. Steinman, G., and Cole, M. N. 1967. Synthesis of biologically pertinent peptides under possible primordial conditions. Proc. Nat. Acad. Sci. USA. 58: 735–742.PubMedGoogle Scholar
  114. Subak-Sharpe, H., Bürk, R. R., Crawford, L. V., Morrison, J. M., Hay, J., and Keir, H. M. 1966. An approach to evolutionary relationships of mammalian DNA viruses through analysis of the pattern of nearest neighbor base sequences. Cold Spring Harbor Symp. Quant. Biol. 31: 737–748.PubMedGoogle Scholar
  115. Swartz, M. N., Trautner, T. A., and Kornberg, A. 1962. Enzymatic synthesis of DNA. XI. Further studies on nearest neighbor base sequences in DNA. J. Bio. Chem. 237: 1961–1967.Google Scholar
  116. Thiemann, W. 1974. The origin of optical activity. Naturwissenschaften. 61: 1476–1483.Google Scholar
  117. Thiemann, W., and Darge, W. 1974. Experimental attempts for the study of the origin of optical activity on earth. Origins Life. 5: 263–283.Google Scholar
  118. Usdin, V. R., Mitz, M. A., and Killos, J. 1967. Inhibition and reactivation of the catalytic activity of a thermal a-amino acid copolymer. Arch. Biochem. Biophys. 122: 258–261.PubMedGoogle Scholar
  119. Vegotsky, A., and Fox, S. W. 1959. Pyropolymerization of amino acids to proteinoids with phosphoric acid or polyphosphoric acid. Fed. Proc. 18: 343.Google Scholar
  120. West, E. S., and Todd, W. R. 1961. Textbook of Biochemistry. 3rd Ed., New York, Macmillan Company.Google Scholar
  121. Wood, A., and Hardebeck, H. G. 1972. Light-enhanced decarboxylations by proteinoids. Mol. Evol. 1972: 233–245.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations