Advertisement

Origins of Life’s Ingredients

  • Lawrence S. Dillon

Abstract

The origins of life—being inextricably entwined with the origins of man—hold a fascination without equal in the legends and philosophies of humankind, and while the problem of life’s beginnings has been the focus of attention for at least several millennia, only in the very recent past has enough precise information become available so as to permit discussion at the level of scientific investigation. The nature of the problem, however, places it beyond quick and immediate solution. Consequently, while much has already been written on the subject since the early 1950s, the coming years undoubtedly will witness the appearance in print of a still greater body of literature. This probability arises first through the realization that until reasonable solutions are found to those problems which its origins raise, life’s own basic properties must in large measure remain incomprehensible (Keosian, 1968; Oparin, 1971). Among the facets which have been greatly illuminated by researches of the past three decades are those concerned with the nature of the biochemical substances of which living things are constructed. The results of these investigations into the origins of life’s basic ingredients, first the molecules and later the polymers, provide the subject matter for the present chapter.

Keywords

Hydrogen Sulfide Living Thing Polyphosphoric Acid Hydrogen Cyanide Peptide Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H. 1956. Amino acids formed in primitive atmospheres. Science. 124: 935.Google Scholar
  2. Abelson, P. H. 1957. Some aspects of paleobiochemistry. Ann. N.Y. Acad. Sci. 69: 274–285.Google Scholar
  3. Abelson, P. H. 1966. Chemical events on the primitive earth. Proc. Nat. Acad. Sci. USA 55: 1365–1372.PubMedGoogle Scholar
  4. Agarwal, K. L., and Dahr, M. M. 1963. Nature of products formed by the action of polyphosphate ester on nucleotides. Indian J. Chem. 1: 451–452.Google Scholar
  5. Akabori, S. 1959. Origin of the fore-protein. In: Oparin, A. I., ed., The Origin of Life on the Earth., London, Pergamon Press, p. 189–196.Google Scholar
  6. Akabori, S., and Yamamoto, M. 1972. Model experiments on the prebiological formation of protein. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 189–197.Google Scholar
  7. Armstrong, R. L., and Hein, S. M. 1973. Computer simulation of lead and strontium isotope evolution of the earths crust and upper mantle. Geochim. Cosmochim. Acta. 37: 1–18.Google Scholar
  8. Bada, J. L., and Miller, S. L. 1968. Ammonia ion concentration in the primitive ocean. Science. 159: 423–425.PubMedGoogle Scholar
  9. Bahadur, K. 1954. Photosynthesis of amino-acids from paraformaldehyde and potassium nitrate. Nature. 173: 1141.Google Scholar
  10. Bahadur, K., and Raganayaki, S. 1958. Proc. Nat. Inst. Sci. India. 27A: 292.Google Scholar
  11. Bahadur, K., Ranganayaki, S., and Santamaria, L. 1958. Photosynthesis of amino-acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal MbO as catalyst. Nature. 182: 1668.PubMedGoogle Scholar
  12. Barak, I., and Bar-Nun, A. 1975. The mechanisms of amino acids synthesis by high temperature shock-waves. Origins Life. 6: 483–506.Google Scholar
  13. Barker, S. A., Lloyd, I. R. L., and Stacy, M. 1962a. Polymerization of glucose induced by gamma radiation. Radiation Res. 16: 224–231.PubMedGoogle Scholar
  14. Barker, S. A., Lloyd, I. R. L., and Stacy, M. 1962b. Structure of a radiation-induced polymer from glucose. Radiation Res. 17: 619–624.PubMedGoogle Scholar
  15. Bar-Nun, A. 1975. Shock synthesis of amino acids. II. Origins Life. 6: 109–115.Google Scholar
  16. Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C. 1970a. Shock synthesis of amino acids in simulated primitive environments. Science. 168: 470–473.PubMedGoogle Scholar
  17. Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C. 1970b. [Reply to H. R. Hulett]. Science. 170: 1001–1002.Google Scholar
  18. Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C. 1971. Shock synthesis of amino acids in simulated primitive environments. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 114–122.Google Scholar
  19. Beck, A., Lohrmann, R., and Orgel, L. E. 1967. Phosphorylation with inorganic phosphates at moderate temperatures. Science. 157: 952.PubMedGoogle Scholar
  20. Berkner, L. V., and Marshall, L. C. 1965. On the origin and rise of oxygen concentration in the earth’s atmosphere. J. Atmos. Sci. 22: 225–231.Google Scholar
  21. Berkner, L. V., and Marshall, L. C. 1966. Limitation on oxygen concentration in a primitive planetary atmosphere. J. Atmos. Sci. 23: 133–139.Google Scholar
  22. Bernal, J. D. 1967. The Origin of Life., Cleveland, Ohio, World Publishing Company.Google Scholar
  23. Beukers, R., and Berends, W. 1960. Isolation and identification of the irradiation product of thymine. Biochim. Biophys. Acta. 41: 550–551.PubMedGoogle Scholar
  24. Borsook, H., and Huffman, H. M. 1944. In:Schmidt, C. L. A., ed., Chemistry of the Amino Acids and Proteins. Charles C. Thomas, Springfield, Ill., p. 282.Google Scholar
  25. Boutlerow, A. 1861. Formation synthétique d’une substance sucrée. C. R. Acad. Sciences France. 53: 145–147.Google Scholar
  26. Burton, F. G., Lohrmann, R. and Orgel, L. E. 1974. On the possible role of crystals in the origins of life. VII. The adsorption and polymerization of phosphoramidates by montmorillonite clay. J. Mol. Evol. 3: 141–150.PubMedGoogle Scholar
  27. Butler, J. A. V. 1959. Changes induced in nucleic acids by ionizing radiations and chemicals. Radiation Res., Suppl. 1: 403–416.Google Scholar
  28. Calvin, M. 1956. Chemical evolution and the origin of life. Am. Sci. 44: 248–263.Google Scholar
  29. Calvin, M. 1961. The origin of life on earth and elsewhere. Ann. Int. Med. 54: 954–976.Google Scholar
  30. Calvin, M. 1962. Evolution of photosynthetic mechanisms. Perspect. Biol. Med. 5: 147–172.PubMedGoogle Scholar
  31. Calvin, M. 1965. Chemical evolution. Proc. Roy. Soc. Lond. A 288: 441–466.Google Scholar
  32. Calvin, M. 1967. Chemical evolution. Evol. Biol. 1. :1–25.Google Scholar
  33. Calvin, M. 1969. Chemical Evolution: Molecular Evolution towards the Origin of Living Systems on the Earth and Elsewhere., Oxford, Oxford University Press.Google Scholar
  34. Calvin, M. and Calvin, G. J. 1964. Atom to Adam. Am. Sci. 52: 163–186.Google Scholar
  35. Chadha, M. S., Molton, P. M., and Ponnamperuma, C. 1975. Aminonitriles: Possible role in chemical evolution. Origins Life. 6: 127–136.Google Scholar
  36. Chadha, M. S., Replogle, L., Flores, J., and Ponnamperuma, C. 1971. Possible role of aminoacetonitrile in chemical evolution. Bioorganic Chem. 1. (3): 269–274.Google Scholar
  37. Chang, S., Flores, J., and Ponnamperuma, C. 1969. Peptide formation mediated by hydrogen cyanide tetramer: A possible prebiotic process. Proc. Nat. Acad. Sci. USA. 64: 1011–1015.PubMedGoogle Scholar
  38. Contreras, G., Esperjo, R., Mery, E., Ohlbaum, D., and Tohâ, J. 1962. Polymerization of ribomononucleotides by y-radiation. Biochim. Biophys. Acta. 61: 718–727.PubMedGoogle Scholar
  39. Cruikshank, D. P., Pilcher, C. B., and Morrison, D. 1976. Pluto: Evidence for methane frost. Science. 194: 835–837.Google Scholar
  40. Degens, E. T., and Matheja, J. 1971. Formation of organic polymers on inorganic templates. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Company, p. 39–69.Google Scholar
  41. Degens, E. T., Matheja, J., and Jackson, T. A. 1970. Template catalysis: Asymmetric polymerization of amino acids on clay minerals. Nature. 227: 492–493.PubMedGoogle Scholar
  42. Dhar, N. R., and Ram, A. 1933. Formaldehyde in the upper atmosphere. Nature. 132: 819–820.Google Scholar
  43. Dillon, L. S. 1974. Neovulcanism: A proposed replacement for the concepts of plate tectonics and continental drift. Mem. Am. Assoc. Petrol. Geol. 23: 167–239.Google Scholar
  44. Dixon, M. A., and Webb, E. C. 1958. Enzymes., New York, Academic Press.Google Scholar
  45. Dose, K. 1974. Chemical and catalytical properties of thermal polymers of amino acids (proteinoids). Origins Life. 5: 239–252.Google Scholar
  46. Dose, K., and Ettre, K. 1958. Die radiationschemische Syntheses von Aminosäuren und ver-wandten Verbindungen. Zeit. Naturforsch. 13b: 784–788.Google Scholar
  47. Dose, K., and Ponnamperuma, C. 1967. The effect of ionizing radiation on N-acetyl glycine in the presence of ammonia. Radiation Res. 31: 650.Google Scholar
  48. Dose, K., and Rauchfuss, H. 1972. On the electrophoretic behavior of thermal polymers of amino acids. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 199–231.Google Scholar
  49. Dose, K., and Risi, S. 1968. Zur radiationschemischen Bildung von Aminosäuren durch Carboxylierung und Aminierung. Zeit. Naturforsch. 23b: 581–587.Google Scholar
  50. Dose, K., and Zaki, L. 1971. Recent progress in the study and abiotic production of catalytically active polymers of a-amino acids. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 263–278.Google Scholar
  51. Ellenbogen, E. 1958. Photochemical synthesis of amino acids. Abstr. 134th Nat. Mtg. Amer. Chem. Soc., Chicago., p. 47–48C.Google Scholar
  52. Ellenbogen, E. 1959. Photochemical synthesis of amino acids. Abstr. Am. Chem. Soc. Meeting., Chicago., p. 47C.Google Scholar
  53. Elmore, D. T., and Todd, A. R., 1952. Nucleotides. XVIII. The synthesis and properties of adenosine-5’-uridine-5’-phosphate. J. Chem. Soc. 1952: 3681–3686.Google Scholar
  54. Euler, H., and Euler, A. 1906. Über die Bildung von i-aribinoketose aus Formaldehyd. Chem. Berichte. 39: 45–51.Google Scholar
  55. Farmer, C. B., Davies, D. W., and LaPorte, D. D. 1976. Mars: Northern summer icecap water vapor observations from Viking 2. Science. 194: 1339–1341.PubMedGoogle Scholar
  56. Fanale, F. P. 1971. A case for catastrophic early degassing of the Earth. Chem. Geol. 8: 79–105.Google Scholar
  57. Ferris, J. P., and Orgel, L. E. 1965. Aminomalononitrile and 4-amino-5-cyanoimidazole in HCN polymerization and adenine synthesis. J. Am. Chem. Soc. 87: 4976–4977.PubMedGoogle Scholar
  58. Ferris, J. P., and Ryan, T. J. 1973. Chemical evolution. XIV. Oxidation of diaminomaleonitrile and its possible role in hydrogen cyanide oligomerization. J. Org. Chem. 38: 3302–3307.Google Scholar
  59. Ferris, J. P., Kuder, J. E., and Catalano, A. W. 1971. Photochemical reactions and the chemical evolution of purines and nicotinamide derivatives. Science. 166: 765–766.Google Scholar
  60. Ferris, J. P., Donner, D. B., and Lobo, A. P. 1973a. Possible role of HCN in chemical evolution: Investigation of the proposed direct synthesis of peptides from HCN. J. Mol. Biol. 74: 499–510.PubMedGoogle Scholar
  61. Ferris, J. P., Donner, D. B., and Lobo, A. P. 1973b. Possible role of HCN in chemical evolution: The oligomerization and condensation of HCN. J. Mol. Biol. 74: 511–518.PubMedGoogle Scholar
  62. Ferris, J. P., Zamek, O. S., Altbuch, A. M., and Freiman. H. 1974a. Chemical evolution. XVIII. Synthesis of pyrimidines from guanidine and cyanoacetaldehyde. J. Mol. Evol. 3: 301–309.PubMedGoogle Scholar
  63. Ferris, J. P., Wos, J. D., Ryan, T. J., Lobo, A. P., and Donner, D. B. 1974b. Biomolecules from HCN. Origins Life., 5: 153–158.Google Scholar
  64. Flores, J. J., and Leckie, J. O. 1973. Peptide formation mediated by cyanate. Nature. 244: 435–437.PubMedGoogle Scholar
  65. Flores, J. J., and Ponnamperuma, C. 1972. Polymerization of amino acids under primitive earth conditions. J. Mol. Evol. 2: 1–9.PubMedGoogle Scholar
  66. Fox, S. W. 1960. How did life begin? Science. 132: 200–208.PubMedGoogle Scholar
  67. Fox, S. W. 1965. The Origins of Prebiological Systems and of their Molecular Matrices., New York, Academic Press.Google Scholar
  68. Fox, S. W. 1974. Thermodynamic perspectives and the origin of life. In: Kursumoglu, B., S. L. Mintz, and S. M. Widmayer, eds., Quantum Statistical Mechanics in the Natural Sciences., New York, Plenum Press, p. 119–142.Google Scholar
  69. Fox, S. W., and Dose, K. 1972. Molecular Evolution and the Origin of Life., San Francisco, W. H. Freeman and Company.Google Scholar
  70. Fox, S. W., and Harada, K. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science. 128: 1214.PubMedGoogle Scholar
  71. Fox, S. W., and Harada, K. 1960. The thermal copolymerization of amino acids common to proteins. J. Am. Chem. Soc. 82: 3745–3752.Google Scholar
  72. Fox, S. W., and Harada, K. 1961. Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science. 133: 1923–1924.PubMedGoogle Scholar
  73. Fox, S. W., and Nakashima, T. 1967. Fractionation and characterization of an amidated thermal 1: 1: 1-proteinoid. Biochem. Biophys. Acta. 140: 155–167.Google Scholar
  74. Fox, S. W., and Windsor, C. R. 1970. Synthesis of amino acids by the heating of formaldehyde and ammonia. Science. 170: 984–986.PubMedGoogle Scholar
  75. Fox, S. W., and Yuyama, S. 1963. Effects of the Gram stain on microspheres from thermal polyamino acids. J. Bacteriol. 85: 279–283.PubMedGoogle Scholar
  76. Fox, S. W., Johnson, J. E., and Middlebrook, M. 1955. Pyrosynthesis of aspartic acid and alanine from citric acid cycle intermediates. J. Am. Chem. Soc. 77: 1048–1049.Google Scholar
  77. Fox, S. W., Johnson, J. E., and Vegotsky, A. 1956. On biochemical origins and optical activity. Science. 124: 923–925.PubMedGoogle Scholar
  78. Fox, S. W., Vegotsky, A., Harada, K., and Hoagland, P. D. 1957a. Spontaneous generation of anabolic pathways, protein, and nucleic acid. Ann. N.Y. Acad. Sci. 69: 328–337.PubMedGoogle Scholar
  79. Fox, S. W., Vegotsky, A., Harada, K., and Hoagland, P. D. 1957b. Spontaneous generation of anabolic pathways, protein, and nucleic acid. Ann. N.Y. Acad. Sci. 69: 328–337.PubMedGoogle Scholar
  80. Friedmann, N., Haverland, W. J., and Miller, S. L. 1971. Prebiotic synthesis of the aromatic and other amino acids. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 123–135.Google Scholar
  81. Friedmann, N., and Miller, S. L. 1969. Phenylalanine and tyrosine synthesis under primitive earth conditions. Science. 166: 766–767.PubMedGoogle Scholar
  82. Fuller, W. D., Sanchez, R. A., and Orgel, L. E. 1972. Studies in prebiotic synthesis. VII. Solid state synthesis of purine nucleosides. J. Mol. Evol. 1: 249–257.PubMedGoogle Scholar
  83. Gabel, N. W., and Ponnamperuma, C. 1967. Model for origin of monosaccharides. Nature. 216: 453–455.PubMedGoogle Scholar
  84. Garrison, W. M., Morrison, D. C., Hamilton, J. G., Benson, A. A. and Calvin M. 1951. Reduction of CO2 in aqueous solutions by ionising radiation. Science. 114: 416–418.PubMedGoogle Scholar
  85. Goldberg, E. D. 1954. Marine geochemistry. J. Geol. 62: 249–265.Google Scholar
  86. Gottikh, B. P., and Slutsky, I. 1964. On polycondensation of ribonucleotides under the action of polyphosphoric ester. Biochim. Biophys. Acta. 87: 163–165.Google Scholar
  87. Groth, W. 1957. Photochemische Bildung von amino-säuren und anderen organischen Verbindungen aus Mischungen von H2O NH3 und der einfachsten Kohlenwasserstoffen. Angew. Chem. 69: 681.Google Scholar
  88. Groth, W., and Suess, H. 1938. Bemerkungen zur Photochemie der Erdatmosphäre. Naturwissenschaften. 26. :77.Google Scholar
  89. Groth, W., and von Weyssenhoff, H. 1957. Photochemische Bildung von Aminosäuren aus Mischungen einfacher Gase. Naturwissenschaften. 44: 510–511.Google Scholar
  90. Groth, W., and von Weyssenhoff, H. 1960. Photochemical formation of organic compounds from mixtures of simple gases. Planet. Space Sci. 2: 79–85.Google Scholar
  91. Halmann, M. 1975. Models of prebiological phosphorylation. Origins Life. 6: 169–174.Google Scholar
  92. Handschuh, G. J., and Orgel, L. E. 1973a. Struvite and prebiotic phosphorylation. Science. 179: 483–484.PubMedGoogle Scholar
  93. Handschuh, G. J., and Orgel, L. E. 19736. Precipitation of phosphates in a primeval sea. Science. 181: 582.Google Scholar
  94. Harada, K., and Fox, S. W. 1964. Thermal synthesis of natural amino acids from a postulated primitive terrestrial atmosphere. Nature. 201: 335–336.PubMedGoogle Scholar
  95. Hargreaves, W. R., Mulvihill, S. J., and Deamer, D. W. 1977. Synthesis of phospholipids and membranes in prebiotic conditions. Nature. 266: 78–80.PubMedGoogle Scholar
  96. Hart, M. H. 1974. A possible atmosphere for Pluto. Icarus. 21: 242–247.Google Scholar
  97. Hasselstrom, T., Henry, M. C., and Murr, B. 1957. Synthesis of amino acids by beta radiation. Science. 125: 350–351.PubMedGoogle Scholar
  98. Hayes, F. N., and Hansbury, E. 1964. The reaction of 5’-thymidylic acid with the condensation product of phosphorus pentoxide and ethyl ether. J. Am. Chem. Soc. 86: 4172–4175.Google Scholar
  99. Hems, G. 1960. Chemical effects of ionizing radiation on DNA in dilute aqueous solution. Nature. 186: 710–712.PubMedGoogle Scholar
  100. Hess, S. L., Henry, R. M., Leovy, C. B., Mitchell, J. L., Ryan, J. A., and Tillman, J. E. 1976a. Early meteorological results from the Viking 2 lander. Science. 194: 1352–1353.PubMedGoogle Scholar
  101. Hess, S. L., Henry, R. M., Leovy, C. B., Mitchell, J. L., Ryan, J. A., and Tillman, J. E., 19766. Preliminary meteorological results on Mars from the Viking 1 lander. Science. 193: 788–791.Google Scholar
  102. Heyns, K., Walter, W., and Meyer, E. 1957. Modelluntersuchungen zur Bildung organischer Verbindungen in Atmosphären einfacher Gase durch elektrische Entladungen. Naturwissenschaften. 44: 385–389.Google Scholar
  103. Hong, K. Y., Hong, J. H., and Becker, R. S. 1974. Hot hydrogen atoms: Initiators of reactions of interest in interstellar chemistry and evolution. Science. 184: 984–987.PubMedGoogle Scholar
  104. Hubbard, J. S., Hardy, J. P., and Horowitz, N. H. 1971. Photocatalytic production of organic compounds from CO and H2O in a simulated martian atmosphere. Proc. Nat. Acad. Sci. USA. 68: 574–578.PubMedGoogle Scholar
  105. Hubbard, J. S., Hardy, J. P., Voecks, G. E., and Golub, E. E. 1973. Photocatalytic synthesis of organic compounds from CO and water: Involvement of surfaces in the formation and stabilization of products. J. Mol. Evol. 2: 149–166.PubMedGoogle Scholar
  106. Hulett, H. R. 1969. Limitations on prebiological synthesis. J. Theor. Biol. 24: 56–72.PubMedGoogle Scholar
  107. Hulett, H. R. 1970. Amino acid synthesis in simulated primitive environments. Science. 170: 1000–1001.PubMedGoogle Scholar
  108. Ibanez, J. D., Kimball, A. P., and Oro, J. 1971a. The effect of imidazole, cyanamide, and polyornithine on the condensation of nucleotides in aqueous systems. In: Buvet, R., and C. Ponnamperuma, eds., Chemical evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 171–179.Google Scholar
  109. Ibanez, J. D., Kimball, A. P., and Oro, J. 1971b. Possible prebiotic condensation of mononucleotides by cyanamide. Science. 173: 444–446.PubMedGoogle Scholar
  110. Ivanov, C. P., and Slavcheva, N. N. 1977. Formation of amino acids on heating glycine with alumina. Origins Life. 8: 13–19.Google Scholar
  111. Jacob, T. M., and Khorana, H. G. 1964. Studies on nucleotides. XXX. A comparative study of reagents for the synthesis of the C3,-05, internucleotidic linkage. J. Am. Chem. Soc. 86: 1630–1635.Google Scholar
  112. Keldysh, M. V. 1977. Venus exploration with Venera 9 and Venera 10 spacecraft. Icarus. 30: 605–625.Google Scholar
  113. Keosian, J. 1968. The Origin of Life. 2nd Ed., New York, Reinhold Book Corp.Google Scholar
  114. Khorana, H. G. 1964. Carbodiimides. III. (A) A new method for the preparation of mixed esters of phosphoric acid. (B) Some observations on the base-catalyzed addition of alcohols to carbodiimides. Can. J. Chem. 32: 227–234.Google Scholar
  115. Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D. 1976. Martian north pole summer temperatures: Dirty ice water. Science. 194: 1341–1344.PubMedGoogle Scholar
  116. Klein, H. P. 1972. Potential targets in the search for extraterrestrial life. In: Ponnamperuma, C., ed., Exobiology., Amsterdam, North-Holland Publishing Co., p. 449–464.Google Scholar
  117. Kochetkov, N. K., Budowsky, E. I., Domkin, V. D., and Kuromov-Borissov, N. N. 1964. On the structure of polynucleotides obtained by condensation of nucleoside 2(3)phosphates with polyphosphoric ester. Biochim. Biophys. Acta. 80: 145–148.Google Scholar
  118. Lawless, J. G., and Boynton, C. D. 1973. Thermal synthesis of amino acids from a simulated primitive atmosphere. Nature. 243: 405–407.Google Scholar
  119. Levin, G. V., and Straat, P. A. 1976. Viking labeled release biology experiment: Interim results. Science. 194: 1322–1329.PubMedGoogle Scholar
  120. Loew, G. H., Chandra, M. S., and Chang, S. 1972. A molecular orbital and chemical study of aminoacetonitrile. J. Theor. Biol. 35: 359–371.PubMedGoogle Scholar
  121. Loew, G. H., and Chang, S. 1975. Quantum chemical study of the thermodynamics, kinetics of formation and bonding of H2CN: Relevance to prebiotic chemistry. Origins Life. 6: 117–125.Google Scholar
  122. Loew, O. 1886. J. Prakt. Chem. 33. (2): 321.Google Scholar
  123. Lohrmann, R., and Orgel, L. E. 1968. Prebiotic synthesis: Phosphorylation in aqueous solution. Science. 161: 64–66.PubMedGoogle Scholar
  124. Lohrmann, R., and Orgel, L. E. 1971. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science. 171: 490–494.PubMedGoogle Scholar
  125. Lohrmann, R., and Orgel, L. E. 1973. Prebiotic activation processes. Nature. 244: 418–420.PubMedGoogle Scholar
  126. Lowe, C. U., Rees, M., and Markham, R. 1963a. Synthesis of complex organic compounds from simple precursors: formation of amino acids, amino acid polymers, fatty acids, and purines from NH4CN. Nature. 199: 219–222.PubMedGoogle Scholar
  127. Lowe, C. U., Rees, M., and Markham, R. 1963b. NH4CN and primitive earth synthesis. Fed. Proc. 22: 479.Google Scholar
  128. Mahler, H. R., and Cordes, E. H. 1967. Biological Chemistry. New York, Harper and Row.Google Scholar
  129. Margulis, L., Halvorson, H. O., Lewis, J., and Cameron, A. G. W. 1977. Limitations to growth of microorganisms on Uranus, Neptune, and Titan. Icarus. 30: 793–808.Google Scholar
  130. Mariani, E., and Torraca, G. 1953. The composition of formose. A chromatographic study. Int. Sugar J. 55: 309–311.Google Scholar
  131. Mason, B. 1966. Principles of Geochemistry., New York, John Wiley & Sons.Google Scholar
  132. Matthews, C.N. 1971. The origin of proteins: Heteropoly-peptides from hydrogen cyanide and water. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 231–235.Google Scholar
  133. Matthews, C. N. 1975. The origin of proteins: Heteropolypeptides from HCN and water. Origins Life. 6: 155–162.Google Scholar
  134. Matthews, C. N., and Moser, R. E. 1967. Peptide synthesis from HCN and water. Nature. 215: 1230–1234.PubMedGoogle Scholar
  135. McConnell, D. 1973. Precipitation of phosphates in a primeval sea. Science. 181: 582.PubMedGoogle Scholar
  136. McKelvey, V. E. 1967. Phosphate deposits. Bull. U.S. Geol. Surv. 1252-D: 1–21.Google Scholar
  137. McReynolds, J. H., Furlong, N. B., Birrell, P. J., Kimball, A. P., and Oro, J. 1971. Polymerization of deoxyribonucleotides by ultraviolet light. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 111–121.Google Scholar
  138. Michelson, A. M. 1959. Polynucleotides. Pt. II. Homopolymers of cytidylic and pseudouridylic acid, copolymers with repeating subunits and the step-wise synthesis of polyribonucleotides. J. Chem. Soc. 1959: 3655.Google Scholar
  139. Miller, S. L. 1953. A production of amino acids under possible primitive earth conditions. Science. 117: 528–529.PubMedGoogle Scholar
  140. Miller, S. L. 1955. Production of some organic compounds under possible primitive earth conditions. J. Am. Chem. Soc. 77: 2351–2352.Google Scholar
  141. Miller, S. L. 1959. Formation of organic compounds on the primitive earth. In: Oparin, A. I., ed., The Origin of Life on Earth., London, Pergamon Press, p. 123–135.Google Scholar
  142. Miller, S. L. 1974. The atmosphere of the primitive earth and the prebiotic synthesis of amino acids. Origins Life. 5: 139–151.Google Scholar
  143. Miller, S. L., and Orgel, L. E. 1974. The Origins of Life on the Earth., Englewood Cliffs, New Jersey, Prentice-Hall, IncGoogle Scholar
  144. Miller, S. L., and Urey, H. C. 1959. Organic compound synthesis on the primitive earth. Science. 130: 245–251.PubMedGoogle Scholar
  145. Morâvek, J., Kopeckÿ, J., and Skoda, J. 1969. Thermic phosphorylations. VI. Formation of oligonucleotides from uridine 2(3)-phosphate. Coll. Czech. Chem. Commun. 33: 4120–4124.Google Scholar
  146. Murthy, V. R., and Patterson, C. C. 1962. Primary isochron of zero age for meteorites and the earth. J. Geophys. Res. 67: 1161–1167.Google Scholar
  147. Nagyvary, J., and Provenzale, R. 1971. Polymerization of nucleotides via displacement on carbon; its preparative and prebiotic significance. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 102–110.Google Scholar
  148. Nier, A. O., and McElroy, M. B. 1976. Structure of the neutral upper atmosphere of Mars: Results from Viking 1 and Viking 2. Science. 194: 1298–1300.PubMedGoogle Scholar
  149. Noda, H., and Ponnamperuma, C. 1971. Polymer formation in a simulated Jovian atmosphere. In. Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 236 -.244.Google Scholar
  150. Nooner, D. W., and Oro, J. 1974. Direct synthesis of polypeptides; polycondensation of a-amino acids by polymetaphosphate esters. J. Mol. Evol. 3: 79–88.PubMedGoogle Scholar
  151. Okawa, K. 1954. (Title in Japanese). J. Chem. Soc. Japan. 75: 1199–1202.Google Scholar
  152. Oparin, A. I. 1957. The Origin of Life on the Earth. 3rd Ed., New York, Academic Press.Google Scholar
  153. Oparin, A. I. 1968. Genesis and Evolutionary Development of Life., New York, Academic Press.Google Scholar
  154. Oparin, A. I. 1971. Problem of the origin of life: Present state and prospects. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 3–9.Google Scholar
  155. Orgel, L. E., and Sulston, J. E. 1971. Polynucleotide replication and the origin of life. In: Kimball, A. J., and J. Oro eds., Prebiotic and biochemical evolution., Amsterdam, North-Holland Publishing Co., p. 89–94.Google Scholar
  156. Oro, J. 1963a. Synthesis of organic compounds by electric discharges. Nature. 197: 862–867.Google Scholar
  157. Orb, J. 1963b. Synthesis of organic compounds by high-energy electrons. Nature 197: 971–974.Google Scholar
  158. Oro, J. 1965. Prebiological organic systems. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 137–162.Google Scholar
  159. Oro, J. and Cox, A. C. 1962. Non-enzymic synthesis of 2-deoxyribose. Fed. Proc. 21: 80.Google Scholar
  160. Oro, J., and Guidry, C. L. 1960. A novel synthesis of polypeptides. Nature. 186: 156–157.PubMedGoogle Scholar
  161. Oro, J., and Guidry, C. L. 1961. Direct synthesis of polypeptides. I. Polycondensation of glycine in aqueous ammonia. Arch. Biochem. 93: 166–171.PubMedGoogle Scholar
  162. Oro, J., and Kamat, S. S. 1961. Amino-acid synthesis from HCN under possible primitive earth conditions. Nature. 190: 442–443.PubMedGoogle Scholar
  163. Oro, J., and Kimball, A. P. 1962. Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from HCN. Arch. Biochem. Biophys. 96: 293–313.PubMedGoogle Scholar
  164. Orb, J., and Stephen-Sherwood, E. 1974. The prebiotic synthesis of oligonucleotides. Origins Life. 5: 159–172.Google Scholar
  165. Oro, J., Kimball, A. P., and McReynolds, J. 1969. Sixth Fed. Eur. Biochem. Soc. Meeting., Madrid.,Abstr., p. 37.Google Scholar
  166. Orton, G. S. 1975. The thermal structure of Jupiter. Icarus., 26: 125–141, 142–158.Google Scholar
  167. Otroshchenko, V. A., and Vasilyeva, N. V. 1977. The role of mineral surfaces in the origin of life. Origins Life. 8: 25–31.Google Scholar
  168. Owen, T., and Biemann, K. 1976. Composition of the atmosphere at the surface of Mars: Detection of argon-36 and preliminary analysis. Science. 193: 801–803.PubMedGoogle Scholar
  169. Owen, T., Biemann, K. Ruchneck, D. R. Biller, J. E., Howarth, D. W. and LaFleur, A. L. 1976. The atmosphere of Mars: Detection of krypton and xenon. Science. 194: 1293–1295.PubMedGoogle Scholar
  170. Paecht-Horowitz, M. 1971. Polymerization of amino-acid phosphate anhydrides in the presence of clay minerals. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 245–251.Google Scholar
  171. Paecht-Horowitz, M. 1974. The possible role of clays in prebiotic peptide synthesis. Origins Life. 5. :173–187.Google Scholar
  172. Palm, C., and Calvin, M. 1962. Primordial organic chemistry. I. Compounds resulting from electron irradiation of C14H4. J. Am. Chem. Soc. 84: 2115–2121.Google Scholar
  173. Paschke, R., Chang, R., and Young, D. 1957. Probable role of gamma irradiation in origin of life. Science. 125: 881.PubMedGoogle Scholar
  174. Patterson, C. C. 1956. Age of meteorites and the earth. Geochim. Cosmochim. Acta. 10: 230–237.Google Scholar
  175. Pavlovskaya, T. E., and Pasynskii, A. G. 1959. The original formation of amino acids under the action of ultraviolet rays and electrical discharges. In: Oparin, A. I., Pasynskii, A. G., Braunstein, T. E., and Pavlovskaya, T. E., eds., The Origin of Life on the Earth. London, Pergamon, p. 151.Google Scholar
  176. Ponnamperuma, C. 1965. A biological synthesis of some nucleic acid constituents. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 221–236.Google Scholar
  177. Ponnamperuma C., and Flores, J. 1965. The gamma radiation of methane, ammonia and water. Radiation Res. 25: 229.Google Scholar
  178. Ponnamperuma, C., and Mack, R. 1965. Nucleotide synthesis under possible primitive earth conditions. Science. 148: 1221–1223.PubMedGoogle Scholar
  179. Ponnamperuma, C. and Mariner, R. 1963. The formation of ribose and deoxyribose by U. V. irradiation of formaledehyde in water. Radiation Res. 19: 183.Google Scholar
  180. Ponnamperuma, C., and Peterson, E. 1965. Peptide synthesis from amino acids in aqueous solutions. Science. 147: 1572–1574.PubMedGoogle Scholar
  181. Ponnamperuma, C., and Woeller, F. 1967. a-Aminonitriles formed by an electric discharge through a mixture of anhydrous methane and ammonia. Curr. Mod. Biol. 1: 156–158.Google Scholar
  182. Ponnamperuma, C., and Sagan, C., and Mariner, R. 1963. Synthesis of ATP under possible primitive earth conditions. Nature. 199: 222–226.PubMedGoogle Scholar
  183. Rasool, S. I. 1972. Planetary atmospheres. In: Ponnamperuma, C., ed., Exobiology, Amsterdam, North-Holland Publishing Co., p. 369–399.Google Scholar
  184. Raulin, F., and Toupance, G. 1975. Formating prebiochemical compounds in models of the primitive earth’s atmosphere. II. CH4–H2S atmospheres. Origins Life. 6: 91–97.Google Scholar
  185. Ring, D., Wolman, Y., Friedmann, N., and Miller, S. L. 1972. Prebiotic synthesis of hydrophobic and protein amino acids. Proc. Nat. Acad. Sci. USA. 69: 765–768.PubMedGoogle Scholar
  186. Rohlfing, D. L., and Fouche, C. E. 1972. Stereo-enriched poly-a-amino acid synthesis under postulated prebiotic conditions. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Press, p. 219–231.Google Scholar
  187. Rubey, W. W. 1951. Geologic history of sea water: An attempt to state the problem. Bull. Geol. Soc. Am. 62: 1111–1148.Google Scholar
  188. Rubey, W. W. 1955. Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere. Spec. Paper Geol. Soc. Am. 62: 631–650.Google Scholar
  189. Rutten, M. G. 1969. Sedimentary ores of the early and middle Precambrian and the history of atmospheric oxygen. In: Sedimentary Ores: Ancient and Modern. (Revised), Leicester, Engl., Univ. of Leicester Press, p. 187–195.Google Scholar
  190. Rutten, M. G. 1970. The history of atmospheric oxygen. Space Life Sciences. 2: 5–17.PubMedGoogle Scholar
  191. Safthill, R. 1970. Selective phosphorylation of the cis-2’, 3’-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 35: 2881–2883.Google Scholar
  192. Sagan, C., and Khare, B. N. 1971. Long-wavelength ultraviolet photoproduction of amino acids on the primitive earth. Science. 173: 417–420.PubMedGoogle Scholar
  193. Sanchez, R. A., Ferris, J. P., and Orgel, L. E. 1966. Cyanoacetylene in prebiotic synthesis. Science. 154: 784–785.PubMedGoogle Scholar
  194. Saunders, M. A. and Rohlfing, D. L. 1972. Polyamino acids: Preparation from reported proportions of “prebiotic” and extraterrestrial amino acids. Science. 176: 172–173.PubMedGoogle Scholar
  195. Schmitz, E., 1913. Über den Mechanismus der Acrose-bildung. Chem. Berich. 46: 2327–2335.Google Scholar
  196. Scholes, G., Stein, G., and Weiss, J. 1949. Action of X-rays on nucleic acids. Nature. 164: 709–710.PubMedGoogle Scholar
  197. Scholes, G., and Weiss, J. 1953a. Formation of labile phosphate esters by irradiation of nucleic acids with X-rays in aqueous systems. Nature. 171: 920–921.PubMedGoogle Scholar
  198. Scholes, G., and Weiss, J. 1953b. Chemical action of X-rays on nucleic acids and related substances in aqueous systems. Biochem. J. 53: 567–578.PubMedGoogle Scholar
  199. Schramm, G. 1965. Synthesis of nucleosides and polynucleotides with metaphosphate esters. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 299–315.Google Scholar
  200. Schramm, G. 1971. Synthesis and properties of polyarabinonucleotides. In: Kimball, A. P., and J. Oro, Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 95–101.Google Scholar
  201. Schramm, G., Grotsch, H., and Poliman, W. 1961. Nicht-enzymatische synthese von polysacchariden Nucleosiden und Nucleinsäuren, Angew. Chem. 73: 619.Google Scholar
  202. Schramm, G., Grotsch, H., and Pollman, W. 1962. Nonenzymatic synthesis of polysaccharides, nucleosides, and nucleic acids and the origin of self-reproducing systems. Angew. Chem. 74: 53–60.Google Scholar
  203. Schramm, G., and Ulmer-Schiirnbrand, I. 1967. Synthesis of polyspongouridylic acids from uridylic acids and phenylpolyphosphate esters. Biochim. Biophys. Acta. 145: 7–20.PubMedGoogle Scholar
  204. Schramm, G., and Wissman, H. 1958. Peptidsynthesen mit Hilfe von Polyphosphorsäureestern. Chem. Berich. 91: 1073–1082.Google Scholar
  205. Schwartz, A. W. 1969. Specific phosphorylation of the 2’ and 3’ positions in ribonucleosides. Chem. Commun. 23: 1393.Google Scholar
  206. Schwartz, A. W. 1971. Phosphate: Solubilization and activation on the primitive earth. In: Buvet, R., and C. Ponnamperuma, eds. Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 207–215.Google Scholar
  207. Schwartz, A. W. 1972a. The sources of phosphorus on the primitive earth-an inquiry. In: Rohlfing, D. L., and A. I. Oparin, eds., Molecular Evolution: Prebiological and Biological., New York, Plenum Publishing Co., p. 129–140.Google Scholar
  208. Schwartz, A. W. 1972b. Prebiotic phosphorylation-nucleotide synthesis with apatite. Biochim. Biophys. Acta. 281: 477–480.PubMedGoogle Scholar
  209. Schwartz, A. W., Bradley, E., and Fox, S. W. 1965. Thermal condensation of cytidylic acid in the presence of polyphosphoric acid. In: Fox, S. W., ed., The Origins of Prebiological Systems., New York, Academic Press, p. 317–326.Google Scholar
  210. Schwartz, A. W., and Deuss, H. 1971. Concentrative processes and the origin of biological phosphates. In: Schwartz, A. W., ed., Theory and Experiment in Exobiology., Groningen, Netherlands, Wolters-Noordhoff Publishing Co., p. 75–81.Google Scholar
  211. Schwartz, A. W., and Fox, S. W. 1967. Condensation of cytidylic acid in the presence of poly-phosphoric acid. Biochim. Biophys. Acta. 134: 9–16.Google Scholar
  212. Schwartz, A. W., and Ponnamperuma, CX. 1971. Phosphorylation of nucleosides by condensed phosphates in aqueous systems. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 78–82.Google Scholar
  213. Schwartz, A. W., van der Veen. M., Bisseling, T., and Chittenden, G. J. F. 1973, Prebiotic phosphorylation II: Nucleotide synthesis in the reaction system apatiteacyanogen-water. Bio-Systems. 5: 119–122.PubMedGoogle Scholar
  214. Schwartz, A. W., van der Veen, M., Bisseling T., and Chittenden, G. J. F. 1975. Prebiotic nucleotide synthesis demonstration of a geologically plausible pathway. Origins Life. 6: 16 2168.Google Scholar
  215. Shimizu, M. 1975. Molten earth and the origin of prebiological molecules. Origins Life. 6: 15–21.Google Scholar
  216. Sillén, L. G. 1967. The ocean as a chemical system. Science. 156: 1189–1196.PubMedGoogle Scholar
  217. Simionescu, C., Dénes, F., and Macoveanu, M. 1973. Synthesis of some amino acids, sugars, and peptides in cold plasma. Electron-microscopic studies on some proteid forms (III) Biopolymers. 12: 237–241.Google Scholar
  218. Skoda, J., and Morâvek, J. 1966. Formation uridylyl (3’ 5’) uridine, uridylyl (2’5’) uridine, 6azauridylyl (3’ 5’) 6-azauridine and 6-azauridylyl (2’s 5’)-6-azauridine by thermic phosphorylation of the corresponding nucleosides with inorganic phosphate. Tetrahedron Lett. 1966: 4167–4172.Google Scholar
  219. Smoluchowski, R. 1975. Jupiter 1975. Am. Sci. 63: 638–648.Google Scholar
  220. Soffen, G. A. 1976. Scientific results of the Viking missions. Science. 194: 1274–1276.PubMedGoogle Scholar
  221. Stabaugh, M. R., Haney, A. J. and Nagyvary, J. 1974. The possible role of inorganic thiophosphate as a prebiotic phosphorylating agent. J. Mol Evol. 3: 317–321.Google Scholar
  222. Steinman, G. 1971. Nonenzymatic synthesis of biologically pertinent peptides. In: Kimball, A. P., and J. Oro, eds., Prebiotic and Biochemical Evolution., Amsterdam, North-Holland Publishing Co., p. 31–38.Google Scholar
  223. Steinman, G., and Cole, M. N. 1967. Synthesis of biologically pertinent peptides under possible primordial conditions. Proc. Nat. Acad. Sci. USA. 58: 735–742.PubMedGoogle Scholar
  224. Steinman, G., and Cole, M. N. 1968. Residue interactions within peptide systems. Fed. Proc. 27: 765.Google Scholar
  225. Steinman, G., Kenyon, D. H., and Calvin, M. 1965. Dehydration concentration in aqueous solution. Nature. 206: 707–708.Google Scholar
  226. Steinman, G., Lemmon, R. M., and Calvin, M. 1964. Cyanamide: A possible key compound in chemical evolution. Proc. Nat. Acad. Sci. USA. 52: 27–30.PubMedGoogle Scholar
  227. Steinman, G., Smith, A. E., and Silver J. J. 1968. Synthesis of a sulfur-containing amino acid under simulated prebiotic conditions. Science. 159: 1108–1109.PubMedGoogle Scholar
  228. Stephen-Sherwood, E., Oro, J., and Kimball, A. P. 1971. Thymine: A possible prebiotic synthesis. Science. 173: 446–447.PubMedGoogle Scholar
  229. Stephen-Sherwood, E., Odom, D. G., and Oro, J. 1974. The prebiotic synthesis of deoxythymidine oligonucleotides. J. Mol. Evol. 3: 323–330.PubMedGoogle Scholar
  230. Sulston, J., Lohrmann, R., Orgel, L. E., and Miles, H. T. 1968a. Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc. Nat. Acad. Sci. USA. 59: 726–733.PubMedGoogle Scholar
  231. Sulston, J., Lohrmann, R., Orgel, L. E., and Miles, H. T. 1968b. Specificity of oligonucleotide synthesis directed by polyuridylic acid. Proc. Nat. Acad. Sci. USA. 60: 409–415.PubMedGoogle Scholar
  232. Sulston, J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H., and Weimann, B. J. 1969. Non-enzymatic oligonucleotide synthesis on a polycytidylate template. J. Mol. Biol. 40: 227–234.PubMedGoogle Scholar
  233. Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1946. The Oceans: Their Physics., Chemistry., and Biology. New York, Prentice-Hall Publishing Co.Google Scholar
  234. Toupance, G., Raulin, F., and Buvet, R. 1975. Formation of prebiochemical compounds in models of the primitive earth’s atmosphere. I. CH4–NH3 and CH4–N2 atmospheres. Origins Life. 6: 83–90.Google Scholar
  235. Tseng. S. S., and Chang, S. 1975. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces-an ESR study. Origins Life. 6: 61–73.Google Scholar
  236. Ts’o, P. O. P. 1970. Monomeric units of nucleic acids-bases, nucleosides, and nucleotides. In: Fasman, G. D., and S. N. Timasheff, eds., Fine Structure of Proteins and Nucleic acids. New York, Marcel Dekker, Inc., p. 49–190.Google Scholar
  237. Urey, H. C. 1952. The Planets. New Haven, Conn., Yale University Press.Google Scholar
  238. Urey, H. C. 1960. Primitive planetary atmospheres and the origin of life. In: Florkin, M., ed., Aspects of the Origin of Life., New York, Pergamon Press, p. 8–14.Google Scholar
  239. Usher, D. A., and McHale, A. H. 1976. Nonenzymatic joining of oligoadenylates on a poly A template. Science. 192: 53–54.PubMedGoogle Scholar
  240. Van Trump, J. E., and S. L. Miller, 1972. Prebiotic synthesis of methionine. Science. 178: 859–860.PubMedGoogle Scholar
  241. Van Wazer, J. R. 1958. Phosphorus and its Compounds. Vol. I., New York, Interscience. Waehneldt, T. J., and Fox, S. W. 1967. Phosphorylation of nucleosides with polyphosphoric acid. Biochim. Biophys. Acta. 134: 1–8.Google Scholar
  242. Wakamatsu, H., Yamada, Y., Saito, T., Kumashiro, I., and Takenishi, T. 1966. Synthesis of adenine by oligomerization of HCN. J. Org. Chem. 31: 2035–2037.Google Scholar
  243. Wald, G. 1964. The origins of life. Proc. Nat. Acad. Sci. USA. 52: 595–611.PubMedGoogle Scholar
  244. Wald, G. 1974. Fitness in the universe: Choices and necessities. In: Oro, J., S. L. Miller, C. Ponnamperuma, and R. S. Young, eds., Cosmochemical Evolution and the Origins of Life. Vol. 1, Dordrecht, Holland, D. Reidel Publishing Co., p. 7–27.Google Scholar
  245. Yamamoto, O. 1972a. Radiation-induced binding of cysteine and cystine with aromatic amino acids and serum albumin in aqueous solution. Int. J. Radiat. Phys. Chem. 4: 227–236.Google Scholar
  246. Yamamoto, O. 1972b. Radiation-induced binding of methionine with serum albumin, tryptophan or phenylalanine in aqueous solution. Int. J. Radiat. Phys. Chem. 4: 335–345.Google Scholar
  247. Yamamoto, O. 1973a. Radiation-induced binding of nucleic acid constituents with protein constituents and with each other. Int. J. Radiat. Phys. Chem. 5: 213–229.Google Scholar
  248. Yamamoto, O. 1973b. Radiation-induced binding of phenylalanine, trypotophan, and histidine mutually and with albumin. Radiat. Res. 54: 398–410.PubMedGoogle Scholar
  249. Yang, C. C., and Orò, J. 1971. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process. In: Buvet, R., and C. Ponnamperuma, eds., Chemical Evolution and the Origin of Life., Amsterdam, North-Holland Publishing Co., p. 155–170.Google Scholar
  250. Yuasa, S., and Ishigami, M. 1975. High frequency discharge experiment. I. Formation of organic compounds from methane and ammonia. Origins Life. 6: 75–81.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations