Advertisement

The Oceans

  • G. E. R. Deacon

Abstract

Early workers, such as Benjamin Franklin, who made a careful study of the stilling of waves by oil, Froude, the pioneer of ship-model testing, and Stokes, who made extensive contributions to the theory of waves, recognized that the crests and troughs that we see, are complex combinations of simpler wave trains, which, travelling independently of one another, and at different speeds, get in and out of step to give an interference pattern. The early workers could not do better than represent the complex pattern by the unsatisfactory concept of an average wavelength and speed. Spectral analysis, already proved for the study of light, sound and electromagnetic, waves, was not applied to the study of waves till 1944 when wartime urgency for reliable wave predictions provided the necessary incentive. It showed that wind waves behave as a continuous spectrum of wave trains, up to a maximum which depends on the greatest wind strength, each travelling independently of the others with a velocity proportional to the square root of its wavelength, as expected from classical theory1.

Keywords

Wave Train Deep Ocean Wind Wave Gulf Stream North Atlantic Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

1. Wind Waves and Swell

  1. 1.
    N.F.Barber and F.Ursell, Phil. Trans. Roy. Soc. A 240, 527 ( 1948.CrossRefGoogle Scholar
  2. 2.
    F.E.Snodgrass, G.W.Groves, K.F.Hasselmann, G.R.Miller, W.H.Munk and W.H.Powers, Phil. Trans. Roy. Soc. A 431 (1966).Google Scholar
  3. 3.
    D.E.Cartwright, Phil. Trans. Roy. Soc. A 270, 603 (1971)CrossRefGoogle Scholar
  4. 4.
    H.Jeffreys, Proc. Roy. Soc. A 107, 189 (1924).Google Scholar
  5. 5.
    M.Phillips, J. Fluid Mech., 2, 417 (1957).Google Scholar
  6. 6.
    J.W.Miles, J. Fluid Mech., 3, 185 (1957).Google Scholar
  7. 7.
    M.J.Tucker, Nature, 170, 657 (1952).CrossRefGoogle Scholar
  8. 8.
    M.S.Longuet-Higgins, J. Marine Research, 11, 245 (1952).Google Scholar
  9. 9.
    D.L.Harris, U.S. Weather Bureau Tech. Pap. No. 48, (1963).Google Scholar
  10. 10.
    M.S.Longuet-Higgins, Applied Mechanics Proc. 13th Int. Congress, Moscow, (1972).Google Scholar
  11. 11.
    Seakeeping Soc. Nay. Archit. (1953–1973) and Mar. Eng. N.Y. (1974).Google Scholar
  12. 12.
    M.S.Longuet-Higgins, Phil. Trans. Roy. Soc. A 242, 1 (1950).CrossRefGoogle Scholar
  13. 13.
    T.P.Barnett and K.E.Kenyon, Rep. Prog. Phys., 38, 667 (1975).CrossRefGoogle Scholar

2. Tide and Surges

  1. 1.
    A.T.Doodson, Proc. Roy. Soc. A 100, 305 (1921).CrossRefGoogle Scholar
  2. 2.
    D.E.Cartwright, A.C.Edden, Geophys. J. R. Astr. Soc., 33, 253 (1973).CrossRefGoogle Scholar
  3. 3.
    W.B.Zerbe, Trans. Amer. Geophys. Un., 30, 357 (1949).Google Scholar
  4. 4.
    D.E.Cartwright, Science Journal, 5, 60 (1969).Google Scholar

3. Ocean Currents

  1. 1.
    B.A.Warren, Research in the Antarctic. Amer. Ass. Adv. Sci. Washington D.C., 631 (1971).Google Scholar

4. Chemistry of the Sea

  1. 1.
    M.S.Longuet-Higgins, Mon. Nat. R. Astr. Soc. Geophys. Suppl., 5, 283 (1949).Google Scholar
  2. 2.
    N.F.Barber, Mon. Nat. R. Astr. Soc. Geophys. Suppl., 5, 258 (1948).Google Scholar
  3. 3.
    K.F.Bowden, Phil. Trans. Roy. Soc. A 248, 517 (1956).CrossRefGoogle Scholar
  4. 4.
    D.E.Cartwright, J. Inst. Navig., 14, 130 (1961).Google Scholar
  5. 5.
    D.E.Cartwright, J. Crease Proc. Roy. Soc. A 173, 558, (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • G. E. R. Deacon
    • 1
  1. 1.Institute of Oceanographic SciencesWormley, Godalming, SurreyEngland

Personalised recommendations