Advertisement

Applications of Superconductivity to Fundamental Research in Physics

  • M. Yaqub

Abstract

Attempts to utilize the complete absence of electrical resistance and other characteristic properties of superconductors for technological purposes started almost immediately after the discovery of the phenomenon itself. For nearly fifty years, however, applications were confined to specialized devices in which superconducting components were employed mainly for research in low temperature Physics. In the early sixties, the discovery of high field super-conductorsl, tunneling2 and the Josephson effects3 suddenly changed the picture, and in the short period of just over a decade, the subject of applied superconductivity has grown to such an extent, that it is now virtually impossible for an individual even to enumerate all the applications, let alone discuss them in any detail. For this reason, I shall confine myself to brief descriptions of a few selected applications which are currently employed in low temperature and high energy physics. The choice is somewhat arbitrary, being dictated by my own interests and by the fact that recent applications of superconductivity are having a large impact on experimental particle physics. Some of the applications discussed are relatively simple, both in concept and in technical details, and can be made to function by using inexpensive equipment. For the benefit of non specialists, the physics of these applications is discussed in simple terms and the technical details are avoided. They can be found in the list of references given at the end.

Keywords

Fermi Surface Flux Tube Josephson Junction Tunnel Junction Physic Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Kunzler, E.Buehler, F.S.L.Hsu and H.H.Wernick, Phys. Rev. Lett. 6, 89 (1961).CrossRefGoogle Scholar
  2. 2.
    I. Giaever, Phys. Rev. Lett. 5 147, 464 (1960).CrossRefGoogle Scholar
  3. 3.
    B.D. Josephson, Phys. Lett. 1, 251 (1962).CrossRefGoogle Scholar
  4. P.W. Anderson and J.M. Rowell, Phys. Rev. Lett. 10, 230 (1963).CrossRefGoogle Scholar
  5. S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).CrossRefGoogle Scholar
  6. 4.
    P.C. Hohenberg, Proc. of the Conference on Fluctuations in Superconductors, Pacific Grove, California, 1968. Ed. W.S.Goree and F.Chilton.Google Scholar
  7. 5.
    J.F. Schooley and R.J. Soulen, Jr., Temp. Measurement in Science and Industry, Instrument Society of America (1972), p. 169.Google Scholar
  8. 6.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  9. 7.
    N.E. Phillips, Phys. Rev. 134, 385 (1964).CrossRefGoogle Scholar
  10. 8.
    M. Yaqub, Cryogenics 1, 101 (1960).CrossRefGoogle Scholar
  11. 9.
    C.J. Gorter, Physica 14, 504 (1948).CrossRefGoogle Scholar
  12. 10.
    J. Bardeen, G.Rickyazen and L.Tewordt, Phys. Rev. 113, 982 (1959).CrossRefGoogle Scholar
  13. 11.
    V.P. Peshkov and A.Ya Parshin, Proc. of the 9th Conf. on Low Temp. Phys., Plenum Press London, 517 (1965).Google Scholar
  14. R.H. March and O.G. Symko, Proc. of the Grenoble Conf., Int. Institute of Refrigeration Annexe 2, p. 57 (1965).Google Scholar
  15. W. Reese and W.A. Steyert, Rev. of Sci.Instrum., 33, 43 (1962).CrossRefGoogle Scholar
  16. J.K.N. Sharma, Cryogenics 7, 141 and 195 (1967).Google Scholar
  17. W.P. Kirk, Brookhaven National Laboratory, Report No.14363, New York (1970).Google Scholar
  18. 12.
    P.M. Berglund, G.J.Enholm, R.G.Gyling, 0.V.Lounasma and R.P.S$vik, Cryogenics 12, 297 (1972).CrossRefGoogle Scholar
  19. 13.
    A.A. Abrikosov, Soviet Phys. JETP 5, 1174 (1957).Google Scholar
  20. 14.
    V.L. Ginzberg and L.D.Landau, Zh.Eksperim. i Teor. Fiz 20, 1064 (1950).Google Scholar
  21. 15.
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, p. 144.Google Scholar
  22. 16.
    M. Tinkham, ibid, p. 157.Google Scholar
  23. 17.
    B.T. Matthias, Proc. of the App. Super. Conf. IEEE Trans. on Magnetics, Vol. MAG 11, p. 154 (1975)CrossRefGoogle Scholar
  24. S. Foner, E.J. McNiff and E.J. Alexander, ibid, p. 155.Google Scholar
  25. 18.
    T.H. Fields, Proc. of the App. Super. Conf. IEEE Trans. on Magnetics, Vol. MAG 11, p. 113 (1975).CrossRefGoogle Scholar
  26. 19.
    J.R. Purcell, IEEE Conf. Record IEEE Cat. No.72 CHO 6825 TABCS, p. 246 (1972).Google Scholar
  27. 20.
    M.N. Wilson, G.R. Walters, J.D. Lewin and P.F. Smith, J. Phys. D3, 1518 (1970).Google Scholar
  28. 21.
    W. Heinz, Proc. of Fifth Int. Cryogenic Eng. Conf. Kyoto IPC Science and Technology Press, p. 517.Google Scholar
  29. 22.
    A.V. Gold, Solid State Physics, Vol. I, Electrons in Metals, Gordon and Breach, New York (1968), p. 39.Google Scholar
  30. 23.
    C.J. Gorter, Phys. Z 35, 923 (1934).Google Scholar
  31. 24.
    N. Kurti and F.E. Simon, Proc. Roy. Soc. A 149, 152 (1935).CrossRefGoogle Scholar
  32. 25.
    E. Ambler and R.P. Hudson, Rep. Prog. Phys. 18, 251 (1955).CrossRefGoogle Scholar
  33. 26.
    N. Kurti, F.N.H. Robinson, F.E.Simon and D.A.Spohr, Nature 178, 450 (1956).CrossRefGoogle Scholar
  34. 27.
    J.C. Wheatley, R.E. Rapp and R.T. Johnson, Jour. of Low Temp. Phys. 4, 1 (1971).Google Scholar
  35. 28.
    For details of recent nuclear demagnetizations see O.V.Lounasma, Experimental Principles and Methods Below 1 K, Academic Press, London (1974), p. 103.Google Scholar
  36. 29.
    D.D. Osheroff, R.C. Richardson and D.M. Lee, Phys. Rev. Lett. 28, 885 (1972).CrossRefGoogle Scholar
  37. 30.
    A.I. Ahonen, M.T. Heikala, M. Krusius and O.V. Lounasma, Phys. Rev. Lett. 33, 628 (1974).CrossRefGoogle Scholar
  38. 31.
    This cryostat has been designed at The Ohio State University by G.Ihas and D.O.Edwards.Google Scholar
  39. 32.
    I. Giaever, Phys. Rev. Lett. 5, 147 464 (1960).CrossRefGoogle Scholar
  40. 33.
    J. Nicol, S. Shapiro and P.H. Smith, Phys. Rev. Lett. 5, 461 (1960).CrossRefGoogle Scholar
  41. 34.
    J.G. Adler and J.E. Jackson, Rev. Sci. Instrum. 37, 1049 (1966).CrossRefGoogle Scholar
  42. 35.
    D.E. Thomas and J.M. Rowell, Rev. Sci. Instrum. 36, 1301 (1965).CrossRefGoogle Scholar
  43. 36.
    D.H. Douglass and L.M. Falicov, Prog. Low Temp. Phys., North Holland Pub. Co., Vol. 4, (1964), Ed. C.J.Gorter P. 97.Google Scholar
  44. 37.
    B.T. Matthias, H. Suhl and E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958).CrossRefGoogle Scholar
  45. 38.
    B.T. Matthias, H. Suhl and E. Corenzwit, J. Phys. Chem. Sol. 13, 156 (1960).CrossRefGoogle Scholar
  46. 39.
    K. Schwidtal, Z. Phys. 158, 563 (1960).CrossRefGoogle Scholar
  47. 40.
    A.A. Abrikosov and L.P. Gorkov, Sov. Phys. JETP 12, 1243 (1961).Google Scholar
  48. 41.
    M.A.W. Reif and F.R. Wolf, Phys. Rev. 137A, 557 (1965).CrossRefGoogle Scholar
  49. 42.
    L. Cooper, Phys. Rev. Lett. 3, 17 (1959).CrossRefGoogle Scholar
  50. 43.
    E.V. Zavaritski, LT 8, Butterworth London (1963), p. 175; Sov. Phys. JETP 16, 793 (1963); JETP 21, 557 (1965).Google Scholar
  51. 44.
    B.L. Blackford, Physica 55, 475 (1971); Low Temp. Phys. 23, 43 (1976).Google Scholar
  52. 45.
    W.D. Gregory, L.S. Straus, R.F. Averill, J.C.Kester and C.Chapman, Low Temp. Phys. LT 13, Plenum Press, N.Y. (1974) Vol. 3, p. 316.Google Scholar
  53. 46.
    J. Pollick and M. Yaqub, to be published.Google Scholar
  54. 47.
    J.E. Dowman, M.L.A. McVicar and J.R. Waldram, Phys. Rev. 186, 452 (1969).CrossRefGoogle Scholar
  55. 48.
    I. Giaever, H.R. Hart and K. Megerle, Phys. Rev. 126, 941 (1962).CrossRefGoogle Scholar
  56. 49.
    J.M. Rowell, P.W. Anderson and D.E. Thomas, Phys. Rev. Lett. 10, 334 (1963).CrossRefGoogle Scholar
  57. 50.
    J.R. Schrieffer, D.J. Scalapino and J.W. Wilkins, Phys. Rev. Lett. 10, 336 (1963).CrossRefGoogle Scholar
  58. 51.
    B.N. Brockhouse, T. Arase, G. Cagliote, K.R. Rao and A.D.B. Woods, Phys. Rev. 128, 1099 (1962).CrossRefGoogle Scholar
  59. 52.
    W.L. McMillan and J.M. Rowell, Phys. Rev. Lett. 14, 108 (1965).CrossRefGoogle Scholar
  60. 53.
    J.M. Rowell and L. Kopf, Phys. Rev. 137A, 907 (1965).CrossRefGoogle Scholar
  61. 54.
    L. Tewardt, Phys. Rev. 127, 371 (1962) and 128, 12 (1962).CrossRefGoogle Scholar
  62. 55.
    W. Eisenmenger and A.H. Dayem, Phys. Rev. Lett. 18, 125 (1967).CrossRefGoogle Scholar
  63. 56.
    R.C. Dynes and V. Narayanamurti, Phys. Rev. B6, 143 (1972).CrossRefGoogle Scholar
  64. 57.
    H. Kinder and W. Dietsche, Phys. Rev. Lett. 33, 578 (1974).CrossRefGoogle Scholar
  65. 58.
    R.C. Dynes and V. Narayanamurti, Phys. Rev. B12, 1720 (1975).CrossRefGoogle Scholar
  66. 59.
    V. Narayanamurti and R.C. Dynes, Phys. Rev. B13, 2898 (1976).CrossRefGoogle Scholar
  67. 60.
    R.C. Dynes, private communication.Google Scholar
  68. 61.
    W.J. Tomasch, Phys. Rev. Lett. 15, 672 (1965).CrossRefGoogle Scholar
  69. 62.
    W.L. McMillan and P.W. Anderson, Phys. Rev. Lett. 16, 85 (1966).CrossRefGoogle Scholar
  70. 63.
    W.J.Tomasch, Tunnelling Phenomena in Solids, Plenum Press, N.Y. (1969), Ed. E.Burstein and S.Lundqvist, p. 315.Google Scholar
  71. 64.
    W.J. Tomasch and T. Wolfram, Phys. Rev. Lett. 16, 352 (1966).CrossRefGoogle Scholar
  72. 65.
    J.M. Rowell and W.L. McMillan, Phys. Rev. Lett. 16, 453 (1966).CrossRefGoogle Scholar
  73. 66.
    B.D. Josephson, Phys. Lett. 1, 251 (1962).CrossRefGoogle Scholar
  74. 67.
    P.W. Anderson and J.M. Rowell, Phys. Rev. Lett. 10, 230 (1963).CrossRefGoogle Scholar
  75. 68.
    B.D.Josephson, Adv. in Phys. 14, 419 (1965).Google Scholar
  76. 69.
    D.J. Scalapino, Tunnelling Phenomena in Solids, Plenum Press, N.Y. (1969), Ed. E.Burstein and S.Lundqvist, p. 477Google Scholar
  77. 70.
    B.N. Taylor, D.N. Langenberg and W.H. Parker, Rev. Mod. Phys. 41, 375 (1969).CrossRefGoogle Scholar
  78. 71.
    R.C. Jaklevic, J. Lambe, J.E. Mercereau and A.H. Silver, Phys. Rev. 140A, 1628 (1965).CrossRefGoogle Scholar
  79. 72.
    A.H. Silver and J.E. Zimmerman, Applied Superconductivity, Academic Press, N.Y. (1975), Ed. V.L.Newhouse, p. 1.Google Scholar
  80. 73.
    W.H. Parker, D.N. Langenberg, A. Denenstein and B.N. Taylor, Phys. Rev. 177, 639 (1969).CrossRefGoogle Scholar
  81. 74.
    B.W. Petley and K. Morris, Phys. Lett. 29A, 289 (1969).Google Scholar
  82. 75.
    E.R. Cohen and J.W.M. DuMond, Rev. Mod. Phys. 37, 537 (1965).CrossRefGoogle Scholar
  83. 76.
    J.J. Sakurai, Advanced Quantum Mechanics, Addison Wesley, Reading, Mass., (1967).Google Scholar
  84. 77.
    J. Clarke, Phil. Mag., 13, 155 (1966).CrossRefGoogle Scholar
  85. 78.
    D.L. Waldorf and M. Yaqub, J. Low Temp. Phys. 3, 655 (1970);CrossRefGoogle Scholar
  86. R.S. Newbower and J.E Neighbor, Phys. Rev. Lett. 18, 538 (1967).CrossRefGoogle Scholar
  87. 79.
    E.R. Rumbo, Phil. Mag. 19, 689 (1969);Google Scholar
  88. 79.
    S.N.Mahajan, J.G.Daunt, R.I.Boughton and M.Yaqub, J. Low Temp. Phys. 12, 347 (1973);Google Scholar
  89. E.R. Rumbo, J. Phys. F Metal Phys. L9 (1973).Google Scholar
  90. 80.
    J. Clarke, Phys. Rev. Lett. 21, 1566 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. Yaqub
    • 1
  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations