The Primate Flocculus and Eye-Head Coordination

  • F. A. Miles


As a part of the classical vestibular cerebellum receiving a direct projection from the semicircular canals, the flocculus has long been thought to be implicated in the vestibular stabilization of the eyes. Anatomical and physiological studies in the cat and rabbit have generated a wealth of information about its relationship with brainstem vestibuloocular pathways, and there is currently considerable interest in the flocculus as the probable site of modifiable elements concerned with the long-term maintenance of appropriate vestibuloocular reflexes. Recent electrophysiological studies in the awake monkey, however, seem to indicate that the flocculus is also involved in other, previously unsuspected, aspects of oculomotor function. Before reviewing these new developments, I shall briefly describe the basic neuronal circuitry involved. For more extensive treatments of the latter, the reader is referred to a number of excellent review articles (1,2,3).


Retinal Image Vestibular Nucleus Inferior Olive Head Velocity Alert Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brodai, A. Vestibulocerebellar input in the cat: anatomy. Prog. Brain Res., 37: 315, 1972.CrossRefGoogle Scholar
  2. 2.
    Precht, W. Cerebellar influences on eye movements. In Basic Mechanisms of Ocular Motility and their Clinical Implications. Lennerstrand, G., and Bach-y-Rita, P., editors. Oxford, Pergamon Press, 1975.Google Scholar
  3. 3.
    Walberg, F. The vestibular nuclei and their connections with the eighth nerve and the cerebellum. In The Vestibular System. Naunton, R.F., editor. New York, Academic Press Inc., 1975.Google Scholar
  4. 4.
    Angaut, P., and Brodai, A. The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch. Ital. Biol., 105: 441, 1967.PubMedGoogle Scholar
  5. 5.
    Baker, R., Precht, W., and Llinas, R. Cerebellar modullatory action on the vestibulo-trochlear pathway in the cat. Exptl. Brain Res., 15: 364, 1973.Google Scholar
  6. 6.
    Brodai, A., and Høivik, B. Site and mode of termination of primary vestibulocerebellar fibres in the cat. Arch. Ital. Biol., 102: 1, 1964.Google Scholar
  7. 7.
    Fukuda, J., Highstein, S.M., and Ito, M. Cerebellar inhibitory control of the vestibulo-ocular reflex investigated in rabbit IIIrd nucleus. Exptl. Brain Res. 14: 511, 1972.CrossRefGoogle Scholar
  8. 8.
    Ito, M., Nisimaru, N., and Yamamoto, M. Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. Brain Res., 60: 238, 1973.PubMedCrossRefGoogle Scholar
  9. 9.
    Walberg, F., Bowsher, D., and Brodai, A. The termination of primary vestibular fibres in the vestibular nuclei in the cat. J. Comp. Neurol., 110: 391, 1958.PubMedCrossRefGoogle Scholar
  10. 10.
    Highstein, S.M, The organization of the vestibulo-oculomotor and trochlear reflex pathways in the rabbit. Exptl. Brain Res., 17: 285, 1973.Google Scholar
  11. 11.
    Precht, W., and Llinas, R. Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exptl. Brain Res., 9: 30, 1969.CrossRefGoogle Scholar
  12. 12.
    Brodai, A., and Torvik, A. Über den Ursprung der sekundären vestibulocerebellaren Fasern bei der Katze. Ein experimentellantomische Studie. Arch. Psychiat. Nervenkr., 195: 550, 1957.CrossRefGoogle Scholar
  13. 13.
    Shinoda, Y., and Yoshida, K. Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exptl. Brain Res., 22: 97, 1975.CrossRefGoogle Scholar
  14. 14.
    Wilson, V. J., Maeda, M., Franck, J. I., and Shimazu, H. Mossy fiber neck and second-order labyrinthine projections to cat flocculus. J. Neurophysiol., 30: 301, 1976.Google Scholar
  15. 15.
    Dow, R. S.: Efferent connections of the flocculonodular lobe in Macaca mulatta. J. Comp. Neurol., 68: 297, 1938.CrossRefGoogle Scholar
  16. 16.
    McMasters, R.E., Weiss, A.H., and Carpenter, M.B. Vestibular projections to the nuclei of the extraocular muscles. Amer. J. Anat., 118: 163, 1966.PubMedCrossRefGoogle Scholar
  17. 17.
    Simpson, J. I., Precht, W., and Llinas, R. Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum. Pflügers Arch., 351: 183, 1974.PubMedCrossRefGoogle Scholar
  18. 18.
    Alley, K., Baker, R., and Simpson, J. I. Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res., 98: 582, 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    Maekawa, K., and Kimura, M. Inhibition of climbing fiber responses of rabbit’s flocculus Purkinje cells induced by light stimulation of the retina. Brain Res., 65: 347, 1974.PubMedCrossRefGoogle Scholar
  20. 20.
    Maekawa, K., and Natsui, T. Climbing fiber activation of Purkinje cells in rabbit’s flocculus during light stimulation of the retina. Brain Res., 59: 417, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Maekawa, K., and Simpson, J. I. Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J. Neurophysiol., 36: 649, 1973.PubMedGoogle Scholar
  22. 22.
    Simpson, J. I., and Alley, K. E. Visual climbing fiber input to rabbit vestibulocerebellum: a source of direction-specific information. Brain Res., 82: 302, 1974.PubMedCrossRefGoogle Scholar
  23. 23.
    Eccles, J. C., Ito, M., and Szentagothai, J, The Cerebellum as a Neuronal Machine. Springer: N.Y., 1967.Google Scholar
  24. 24.
    Simpson, J. I., and Barmack, N. H. Alterations of vestibuloocular and optokinetic eye movements following lesions of the dorsal cap of the inferior olive in rabbits. 6th Ann. Meeting Soc. Neurosci., Toronto, p. 102, 1976Google Scholar
  25. 25.
    Hess, D. T., and Barmack, N. H. Multiple unitary activity and microstimulation of the inferior olive in rabbits. 6th Ann. Meeting Soc. Neurosci., Toronto, p. 110, 1976.Google Scholar
  26. 26.
    Albus, J. S. A theory of cerebellar function. Math. Biosc, 10: 25, 1971.CrossRefGoogle Scholar
  27. 27.
    Marr, D. A theory of cerebellar cortex. J. Physiol., 202: 437, 1969.PubMedGoogle Scholar
  28. 28.
    Ito, M. Neural design of the cerebellar motor control system. Brain Res., 40: 81, 1972.PubMedCrossRefGoogle Scholar
  29. 29.
    Dichgans, J., Bizzi, E., Morasso, P., and Tagliasco, V. The role of vestibular and neck afferents during eye-head coordination in the monkey. Brain Res., 71: 225, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Miles, F. A., and Fuller, J. H.: Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey. Brain Res., 80: 512, 1974.PubMedCrossRefGoogle Scholar
  31. 31.
    Koerner, F., and Schiller, P. H. The optokinetic response under open and closed loop conditions in the monkey. Exptl. Brain Res., 14: 318, 1972.CrossRefGoogle Scholar
  32. 32.
    Melvill Jones, G., and Davies, P. Adaptation of cat vestibulo-ocular reflex to 200 days of optically reversed vision. Brain Res., 103: 551, 1976.CrossRefGoogle Scholar
  33. 33.
    Robinson, D. A. Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J. Neurophysiol., 39: 954, 1976.PubMedGoogle Scholar
  34. 34.
    Miles, F. A., and Eighmy, B. B. Unpublished observations, 1976.Google Scholar
  35. 35.
    Gonshor, A., and Melvill Jones, G. Short-term adaptive changes in the human vestibulo-ocular reflex arc. J. Physiol., 256: 361, 1976.PubMedGoogle Scholar
  36. 36.
    Gonshor, A., and Melvill Jones, G. Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J. Physiol., 256;381, 1976.PubMedGoogle Scholar
  37. 37.
    Gauthier, G. M., and Robinson, D. A. Adaptation of the human vestibuloocular reflex to magnifying lenses. Brain Res., 92: 331, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Brindley, G. S. The use made by the cerebellum of the information that it receives from sense organs. Int. Brain Res. Org. Bull., 3: 80, 1964.Google Scholar
  39. 39.
    Davies, P., and Melvill Jones, G. An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Res., 103: 546, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Ito, M., and Miyashita, Y. The effects of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo-ocular reflex of rabbits. Proc. Japan Acad., 51: 716, 1975.CrossRefGoogle Scholar
  41. 41.
    Collewijn, H., and Kleinschmidt, H. J. Vestibulo-ocular and optokinetic reactions in the rabbit: changes during 24 hours of normal and abnormal interaction. In Basic Mechanisms of Ocular Motility and their Clinical Implications, Lennerstrand, G., and Bach-y-Rita, R., editors. Oxford, Pergamon Press, 1975.Google Scholar
  42. 42.
    Miles, F. A., and Fuller, J. H. Visual tracking and the primate flocculus. Science, 189: 1000, 1975.PubMedCrossRefGoogle Scholar
  43. 43.
    Lisberger, S. G., and Fuchs, A. F. Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res., 69: 347, 1974.PubMedCrossRefGoogle Scholar
  44. 44.
    Luschei, E. S., and Fuchs, A. F. Activity of brainstem neurons during eye movements of alert monkeys. J. Neurophysiol., 35: 444, 1972.Google Scholar
  45. 45.
    Miles, F. A. Single unit firing patterns in vestibular nuclei related to voluntary eye movements and passive body rotation in conscious monkeys. Brain Res., 71: 215, 1974.PubMedCrossRefGoogle Scholar
  46. 46.
    Keller, E. L., and Daniels, P. D. Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exptl. Neurol., 46: 187, 1975.CrossRefGoogle Scholar
  47. 47.
    Fuchs, A. F., and Kimm, J. Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J. Neurophysiol., 38: 1140, 1975.PubMedGoogle Scholar
  48. 48.
    Westheimer, G., and Blair, S. M. Oculomotor defects in cerebellectomized monkeys. Invest. Ophthalmol., 12: 618, 1973.PubMedGoogle Scholar
  49. 49.
    Ferin, M., Grigorian, R. A., and Strata, P. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exptl. Brain Res., 12: 1, 1971.CrossRefGoogle Scholar
  50. 50.
    Robinson, D. A. Models of oculomotor neural organization. In The Control of Eye Movements. Bach-y-Rita, P., and Collins, C. C., editors. New York: Academic Press Inc, 1971.Google Scholar
  51. 51.
    Young, L. R. Pursuit eye tracking movements. In The Control of Eye Movements. Bach-y-Rita, P., and Collins, C. C., editors. New York: Academic Press Inc, 1971.Google Scholar
  52. 52.
    Robinson, D. A. The mechanics of human smooth pursuit eye movement. J. Physiol., 180: 569, 1965.PubMedGoogle Scholar
  53. 53.
    Collewijn, H. An analog model of the rabbit’s optokinetic system. Brain Res., 36: 71, 1972.PubMedCrossRefGoogle Scholar
  54. 54.
    Krieger, H. P., and Bender, M. B. Optokinetic after-nystagmus in the monkey. E. E. G. Clin. Neurophysiol., 8: 97, 1956.CrossRefGoogle Scholar
  55. 55.
    Skavenski, A. A., and Robinson, D. A. Role of abducens neurons in vestibuloocular reflex. J. Neurophysiol., 36: 724, 1973.PubMedGoogle Scholar
  56. 56.
    Takemori, S., and Cohen, B. Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res., 72: 213, 1974.PubMedCrossRefGoogle Scholar
  57. 57.
    Ito, M., Shiida, T., Yagi, N., and Yamamoto, M. The cerebellar modification of rabbit’s horizontal vestibuloocular reflex induced by sustained head rotation combined with visual stimulation. Proc. Japan Acad., 50: 85, 1974.Google Scholar
  58. 58.
    Zee, D. S., Friendlich, A. R., and Robinson, D. A. The mechanism of downbeat nystagmus. Arch. Neurol., 30: 227, 1974.PubMedCrossRefGoogle Scholar
  59. 59.
    Wilson, V. J., Maeda, M., and Franck, J. I. Input from neck afferents to the cat flocculus. Brain Res., 89: 133, 1975.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson, V. J., Maeda, M., and Franck, J. I. Inhibitory interaction between labyrinthine, visual and neck inputs to the cat flocculus. Brain Res., 96: 357, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. A. Miles
    • 1
  1. 1.Laboratory of NeurophysiologyNational Institute of Mental HealthBethesdaMarylandUSA

Personalised recommendations