Eye Movements pp 179-219 | Cite as

The Neural Control of Saccadic Eye Movements: The Role of the Superior Colliculus

  • David L. Sparks
  • Jay G. Pollack


Traditionally, the superior colliculus (SC) has been considered a center for producing reflexive movements of the eyes and head in response to visual stimuli. But the suggestion that the SC is a critical or necessary structure for voluntary or involuntary eye movements has been vigorously disputed (Pasik et al., 1966). In recent years, evidence has accumulated which supports earlier suggestions that the SC is involved in coding the location of an object relative to the fovea and in eliciting saccadic movements which produce foveal acquisition of the object. An alternative hypothesis, that the SC is concerned with shifting attention to specific areas of the visual field, has received experimental support as well.


Receptive Field Superior Colliculus Movement Field Receptive Field Property Superior Colliculus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, V. C. and Rose, P. K. Projections of extraocular, neck muscle and retinal afferents to superior colliculus in the cat: Their connections to cells of origin of tectospinal tract. J. Neurophysiol., 38: 10–18, 1975.PubMedGoogle Scholar
  2. Adamuk, E. Über angeborene and erworbene association. von F. C. Donders. v. Graefes Arch. Ophthal., 18;153–164, 1972.Google Scholar
  3. Anderson, K. V., and Symmes, D. The superior colliculus and higher visual functions in the monkey. Brain Res., 13: 37–52, 1969.PubMedGoogle Scholar
  4. Angaut, P. The fastigio-tectal projections: An anatomical experimental study. Brain Res., 13: 186–189, 1969.PubMedGoogle Scholar
  5. Apter, J. T. Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol., 9: 73–86, 1946.PubMedGoogle Scholar
  6. Astruc, J. Corticofugal connections of area 9 (frontal eye field) in Macaca mulatta. Brain Res., 33: 241–256, 1971.PubMedGoogle Scholar
  7. Barnes, W. T., Magoun, H. W. and Ranson, S. W. The ascending auditory pathway in the brain stem of the monkey. J. Comp. Neurol. 79: 129–152, 1943.Google Scholar
  8. Benevento, L. A. and Fallon, J. H. The ascending projections of the superior colliculus in the rhesus monkey. J. Comp. Neurol., 169: 339–362, 1975.Google Scholar
  9. Benevento, L. A., and Rezak, M. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): An autoradiographic study. Brain Res., 108: 1–24, 1976.PubMedGoogle Scholar
  10. Bizzi, E. Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res., 10: 69–80, 1968.Google Scholar
  11. Bizzi, E. and Schiller, P. H. Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res., 10: 151–158, 1970.Google Scholar
  12. Black, P. and Myers, R. E. Connections of occipital lobe in monkey. Anat. Rec., 142: 216–216, 1962.Google Scholar
  13. Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., and Fuchs, A, F. Monkey retinal ganglion cells: Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J. Comp. Neurol., 164: 265–286, 1975.PubMedGoogle Scholar
  14. Burton, H. and Jones, E. G. The posterior thalamic region and its cortical projection in new world and old world monkeys. J. Comp. Neurol., 168: 249–302, 1976.PubMedGoogle Scholar
  15. Butter, C. M. Effects of superior colliculus, striate, and prestriate lesions on visual sampling in Rhesus monkeys. J. Comp. Physiol. Psychol., 87: 905–917, 1974.PubMedGoogle Scholar
  16. Cajal, S. R. Histologie du systeme nerveux de l’homme et des vértebrés. II. Maloine, Paris, 1954.Google Scholar
  17. Campos-Ortega, J. A. and Hayhow, W. R. On the organization of the visual cortical projection to the pulvinar in Macaca mulatta. Brain Behav. Evol., 6: 394–423, 1972.PubMedGoogle Scholar
  18. Cardu, B., Ptito, M., Dumont, M., and Lepore, E. Effects’ of ablations of the superior colliculi on spectral sensitivity in monkeys. Neuropsychol., 13: 297–306, 1975.Google Scholar
  19. Carpenter, M. B., Harbison, J. W., and Peter, P. Accessory oculomotor nuclei in the monkey: Projections and effects of discrete lesions. J. Comp. Neurol., 140: 131–153, 1970.PubMedGoogle Scholar
  20. Carpenter, M. B., and McMasters, R. E. Lesions of the substantia nigra in the rhesus monkey: Efferent fiber degeneration and behavioral observations. Amer. J. Anat., 114: 293–312, 1964.PubMedGoogle Scholar
  21. Casagrande, V. A., Harting, J. J., Hall, W. C. and Diamond, I. T. Superior colliculus of the Tree Shrew: A structural and functional subdivision into superficial and deep layers. Science, 177: 444–447, 1972.PubMedGoogle Scholar
  22. Casagrande, V. A. and Diamond, I. T. Ablation study of the superior colliculus in the tree shrew (Tupaia glis). J. Comp. Neurol. 156: 207–238, 1974.PubMedGoogle Scholar
  23. Cynader, M. and Berman, N. Receptive field organization of monkey superior colliculus. J. Neurophysiol., 35: 187–219, 1972.PubMedGoogle Scholar
  24. Denny-Brown, D. and Fischer, E. G. Physiological aspects of visual perception. II. The subcortical visual direction of behavior. Arch. Neurol., 33: 228–242, 1976.PubMedGoogle Scholar
  25. Denny-Brown, D. The midbrain and motor integration. Proc. Roy Soc. Med., 55: 527–538, 1962.PubMedGoogle Scholar
  26. Dräger, U. C. and Hubel, D. H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 38: 690–713, 1975.PubMedGoogle Scholar
  27. Dräger, U. C. and Hubel, D. H. Topography of visual and somatosensory projections to mouse superior colliculus. J. Neurophysiol., 39: 91–101, 1976.PubMedGoogle Scholar
  28. Finlay, B. L., Schiller, P. H., and Volman, S. F. The receptive field properties of corticotectal cells in striate cortex of the Rhesus monkey. Personal Communication.Google Scholar
  29. Garey, L. J., Jones, E. G., and Powell, T. P. S. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiat., 31: 135–157, 1968.PubMedGoogle Scholar
  30. Gilbert, D. C. and Kelly, J. P. The projections of cells in different layers of the cat’s visual cortex. J. Comp. Neurol., 163: 81–106, 1975.PubMedGoogle Scholar
  31. Goldberg, M. E., and Wurtz, R. H. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol., 35: 542–559, 1972.PubMedGoogle Scholar
  32. Gordon, B. Receptive fields in deep layers of cat superior colliculus. J. Neurophysiol., 36: 157–178, 1973.PubMedGoogle Scholar
  33. Grantyn, A. A. and Grantyn, R. Synaptic actions of tectofugal pathways on abducens motoneurons in the cat. Brain Res., 105: 269–285, 1976.PubMedGoogle Scholar
  34. Graybiel, A. M. Evidence for banding of the cat’s ipsilateral retinotectal connection. Brain Res., 114: 318–327, 1976.PubMedGoogle Scholar
  35. Hamilton, B. L. Projections of the nuclei of the periaqueductal gray matter of the cat. J. Comp. Neurol., 152: 45–58, 1974.Google Scholar
  36. Harting, J. K. Descending pathways from the monkey superior colliculus. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  37. Harting, J. K., Hall, W. C., Diamond, I. T., and Martin, G. F. Anterograde degeneration study of the superior colliculus in Tupaia glis: Evidence for a subdivision between superficial and deep layers. J. Comp. Neurol., 148: 361–386, 1973.PubMedGoogle Scholar
  38. Hendrickson, A., Wilson, M. E., and Toyne, M. L. The distribution of optic nerve fibers in Macaca mulatta. Brain Res., 23: 425–427, 1970.PubMedGoogle Scholar
  39. Hess, W. R., Burgi, S., and Bucher, V. Motorische Funktion des Tektal-und Tegmental-gebietes. Monats. Psychiatr. Neurol., 112: 1–52, 1946.Google Scholar
  40. Highstein, S. M., Mackawa, K., Steinacker, A., and Cohen, B. Synaptic input from the pontine reticular nuclei to abducens motoneurons and internuclear neurons in the cat. Brain Res., 112: 162–167, 1976.PubMedGoogle Scholar
  41. Hirasawa, K., Okano, S. and Kamio, S. Beitrag zur kenntnis über die corticalen extra-pyramidalen fäsern aus der area temporalis superior (area 22) beim affen. Z. Mikr. Anat. Forsch., 44: 74–84, 1938.Google Scholar
  42. Hoyt, W. F. and Daroff, R. M. Supranuclear disorders of ocular control systems in man. In: The Control of Eye Movements. ed. Bach-y-Rita and Collins, C. C., Academic Press, N.Y.: 175–235, 1971.Google Scholar
  43. Hubel, D. H., LeVay, S. and Wiesel, T. M. Mode of termination of retinotectal fibers in macaque monkey; an autoradiographic study. Brain Res., 96: 25–40, 1975.PubMedGoogle Scholar
  44. Ingle, D. and Sprague, J. M. (Eds) Sensorimotor Function of the midbrain tectum. Neurosci. Res. Prog. Bull., Vol. 13, No. 2 1975.Google Scholar
  45. Keating, E. G. Impaired orientation after primate tectal lesions. Brain Res., 67: 538–541, 1974.Google Scholar
  46. Keating, E. G. Effects of tectal lesions on peripheral field vision in the monkey. Brain Res., 104: 316–320, 1976.PubMedGoogle Scholar
  47. Keller, E. L. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol., 37: 316–331, 1974.PubMedGoogle Scholar
  48. Kurtz, D., and Butter, C. M. Deficits in visual discrimination performance and eye movements following superior colliculus ablations in rhesus monkeys. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  49. Kuypers, H. G. J. M., and Lawrence, D. G. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res., 4: 151–188, 1967.PubMedGoogle Scholar
  50. Langer, T., and Lund, R. D. The upper layers of the superior colliculus of the rat. A Golgi study. J. Comp. Neurol., 158: 405–436, 1974.Google Scholar
  51. Langer, T. Cellular patterns in the superior colliculus of the rat. A Golgi study. Masters thesis. U. Wash., Seattle, Washington 1971.Google Scholar
  52. Latto, R. and Cowey, A. Fixation changes after frontal eye-field lesions in monkeys. Brain Res., 30: 25–36, 1971.Google Scholar
  53. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H. and Fuchs, A. F. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp Neurol., 164: 287–304, 1975.PubMedGoogle Scholar
  54. Lund, J. S. and Boothe, R. G. Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J. Comp. Neurol., 159: 305–334, 1975.Google Scholar
  55. Lund, R. D. Terminal distribution in the superior colliculus of fibers originating in the visual cortex. Nature, 204: 1283–1285, 1964.PubMedGoogle Scholar
  56. Lund, R. D. Synaptic patterns in the superficial layers of the superior colliculus of the monkey, Macaca mulatta. Exp. Brain Res., 15: 194–211, 1972.PubMedGoogle Scholar
  57. Luschei, E. S. and Fuchs, A. F. Activity of brain stem neurons during eye movements of alert monkeys. J. Neurophysiol., 35: 445–461, 1972.PubMedGoogle Scholar
  58. MacKinnon, D. A., Gross, C. G., and Bender, D. G. A visual deficit after superior colliculus lesions in monkeys. Acta. Neurobiol. Exp., 36: 169–180, 1976.Google Scholar
  59. Magalhaes-Castro, H. H., Murata, L. A., and Magalhaes-Castro, B. Cat retinal ganglion cells projecting to the superior colliculus as shown by the horseradish peroxidase method. Exp. Brain Res., 25: 541–549, 1976.PubMedGoogle Scholar
  60. Malpeli, J. G. and Schiller, P. H. Properties of monkey retinal ganglion cells and their tectal projections. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  61. Mandl, G. The influence of visual pattern combinations on responses of movement sensitive cells in the cat’s superior colliculus. Brain Res., 75: 215–240, 1974.PubMedGoogle Scholar
  62. Marrocco, R. T. and Li, R. Retinotectal input to monkey superior colliculus. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  63. Matin, L. Eye movements and perceived visual direction. In: Handbook of Sensory Physiology. Vol. VII/4 Visual psychophysics. ed. Jameson, D. and Hurvich, L. M. Springer-Verlag, N.Y.: Pp. 331–380, 1972.Google Scholar
  64. Mcllwain, J. T. Visual receptive fields and their images in superior colliculus of the cat. J. Neurophysiol., 38: 219–230, 1975.Google Scholar
  65. Mettler, F. A. Corticofugal fiber connections of the cortex of Macaca mulatta. The parietal region. J. Comp. Neurol., 62: 263–291, 1935.Google Scholar
  66. Mohler, C. W., Goldberg, M. E. and Wurtz, R. H. Visual receptive fields of frontal eye field neurons. Brain Res., 61: 385–389, 1973.PubMedGoogle Scholar
  67. Mohler, C. W. and Wurtz, R. N. Organization of monkey superior colliculus; intermediate layer cells discharging before eye movements. J. Neurophysiol., 39: 722–744, 1976.PubMedGoogle Scholar
  68. Mohler, C. W. and Wurtz, R. H. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkey. Soc. Neurosci. 4th Ann. Meet., abstract, 1974.Google Scholar
  69. de Monasterio, S. M. Properties of linear and non-linear ganglion cells in monkey retina. Personal Communication.Google Scholar
  70. Moore, R. Y. and Goldberg, J. M. Ascending projections of the inferior colliculus in the cat. J. Comp. Neurol., 121: 109–136, 1963.Google Scholar
  71. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C. Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J. Neurophysiol., 38: 871–908, 1975.PubMedGoogle Scholar
  72. Myers, R. E. Striate cortex connections in the monkey. Fed. Proc., 21: 352, 1962.Google Scholar
  73. Myers, R. E. Cortical projections to midbrain in monkey. Anat. Rec. 145: 337–338, 1963.Google Scholar
  74. Nimi, K., Miki, M. and Kawamura, S. Ascending projections of the superior colliculus in the cat. Okjimas Folia Anat. Jap., 269-287, 1970.Google Scholar
  75. Ogren, M. and Hendrickson, A. Connections between extrastriate cortex and thalamus in squirrel monkey. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  76. Palmer, L. A., Rosenquist, A. C., and Sprague, J. M. Corticotectal systems in the cat: Their structure and function. In: Corticothalamic Projections and Sensorimotor Activities. eds, Frigyesi, T. L., Rinvik, E., and Yahr, M. D., Raven Press: N.Y., pp. 491–522, 1972.Google Scholar
  77. Pasik, T., Pasik, P., and Bender, M. B. The superior colliculus and eye movements. Arch. Neurol., 15: 420–436, 1966.PubMedGoogle Scholar
  78. Paula-Barbosa, M. M. and Sousa-Pinto, A. Auditory cortical projections to the superior colliculus in the cat. Brain Res., 50: 47–61, 1973.PubMedGoogle Scholar
  79. Petras, J. M. Connections of the parietal lobe. J. Psychiat. Res., 8: 189–201, 1971.PubMedGoogle Scholar
  80. Poirier, L. J. and Bertrand, C. Experimental and anatomical investigation of the lateral spino-thalamic and spinotectal tracts. J. Comp. Neurol., 102: 745–758, 1955.PubMedGoogle Scholar
  81. Pola, J. The relation of the perception of visual direction to eye position during and following a voluntary saccade. Unpublished doctoral dissertation, Columbia University, 1974.Google Scholar
  82. Powell, E. W., and Hatton, J. B. Projections of the inferior colliculus in the cat. J. Comp. Neurol., 136: 183–192, 1969.PubMedGoogle Scholar
  83. Precht, W., Schwindt, P. C. and Magherini, P. C. Tectal influences on cat ocular motoneurons. Brain Res., 82: 27–40, 1974.PubMedGoogle Scholar
  84. Raczkowski, D., Casagrande, V. A., Diamond, I. T. Visual neglect in the Tree Shrew after interruption of the descending projections of the deep superior colliculus. Exp. Neurol., 50: 14–29, 1976.PubMedGoogle Scholar
  85. Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res., 12: 1795–1808, 1972.PubMedGoogle Scholar
  86. Robinson, D. L. and Jarvis, D. C. Neurons of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol., 34: 925–936, 1971.Google Scholar
  87. Robson, J. A. and Hall, W. C. Projections from the superior colliculus to the dorsal lateral geniculate nucleus of the grey squirrel (Sciurus carolinensis). Brain Res., 113: 379–385, 1976.PubMedGoogle Scholar
  88. Rosvold, H, E., Mishkin, M. and Szwarcbart, M. K. Effects of subcortical lesions in monkeys on visual discrimination and single alternation performance. J. Comp. Physiol. Psychol., 51: 437–444, 1958.PubMedGoogle Scholar
  89. Roucoux, A. and Crommelinck, M. Eye movements evoked by superior colliculus stimulation in the alert cat. Brain Res., 106: 349–363, 1976.PubMedGoogle Scholar
  90. Santos-Anderson, R., Rezak, M., and Benevento, L. A. An autoradiographic study of the projections of the pretectum in the macaque monkey. Soc. Neurosci. 6th Ann. Meet., abstract, 1976.Google Scholar
  91. Schaefer, K. P. Unit analysis and electrical stimulation in the optic tectum of rabbits and cats. Brain Behav. Evol., 3: 222–240, 1970.PubMedGoogle Scholar
  92. Schiller, P. H. Some functional characteristics of the superior colliculus of the rhesus monkey. In: Cerebral Control of Eye Movements and Motion Perception, ed. Dichgans, J., and Bizzi, E. Basel: S. Karger, pp. 122–129, 1972.Google Scholar
  93. Schiller, P. H. and Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol., 34: 920–924, 1971.PubMedGoogle Scholar
  94. Schiller, P. H., Stryker, M., Cynader, M., and Berman, N. Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J. Neurophysiol., 37: 181–194, 1974.PubMedGoogle Scholar
  95. Schiller, P. H. and Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol., 35: 915–924, 1972.PubMedGoogle Scholar
  96. Schneider, G. E. Two visual systems. Science, 163: 895–902, 1969.PubMedGoogle Scholar
  97. Sparks, D. L., and Travis, R. P., Jr., Firing patterns of reticular formation neurons during horizontal eye movements. Brain Res., 90: 147–152, 1975.PubMedGoogle Scholar
  98. Sparks, D. L., Holland, R. and Guthrie, B. L. Size and distribution of movement fields in the monkey superior colliculus. Brain Res., 113: 21–34, 1976.PubMedGoogle Scholar
  99. Sprague, J. M. Mammalian Tectum: intrinsic organization, afferent inputs, and integrative mechanism. In: Sensorimotor Function of the Midbrain Tectum. ed. Ingle, D., and Sprague, J. M. NRP Bull., 13: 204–213, 1975.Google Scholar
  100. Sprague, J. M., Berlucchi, G., and Rizzolatti, G. The role of the superior colliculus and pretectum in vision and visually guided behavior. In: R. Jung (Ed.), Handbook of Sensory Physiology. Vol. VII/3 Central processing of visual information. Part B. Visual centers in the brain. Springer-Verlag: N.Y., pp. 27–101, 1973.Google Scholar
  101. Stein, B. E., Magalhaes-Castro, B. and Kruger, L. Relationship between visual and tactile representation in cat superior colliculus. J. Neurophysiol., 39: 401–419, 1976.PubMedGoogle Scholar
  102. Sterling, P. Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res. Suppl., 3: 309–328, 1971.Google Scholar
  103. Stryker, M. P. and Schiller, P. H. Eye and head movements evoked by electrical stimulation of monkey superior colliculus. Exp. Brain Res., 23: 103–112, 1975.PubMedGoogle Scholar
  104. Thomas, D. M., Kaufman, D. P., Sprague, J. M., and Chambers, W. N. Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigio-bulbar tract). J, Anat. Lond., 90: 371–385, 1956.Google Scholar
  105. Thompson, W. H. Degenerations resulting from lesions of the cortex of the temporal lobe. J. Anat. Physiol., 35: 147–165, 1900.Google Scholar
  106. Tokunaga, A. Neuronal structure of the superior colliculus of the rat. Chiba Igakkai Zasshi, 46: 298–299, 1970.Google Scholar
  107. Tokunaga, A. and Otani, K. Dendritic patterns of neurons in the rat superior colliculus. Exp. Neurol., 52: 189–205, 1976.PubMedGoogle Scholar
  108. Truex, R. C. and Carpenter, M. B. Human Neuroanatomy, Williams and Wilkins Co: Baltimore, Maryland, 1969.Google Scholar
  109. Updyke, B. V. Characteristics of unit responses in superior colliculus of the cebus monkey. J. Neurophysiol., 37: 896–909, 1974.PubMedGoogle Scholar
  110. Valverde, F. The neuropil in superficial layers of the superior colliculus of the mouse. Z. Anat. Entwicki.-Gesch., 142: 117–147, 1973.Google Scholar
  111. Victorov, I. V. Neuronal structure of the superior colliculus in the cat. Arch. Anat., 2: 45–55, 1968.Google Scholar
  112. Victorov, I. V. Neuronal structure of the anterior corpora bigemina in Insectivora and rodents. Arkh. Anat. Gistol. Empriol., 8: 82–89, 1966.Google Scholar
  113. Walls, G. L. The Vertebrate Eye and its Adaptive Radiation, Hafner Publishing Co.: New York, 1967.Google Scholar
  114. Wilson, M. E. and Toyne, M. J. Retinotectal and corticotectal projections in Macaca mulatta. Brain Res., 24: 395–406, 1970.PubMedGoogle Scholar
  115. Wurtz, R. H. and Goldberg, M. E. Activity of superior colliclus in behaving monkey. III. Cells discharging before eye movement. J. Neurophysiol., 35: 575–586, 1972.PubMedGoogle Scholar
  116. Wurtz, R. H. and Goldberg, M. E. Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movement. J. Neurophysiol., 35: 587–596, 1972.PubMedGoogle Scholar
  117. Wurtz, R. H. and Mohler, C. W. Organization of monkey superior colliculus; Enhanced visual response of superficial layer cells. J. Neurophysiol., 89: 745–764, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David L. Sparks
    • 1
  • Jay G. Pollack
    • 1
  1. 1.Department of Psychology, The Neurosciences Program and the School of OptometryUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations