Needs in Alloy Design for Nuclear Applications

  • A. L. Bement
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


In developing reactor-core alloys for current light-water-reactor systems, which operate at relatively low temperatures, primary consideration has been given to compatibility with the coolant environment, nuclear economy, reasonable strength at the operating temperature, and fabricability to both exacting product specifications and quality control standards. These criteria alone, however, have narrowly limited the choice of candidate alloy systems. Furthermore, thermal stability of the alloy system has not been a serious problem for these reactors, and it has been generally possible to design around radiation-induced changes in properties.

In advanced reactor systems, the alloy design requirements are more stringent because of higher operating temperatures; higher thermal cycles during off-normal reactor operation and shutdown; reduced compatibilities with coolants, fuel, and fission products; higher surface-to-volume ratios; and thinner sections for heat-transfer surfaces. Radiation-induced creep, growth, volume swelling, embrittlement, and atomic interchanges require special attention in the design analysis for these reactor systems.

For most alloys in metastable equilibrium, the thermodynamic relationships are often complex. Neutron radiation can affect alloy reactions through (1) destruction of order, (2) breakup of precipitates, (3) enhanced irradiation, (4) enhanced diffusion, and (5) retarded diffusion. Most efforts to date in alloy development to counter these effects have involved relatively modest changes in the composition, melt practice (residual element control), or thermal-mechanical treatments of commercially available alloys developed for other applications. However, new understandings of alloy behavior in neutron environments show promise of guiding the development of improved alloys which will have reduced susceptibilities to undesirable radiation effects.


Austenitic Stainless Steel Radiation Creep Nuclear Application Reactor Pressure Vessel Steel Vacancy Supersaturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steel, L. E., Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels ,Technical Report Series No. 163, International Atomic Energy Agency, Vienna, Austria (1975).Google Scholar
  2. 2.
    Steiner, S., Wash-1206, U.S. Atomic Energy Commission (April, 1972).Google Scholar
  3. 3.
    Lubell, M. S., et al., in Fourth IARA Conference on Plasma Physics and Controlled Nuclear Fusion Research ,Madison, Wisconsin (June, 1971).Google Scholar
  4. 4.
    Golovin, I. N., et al., in Nuclear Fusion Reactor Conference Proceedings ,Culham (1970).Google Scholar
  5. 5.
    Hubert, P., loc. cit.Google Scholar
  6. 6.
    Kulcinski, G. L., Doran, D. G., and Abdou, M. A., in Proceedings of the 7th ASTM International Symposium on Radiation Effects on Structural Materials ,Gatlinberg, Virginia (June, 1974).Google Scholar
  7. 7.
    Kulcinski, G. L., Personal Communications.Google Scholar
  8. 8.
    Beeler, J. R., Jr., in Radiation Damage in Reactor Materials ,Vol. II, IAEA, Vienna, Austria (1969), p. 12.Google Scholar
  9. 9.
    Beeler, J. R., Jr., Lattice Defects and Their Interactions ,Gordon and Breach, New York, N.Y. (1967), p. 621.Google Scholar
  10. 10.
    Beeler, J. R., Jr., J. Nucl. Mater. ,53, 207–212 (1974).CrossRefGoogle Scholar
  11. 11.
    Johnson, A. B., Jr., and Irvin, J. E., BNWL-463, Battelle’s Northwest Laboratories, Richland, Washington (1967).Google Scholar
  12. 12.
    Kulcinski, G. L., and Emmert, G. A., J. Nucl. Mater. ,53, 31 (1974).CrossRefGoogle Scholar
  13. 13.
    Kaminsky, M., and Das, S. K., J. Nucl. Mater. ,53, 162 (1974).CrossRefGoogle Scholar
  14. 14.
    Harling, O. K., Private Communication.Google Scholar
  15. 15.
    Damask, A. C, paper presented at AIME Symposium on Radiation Effects ,Asheville, North Carolina, September 8–10, 1965.Google Scholar
  16. 16.
    Piercy, G. R., J. Phys. Chem. Solids ,23, 463 (1963).CrossRefGoogle Scholar
  17. 17.
    Wiedersich, H., in Second International Conference on Strength of Metals and Alloys ,Vol. II, American Society for Metals, Cleveland, Ohio (1970), p. 784.Google Scholar
  18. 18.
    Leitnacker, J. M., Bloom, E. E., and Stiegler, J. O., J. Nucl. Mater. ,49, 57 (1973).CrossRefGoogle Scholar
  19. 19.
    Johnston, W. G., Rosolowski, J. H., Turkalo, A. M., and Lauritzen, T., J. Nucl. Mater. ,54, 24(1974).CrossRefGoogle Scholar
  20. 20.
    Schilling, W., and Schroeder, K., AERE Report R-7934, AERE, Harwell, England (1974).Google Scholar
  21. 21.
    Smidt, F. A., Jr., et al., in Defects and Defect Clusters in B.C.C. Metals and Their Alloys ,National Bureau of Standards, Gaithersberg, Maryland (1973), p. 341.Google Scholar
  22. 22.
    Anthony, T. R., Phys. Rev. B ,2, 264 (1970).CrossRefGoogle Scholar
  23. 23.
    Okamoto, P. R., and Wiedersich, H., AERE Report R-7934, AERE, Harwell, England (1974).Google Scholar
  24. 24.
    Cawthorne, C., Fulton, E. J., Bramman, J. I., Linekar, G.A.B., and Sharpe, R. M., in Proceedings BMES Void Conference ,British Nuclear Energy Society, Harwell, England (1971), p. 35.Google Scholar
  25. 25.
    Brager, H. R., and Kissinger, H. E., Trans. Amer. Nucl. Soc. ,12, 118 (1969).Google Scholar
  26. 26.
    Bisson, A., in Proceedings of Karlsruhe Conference on Fast Reactor Fuel and Fuel Elements (1970), 720.Google Scholar
  27. 27.
    Russell, K. C, in KTG/ BNES Conference on Irradiation Behavior of Fuel Cladding and Core Component Materials ,Karlsruhe, West Germany, December 3–5, 1974.Google Scholar
  28. 28.
    Nelson, R. S., Hudson, J. A., and Mazey, D. J., J. Nucl. Mater. ,44, 318 (1972).CrossRefGoogle Scholar
  29. 29.
    Rose, R. M., Personal Communications.Google Scholar
  30. 30.
    Sugisakik, T., Okada, T., and Suita, T., Rept. Osaka Univ. ,21, 385 (1971).Google Scholar
  31. 31.
    Soell, M., Wipf, S. L., and Vogl, G., in Proceedings of 1972 Applied Superconductivity Conference (1972), p. 434.Google Scholar
  32. 32.
    Coffey, H. T., Keller, E. L., Patterson, A., and Autler, S. H., Phys. Rev. ,158, 335 (1967).Google Scholar
  33. 33.
    Sweedler, A. R., Schweitzer, D. G., and Webb, G. W., to be published in Appl. Phys. Lett.Google Scholar
  34. 34.
    Gilbert, E. R., Reactor Technology ,14, 258 (1971).Google Scholar
  35. 35.
    Hendrick, P. L., Proton Simulated Irradiation-Induced Creep ,SM Thesis, Massachusetts Institute of Technology (1974).Google Scholar
  36. 36.
    Harkness, S. D., Tesk, J. A., and Li, Che-Yu, Nucl. Appl. and Tech. ,9, 24 (1970).Google Scholar
  37. 37.
    Ansell, G. S., and Weertman, J., Trans. AIME ,215, 838 (1959).Google Scholar
  38. 38.
    Hendrick, P. L., Ph.D. Thesis, Massachusetts Institute of Technology (1975).Google Scholar
  39. 39.
    Bement, A. L., Adv. in Nucl. Sci. ,Vol. 7, Academic Press, New York, N.Y. (1973).Google Scholar
  40. 40.
    Lovell, A. J., and Barker, R. W., ASTM STP ,No. 484, 468 (1970).Google Scholar
  41. 41.
    Pennell, W. E., Personal Communications.Google Scholar
  42. 42.
    Wood, D. S., Welding J. Res. Suppl. ,45, 925 (1966).Google Scholar
  43. 43.
    Coffin, L. F., Proceedings of 2nd International Conference on Fracture ,Chapman and Hall, London, England (1969).Google Scholar
  44. 44.
    Coffin, L. F., GERL Report No. 71-C-108, General Electric Research and Development Center, Schenectady, N.Y. (April, 1971).Google Scholar
  45. 45.
    Li, Che-Yu, Franklin, D. G., and Harkness, S. D., ASTM STP ,No. 484, 347 (1970).Google Scholar
  46. 46.
    Choi, Y. A., Russell, K. C., and Bement, A. L., in Technical Progress Report for Period July 1, 1974, to April30, 1975 ,M.I.T. Fusion Technology Program, COO-2431-2 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. L. Bement
    • 1
  1. 1.Massachusetts Institute of TechnologyUSA

Personalised recommendations