Advertisement

Radiation Environments and Alloy Behavior

  • P. G. Shewmon
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)

Abstract

Water reactors, breeder reactors, and fusion reactors will play an expanding role in our society for at least the next few centuries. Each requires that materials perform reliably under intense irradiation for years or decades. Several new phenomena occurring when alloys are exposed to such an environment have been identified, e.g., radiation creep, swelling, hardening, helium effects, and embrittlement. All but the helium effects result from the precipitation and annealing of the point defects continuously produced by fast neutrons. The current theories concerning these phenomena are described, and the requirements for future alloy design are outlined.

Keywords

Creep Rate Fusion Reactor Dislocation Loop Radiation Environment Displacement Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, M. W., Defects and Radiation Damage in Metals ,Cambridge University Press (1969). [A good text to flesh out the superficial treatment given here.]Google Scholar
  2. 2.
    Nichols, F. A., Annual Reviews of Materials Science ,R. A. Huggins (Ed.) (1972), Vol. 2, p. 463.Google Scholar
  3. 3.
    Blewitt, T., AEC Sym. Series CONF-710601, J. W. Corbett and L. C. Ianniello (Eds.) (1972), pp. 798–824.Google Scholar
  4. 4.
    Sharp, J. V., AERE Report R-6267 (1969).Google Scholar
  5. 5.
    Dienes, G. J., and Damash, A. C., J. Appl. Phys. ,29, 1713 (1958).CrossRefGoogle Scholar
  6. 6.
    Lam, N. Q., Rothman, S. J., and Sizmann, R., Rad. Effects ,23, 53 (1974).CrossRefGoogle Scholar
  7. 7.
    Frank, W., and Seeger, A., Rad. Effects ,25, 17–26 (1975).CrossRefGoogle Scholar
  8. 8.
    Wiedersich, H., Rad. Effects ,12, 111 (1972).CrossRefGoogle Scholar
  9. 9.
    Wiedersich, H., Proceedings of International Conference on Physical Metallurgy of Reactor Fuel Elements ,Berkley Laboratory of CEGB, U.K. (September, 1973). To be published.Google Scholar
  10. 10.
    Koehler, J. S., J. Appl. Phys. ,46, 2423 (1975).CrossRefGoogle Scholar
  11. 11.
    Brown, L. M., Kelly, A., and Mayer, R. M., Phil. Mag. ,19, 721 (1969).CrossRefGoogle Scholar
  12. 12.
    Makin, M. J., Phil. Mag. ,20, 1133 (1969).CrossRefGoogle Scholar
  13. 13.
    Steele, L. E., IAEA Technical Report Series No. 163, Chapter 6, Vienna (1975).Google Scholar
  14. 14.
    Steele, L. E., Nuclear Metallurgy ,16, 270 (1970).Google Scholar
  15. 15.
    Bush, S. H., ASTM J. Testing &Eval. ,435 (1974).Google Scholar
  16. 16.
    Smidt, F. A., Jr., and Watson, H. E., Met. Trans. ,3, 2065 (1972).CrossRefGoogle Scholar
  17. 17.
    Wechsler, M. S., Berggren, R. G., Hinkle, N. E., and Stelzman, W. J., ASTM-STP No. 457 ,242–260 (1969).Google Scholar
  18. 18.
    Smidt, F. A., Jr., and Steele, L. E., NRL Report 7310 (September 1, 1971).Google Scholar
  19. 19.
    Smidt, F. A., Jr., and Sprague, J. A., ASTM-STP No. 529 ,78 (1973).Google Scholar
  20. 20.
    Smidt, F. A., Jr., Stein, D. F., and Joshi, A., NRL Report 7660 (December 21, 1973Google Scholar
  21. 20a.
    20a.Gruber, E. E., J. Appl. Phys. ,38, 243 (1967).CrossRefGoogle Scholar
  22. 21.
    Smidt, F. A., NRL Memorandum Report 2866, pp. 78–90 (July, 1974).Google Scholar
  23. 22.
    Gjostein, N. A., Diffusion ,American Society for Metals, Metals Park, Ohio (1973), p. 241.Google Scholar
  24. 23.
    Willertz, L. E., and Shewmon, P. G., Met. Trans. ,1, 2217 (1970).CrossRefGoogle Scholar
  25. 24.
    Wier, J. R., Science ,156, 1689 (1967).CrossRefGoogle Scholar
  26. 25.
    Kornelsen, E. V., Rad. Effects ,13, 227 (1972).CrossRefGoogle Scholar
  27. 26.
    Wilson, W. D., and Bisson, C. L., Rad. Effects ,9, 53 (1973).Google Scholar
  28. 27.
    Wilson, W. D., and Bisson, C. L., Rad. Effects ,22, 63 (1974).CrossRefGoogle Scholar
  29. 28.
    Whitmel, D. S., and Nelson, R. S., Rad. Effects ,14, 249 (1972).CrossRefGoogle Scholar
  30. 29.
    Wiedersich, H., and Burton, J. J., J. Nucl. Matl. ,51, 287 (1974).CrossRefGoogle Scholar
  31. 30.
    Das, S. K., and Kaminsky, M., J. Nucl. Matl. ,53, 115–122 (1974).CrossRefGoogle Scholar
  32. 31.
    Bauer, W., and Thomas, G. J., J. Nucl. Matl. ,47, 241–245 (1973).CrossRefGoogle Scholar
  33. 32.
    Bauer, W., and Thomas, G. J., J. Nucl. Matl. ,53, 127 (1974).CrossRefGoogle Scholar
  34. 33.
    Corbett, J. W., and Ianniello, L. C. (Eds.), AEC Symposium Series CONF-710601 (1971).Google Scholar
  35. 34.
    Pugh, S. F., Loretto, M. H., and Norris, D.I.R. (Eds.), Voids Formed by Irradiation of Reactor Material ,British Nuclear Energy Society (1971).Google Scholar
  36. 35.
    Nelson, R. S. (Ed.), AERE-R7934 (1975).Google Scholar
  37. 36.
    Norris, D.I.R., Rad. Effects ,14, 1-15 (1972); 15, 1–22 (1972).Google Scholar
  38. 37.
    Shewmon, P. G., Science ,173, 987 (1971).CrossRefGoogle Scholar
  39. 38.
    Johnston, W. G., Rosolowski, J. H., Turkalo, A. M., and Lauritzen, T., J. Nucl. Matl. ,47, 155 (1973); 48, 330 (1973).CrossRefGoogle Scholar
  40. 39.
    Brailsford, A. D., and Bullough, R., J. Nucl. Matl. ,44, 121 (1972). [Probably the best recent effort at a complete theoretical treatment.]CrossRefGoogle Scholar
  41. 40.
    Johnston, W. G., Rosolowski, J. H., Turkalo, A. M., and Lauritzen, T., J. Nucl. Matl. ,54, 24–40 (1974).CrossRefGoogle Scholar
  42. 41.
    Hesketh, R. V., Report BNL 500.83 (C-52), p. 389 (1968).Google Scholar
  43. 42.
    Nichols, F. A., J. Nucl. Matl. ,37, 59–70 (1970).CrossRefGoogle Scholar
  44. 43.
    Piercy, G. R., J. Nucl Matl. ,26, 18–50 (1968).CrossRefGoogle Scholar
  45. 44.
    Dollins, C. C., and Nichols, F. A., ASTM-STP, No. 551 ,p. 229 (1974).Google Scholar
  46. 45.
    Gittus, J. H., Phil. Mag. ,25, 345 (1972).CrossRefGoogle Scholar
  47. 46.
    Nichols, F. A., and Dollins, C. C., to be published in Rad. Effects (1975).Google Scholar
  48. 47.
    Walters, L. C., Walter, C. M., and Pugacz, M. A., J. Nucl. Matl. ,43, 133 (1972).CrossRefGoogle Scholar
  49. 48.
    Mosdale, D., Lewthwaite, G. W., Leet, G. O., and Sloss, W., Nature ,224, 1301 (1969).CrossRefGoogle Scholar
  50. 49.
    Martin, G., and Poirer, J. P., J. Nucl. Matl. ,39, 93 (1971).CrossRefGoogle Scholar
  51. 50.
    Wolfer, W. G., Foster, J. P., and Garner, F. A., Nuclear Technology ,16, 55–63 (1972).Google Scholar
  52. 51.
    Walters, L. C, and Walter, C. M., Argonne National Laboratory, private communication.Google Scholar
  53. 52.
    Anthony, T., Diffusion in Solids ,A. S. Nowick and J. J. Burton (Eds.), Chapter 7, Academic Press, New York (1975).Google Scholar
  54. 53.
    Nelson, R. S., Hudson, J. A., and Mazey, D. J., J. Nucl. Matl. ,44, 318–330 (1972).CrossRefGoogle Scholar
  55. 54.
    Hudson, J. A., AERE Report R-7943 (1974).Google Scholar
  56. 55.
    Brager, H. R., and Straalsund, J. L., J. Nucl. Matl. ,46, 134 (1973).CrossRefGoogle Scholar
  57. 56.
    Keefer, D. W., Pard, A. G., Rhodes, G. G., and Kramer, D., J. Nucl. Matl. ,39, 229 (1971).CrossRefGoogle Scholar
  58. 57.
    Stickler, R., and Weiss, B., Met. Trans. ,3, 851 (1972).CrossRefGoogle Scholar
  59. 58.
    Diercks, D., Argonne National Laboratory, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. G. Shewmon
    • 1
  1. 1.National Science FoundationUSA

Personalised recommendations