Mechanics in Alloy Design

  • F. A. McClintock
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


The mechanical designer must effect a compromise between the costs of a large factor of safety, the cost of high hardness or high crack-initiation resistance, and the cost of high resistance to crack propagation, along with any necessary inspection during service. The economics of recycling will ultimately become a factor. Available equations are given relating these mechanical attributes to the microstructure. The primary possibilities for improvement seem to be (a) preferred orientation for increased stiffness, (b) increasing the adherence between the matrix and second-phase particles to delay hole nucleation, and (c) increasing crack meandering and branching to impede crack growth.

The difficulties of calculation suggest that more realistic tests are needed, e.g., of plane-strain ductility and of cracked plates suggestive of various weld defects.


Crack Initiation Crack Growth Rate Alloy Design Cylindrical Hole Hole Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McClintock,F. A.,and Zaverl,F., in Proceedings of 11th Annual Meeting of the Society of Engineering Science,G. J. Dvorak (Ed.),Duke University,Durham,North Carolina,1974,pp. 6–7.Google Scholar
  2. 2.
    McClintock,F. A.,and Zaverl,F.,submitted to Int. J. Rock Mech. and Mining Sciences (1976).Google Scholar
  3. 3.
    McClintock,F. A.,and Argon,A. S. (Eds.),Mechanical Behavior of Materials,Addison-Wesley,Reading,Massachusetts (1966),p. 83.Google Scholar
  4. 4.
    McClintock,F. A.,Paper presented at ARPA Materials Research Conference,University of Michigan,Ann Arbor,Michigan,1973.Google Scholar
  5. 5.
    Fourie,J. T., in Corrosion Fatigue,O. F. Devereaux,A. J. McEvily,and R. W. Staehle (Eds.),National Association Corrosion Engineers (1972),pp. 164–175.Google Scholar
  6. 6.
    Suh,N. P.,Paper presented at Battelle Colloquium on Fundamental Aspects of Structural Alloy Design,Seattle,Washington,September,1975.Google Scholar
  7. 7.
    Argon,A. S.,Im,J.,and Safoglu,R.,Met. Trans., 6A,825 (1975).Google Scholar
  8. 8.
    Argon,A. S.,and Im,J.,Met. Trans., 6A,839 (1975).Google Scholar
  9. 9.
    Kelly,A.,Strong Solids,Oxford University Press (1966),p. 5.Google Scholar
  10. 10.
    McClintock,F. A.,and O’Day,W. R.,Jr.,Proceedings of First International Conference on Fracture,T. Yokobori,etal. (Eds.),Japanese Society for Strength and Fracture,Sendai (1966),Vol. 1,p. 75.Google Scholar
  11. 11.
    Gurland,J.,Acta Met., 20,735 (1972).CrossRefGoogle Scholar
  12. 12.
    Lankford,J.,and Kusenberger,F. N.,Met. Trans., 4,553 (1973).CrossRefGoogle Scholar
  13. 13.
    Hill,R.,The Mathematical Theory of Plasticity,Clarendon Press,Oxford (1950).Google Scholar
  14. 14.
    McClintock,F. A.,International Symposium on Fracture Mechanics,Noordhoff Publishing,Groningen (1968),pp. 101–130.Google Scholar
  15. 15.
    French,I. E.,and Weinrich,P. F.,Met. Trans., 6,1165 (1975).CrossRefGoogle Scholar
  16. 16.
    Tipnis,V. A.,and Cook,N. H.,J. Basic Eng.,Trans. A.S.M.E., 89,533 (1967).CrossRefGoogle Scholar
  17. 17.
    Nagpal,V.,McClintock,F. A.,Berg,C. A., and Subudhi,M.,Foundations of Plasticity,A. Sawczuk (Ed.),Noordhoff Publishing,Leyden (1973),pp. 365–385.Google Scholar
  18. 18.
    Joyce,J. A.,Sc.D. Thesis,Department of Mechanical Engineering,M.I.T.,Cambridge,Massachusetts (1974).Google Scholar
  19. 19.
    Garr,L.,Lee,E. H.,and Wang,A. J.,J. Appl. Mech., 23,56 (1956).Google Scholar
  20. 20.
    Tada,H.,Paris,P. C,and Irwin,G. R.,The Stress Analysis of Cracks Handbook,Del Research Corporation,Hellertown,Pennsylvania (1973).Google Scholar
  21. 21.
    Rice,J. R.,Fracture,H. Liebowitz (Ed.),Academic Press,New York,N.Y.,(1968),Vol. II,pp. 191–311.Google Scholar
  22. 22.
    Levy,N.,Marcal,P. V.,Ostergren,W. J.,and Rice,J. R.,Int. J. Fracture Mechanics,7,143 (1971).Google Scholar
  23. 23.
    Shih,C. F.,Fracture Analysis,ASTM STP,No. 560,187–210 (1974).Google Scholar
  24. 24.
    Hutchinson,J. W.,J. Mech. Phys. Solids,16 13 (1968).CrossRefGoogle Scholar
  25. 25.
    Rice,J. R.,and Rosengren,G. F.,J. Mech. Phys. Solids,16,1 (1968).CrossRefGoogle Scholar
  26. 26.
    McClintock,F. A.,Fracture,H. Liebowitz (Ed.),Academic Press,New York,N.Y. (1971),Vol. III,p. 43.Google Scholar
  27. 27.
    Marcolini,R.,Master’s Thesis,Departments of Ocean Engineering and Mechanical Engineering,M.I.T.,Cambridge,Massachusetts (1975).Google Scholar
  28. 28.
    Davis,L. A.,Paper presented at Battelle Colloquium on Fundamental Aspects of Structural Alloy Design,Seattle,Washington,September,1975.Google Scholar
  29. 29.
    Barsom,J. M.,J. Eng. Indust. Trans. ASME,93B,1190 (1971).CrossRefGoogle Scholar
  30. 30.
    McClintock,F. A.,ASTM STP,No. 415,170–171 (1967).Google Scholar
  31. 31.
    El Soudani,S. M.,and Pelloux,R. M.,Met. Trans., 4,519 (1973).CrossRefGoogle Scholar
  32. 32.
    Chu,H. P.,and Wacker,G. A.,J. Basic Eng., 91D,565 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. A. McClintock
    • 1
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations