Deformation-Mechanism Maps for Pure Iron, Two Austenitic Stainless Steels, and a Low-Alloy Ferritic Steel

  • H. J. Frost
  • M. F. Ashby
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


The construction of deformation-mechanism maps for ferrous alloys is described. Maps for pure iron, 316 and 304 stainless steel, and a ferritic 1 percent Cr-Mo-V steel are presented, and their use is illustrated. The maps are constructed, as far as possible, from model-based constitutive laws which have been fitted to experimental data. They attempt to combine the understanding of the fundamentals of dislocation mechanics and diffusion theory with the observation of the yielding and creep of commercial steels. In this way we retain some of the predictive power that an understanding of fundamentals permits, while giving a good description of the observed behavior of the alloys.


Flow Stress Creep Rate Austenitic Stainless Steel Pure Iron Diffusional Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby, M. F., Acta Met. ,20, 887 (1972).CrossRefGoogle Scholar
  2. 2.
    Frost, H. J., and Ashby, M. F., Second Report on Deformation Mechanism Maps ,Harvard University Technical Report (October, 1973).Google Scholar
  3. 3.
    Frost, H. J., Ph.D. Thesis, Harvard University, February, 1974.Google Scholar
  4. 4.
    Ashby, M. F., and Frost, H. J., in Rate Processes in Plastic Deformation of Materials ,American Society for Metals, Metals Park, Ohio (1975).Google Scholar
  5. 5.
    MacKenzie, J. K., Ph.D. Thesis, Bristol University, 1959.Google Scholar
  6. 6.
    Tyson, W. R., Phil. Mag. ,14, 925 (1966).CrossRefGoogle Scholar
  7. 7.
    Kocks, U. F., Argon, A. S., and Ashby, M. F., Prog, in Mater. Sci. ,19, 1 (1975).CrossRefGoogle Scholar
  8. 8.
    Kocks, U. F., Met. Trans. ,1, 1121 (1970).Google Scholar
  9. 9.
    Weertman, J., Trans. AIME, 227 ,1475 (1963).Google Scholar
  10. 10.
    Robinson, S. L., and Sherby, O. D., Acta Met. ,17, 109 (1969).CrossRefGoogle Scholar
  11. 11.
    Hart, E. W., Acta Met. ,5, 597 (1957).CrossRefGoogle Scholar
  12. 12.
    Vandervoort, R. R., Met. Trans. ,1, 857 (1970).Google Scholar
  13. 13.
    Challenger, K. D., and Moteff, J., Met. Trans. ,4, 749 (1973).CrossRefGoogle Scholar
  14. 14.
    Jonas, J. J., Sellars, C. M., and Tegart, W.J.McG., Met. Rev. ,14, 1 (1969).CrossRefGoogle Scholar
  15. 15.
    Nabarro, F.R.N., Report on a Conference on the Strength of Metals ,Physical Society, London, England (1948).Google Scholar
  16. 16.
    Herring, C, J. Appl. Phys. ,21, 437 (1950).CrossRefGoogle Scholar
  17. 17.
    Coble, R. L., J. Appl. Phys. ,34, 1679 (1963).CrossRefGoogle Scholar
  18. 18.
    Lifshitz, L. M., Soviet Phys. JETP ,17, 909 (1963).Google Scholar
  19. 19.
    Gibbs, G. B., Mem. Sci. Rev. Met. ,62, 781 (1965).Google Scholar
  20. 20.
    Raj, J., and Ashby, M. F., Met. Trans. ,2, 113 (1971).CrossRefGoogle Scholar
  21. 21.
    Ashby, M. F., Scripta Met. ,3, 837 (1969).CrossRefGoogle Scholar
  22. 22.
    Ashby, M. F., Surface Sci. ,31, 498 (1972b).CrossRefGoogle Scholar
  23. 23.
    CEGB-University Collaborative Project on 1 Cr-Mo-V Steel; details available from the CEGB Research Laboratories, Berkeley, Gloucester, England.Google Scholar
  24. 24.
    Burton, B., Mater. Sci. Eng. ,10, 9 (1972).CrossRefGoogle Scholar
  25. 25.
    Burton, B., Mater. Sci. Eng. ,11, 337 (1973).CrossRefGoogle Scholar
  26. 26.
    Taylor, A., and Kagle, B. J., Crystallographic Data on Metal and Alloy Structures ,Dover Publications, Inc. (1963).Google Scholar
  27. 27.
    Hansen, M., Constitution of Binary Alloys ,McGraw-Hill, New York, N.Y. (1958).Google Scholar
  28. 28.
    Hirth, J. P., and Lothe, J., Theory of Dislocations ,McGraw-Hill, New York, N.Y. (1968).Google Scholar
  29. 29.
    Dever, D. J., J. Appl. Phys. ,43, 3293 (1972); Koster, W. Z., Metallkde. ,9, 1 (1948).Google Scholar
  30. 30.
    Lytton, J. L., J. Appl. Phys. ,35, 2397 (1964).CrossRefGoogle Scholar
  31. 31.
    Blackburn, L. D., The Generation of Isochronous Stress-Strain Curves ,Paper presented at ASME Winter Annual Meeting, New York, November, 1972.Google Scholar
  32. 32.
    Buffington, F. S., Hirano, K., and Cohen, N., Acta Met. ,9, 434 (1961).CrossRefGoogle Scholar
  33. 33.
    Kucera, J., Million, B., Ruzickova, J., Foldyna, J., and Jakabova, A., Acta Met. ,22, 135 (1974).CrossRefGoogle Scholar
  34. 34.
    Ishida, Y., Cheng, C.-Y., and Dorn, J. E., Trans. AIME ,236, 964 (1966).Google Scholar
  35. 35.
    Čadek, J., Pahutova, M., Cíha, K., and Hostinsky, T., Acta Met. ,17, 803 (1969).CrossRefGoogle Scholar
  36. 36.
    James, D. W., and Leak, G. M., Phil. Mag. ,12, 491 (1965).CrossRefGoogle Scholar
  37. 37.
    Perkins, R. A., Padgett, R. A., Jr., and Tunali, N. K., Met. Trans. ,4, 2535 (1974).CrossRefGoogle Scholar
  38. 38.
    Feltham, P., Proc. Phys. Soc. London ,B66, 865 (1953).Google Scholar
  39. 39.
    Garofalo, F., Richmond, C., Domis, W. F., and von Germminger, F., in Joint International Conference on Creep ,Institute of Mechanical Engineers, London, England (1963), pp. 1–31.Google Scholar
  40. 40.
    Beckitt, F. R., and Gladman, T., Special Steels Department Report No. PROD/PM/6041/1/71A (September 16, 1971).Google Scholar
  41. 41.
    Parr, J. G., and Hanson, A., An Introduction to Stainless Steel ,American Society for Metals, Metals Park, Ohio (1965), p. 54.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. J. Frost
    • 1
  • M. F. Ashby
    • 1
  1. 1.University Engineering DepartmentCambridgeEngland

Personalised recommendations