Strength of Metals and Alloys at High Strains and Strain Rates

  • J. D. Campbell
  • A. M. Eleiche
  • M. C. C. Tsao
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


The effects of strain rate and strain-rate history on the strength of metals at high strains have been investigated in two series of tests at room temperature using the split Hopkinson-bar method to obtain shear strain rates up to 3000 s-1. In the first series, various materials were subjected to nearly constant low and high strain rates in torsion, and apparent rate sensitivities were determined by comparison of the flow stresses at a given strain. The flow stresses were found to increase with rate even at large shear strains (~0.5), the effect of adiabatic heating being relatively small. In the second series, strain-rate changes of about six orders of magnitude were rapidly imposed at shear strains up to 0.6. The results indicate that the flow stress depends on the strain-rate history, and may be greater or less than that obtained at the same strain and strain rate in a constant-rate test. The differences in the observed behavior of copper, titanium, and mild steel are discussed, and it is shown that the data for copper are consistent with a proposed form of constitutive relation involving a functional of the strain rate.


Flow Stress Shear Strain Mild Steel Dislocation Structure Adiabatic Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orowan, E., J. West Scot. Iron Steel Inst. ,54, 45 (1946-47).Google Scholar
  2. 2.
    Dorn, J. E., Goldberg, A., and Tietz, T. E., Metals Tech. A.I.M.M.E. ,T.P. 2445 (1948).Google Scholar
  3. 3.
    Tietz, T. E., and Dorn, J. E., Cold Working of Metals ,American Society for Metals, Cleveland, Ohio (1948), p. 163.Google Scholar
  4. 4.
    Vasiliev, L. I., Bulina, A. S., and Zagrebenikova, M. P., Dokl. Akad. Nauk S.S.S.R. ,90, 767 (1953).Google Scholar
  5. 5.
    Vasiliev, L. I., and Eremina, L. 1., Ibid. ,93, 1019 (1953).Google Scholar
  6. 6.
    Trozera, T. A., Sherby, O. D., and Dorn, J. E., Trans. A.S.M.E. ,49, 173 (1957).Google Scholar
  7. 7.
    Sylwestrowicz, W. D., Trans. Met. Soc. A.I.M.E ,212, 617 (1958).Google Scholar
  8. 8.
    Klepaczko, J., Archw. Mech. Stossow. ,19, 211 (1967).Google Scholar
  9. 9.
    Nicholas, T., Exp. Mech. ,11, 370 (1971).CrossRefGoogle Scholar
  10. 10.
    Frantz, R. A., Jr., and Duffy, J., J. Appl. Mech. ,39, 939 (1972).CrossRefGoogle Scholar
  11. 11.
    Klepaczko, J., and Duffy, J., Mechanical Properties at High Rates of Strain ,J. Harding (Ed.), Inst. of Physics, London (1974), p. 91.Google Scholar
  12. 12.
    Klepaczko, J., Mat. Sci. Eng. ,18, 121 (1975).CrossRefGoogle Scholar
  13. 13.
    Valanis, K. C., Arch. Mech. ,23, 517 (1971).Google Scholar
  14. 14.
    Dillon, O. R., and Perzyna, P., Arch. Mech. ,24, 727 (1972).Google Scholar
  15. 15.
    Krempl, E., Acta Mech. ,22, 53 (1975).CrossRefGoogle Scholar
  16. 16.
    Lindholm, U. S., and Yeakley, L. M., Exp. Mech. ,7, 1 (1967).CrossRefGoogle Scholar
  17. 17.
    Cooper, R. H., and Campbell, J. D., J. Mech. Engng. Sci. ,9, 278 (1967).CrossRefGoogle Scholar
  18. 18.
    Lindholm, U. S., Mechanical Behavior of Materials Under Dynamic Loads ,U. S. Lindholm (Ed.), Springer, New York (1968), p. 77.CrossRefGoogle Scholar
  19. 19.
    Briggs, T. L., and Campbell, J. D., Acta Met. ,20, 711 (1972).CrossRefGoogle Scholar
  20. 20.
    Campbell, J. D., and Briggs, T. L., J. Less-Common Metals ,40, 235 (1975).CrossRefGoogle Scholar
  21. 21.
    Kolsky, H., Proc. Phys. Soc. ,62B, 676 (1949).Google Scholar
  22. 22.
    Baker, W. E., and Yew, C. H., J. Appl. Mech. ,33, 917 (1966).CrossRefGoogle Scholar
  23. 23.
    Campbell, J. D., and Dowling, A. R., J. Mech. Phys. Solids ,18, 43 (1970).CrossRefGoogle Scholar
  24. 24.
    Duffy, J., Campbell, J. D., and Hawley, R. H., J. Appl. Mech. ,38, 83 (1971).CrossRefGoogle Scholar
  25. 25.
    Nicholas, T., and Lawson, J. E., J. Mech. Phys. Solids ,20, 57 (1972).CrossRefGoogle Scholar
  26. 26.
    Stevenson, M. G., and Campbell, J. D., J. Strain Analysis ,10, 172 (1975).CrossRefGoogle Scholar
  27. 27.
    Lewis, J. L., and Campbell, J. D., Exp. Mech. ,12, 520 (1970).CrossRefGoogle Scholar
  28. 28.
    Tsao, M.C.C., and Campbell, J. D., Report No. 1055/73, Department of Engineering Science, University of Oxford (1973); also AFML-TR-73-177, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio (1973).Google Scholar
  29. 29.
    Clyens, S., M.Sc. Thesis, Department of Engineering Science, University of Oxford (1973).Google Scholar
  30. 30.
    Eleiche, A. M., and Campbell, J. D., Report No. 1106/74, Department of Engineering Science, University of Oxford (1974).Google Scholar
  31. 31.
    Stevenson, M. G., and Campbell, J. D., Report No. 1098/74, Department of Engineering Science, University of Oxford (1974).Google Scholar
  32. 32.
    Lawson, J. E., and Nicholas, T., J. Mech. Phys. Solids ,20, 65 (1972).CrossRefGoogle Scholar
  33. 33.
    Kocks, U. F., Argon, A. S., and Ashby, M. F., Thermodynamics and Kinetics of Slip ,Pergamon Press, Oxford (1975), p. 257.Google Scholar
  34. 34.
    Malvern, L. E., J. Appl. Mech. ,18, 203 (1951).Google Scholar
  35. 35.
    Lindholm, U. S., J. Mech. Phys. Solids ,12, 317 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. D. Campbell
    • 1
  • A. M. Eleiche
    • 1
  • M. C. C. Tsao
    • 1
  1. 1.University of OxfordOxfordEngland

Personalised recommendations