Strain Control Fatigue as a Tool to Interpret Fatigue Initiation of Aluminum Alloys

  • T. H. SandersJr.
  • D. A. Mauney
  • J. T. Staley
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


A wide variety of aluminum alloys in standard tempers were investigated using strain control fatigue and transmission electron microscopy. The log of the number of reversals to failure increased linearly with decreasing log of the plastic-strain amplitude down to a critical level which was alloy and temper dependent. Below the critical level of plastic strain, failure times were shorter than would be predicted by extrapolating the high-plastic-strain-amplitude data. Transmission electron microscopy revealed that specimens tested above the critical level deformed homogeneously, while those tested below the critical level deformed heterogeneously; consequently, microstructures which would maintain homogeneous slip at low plastic deformation should provide better resistance to fatigue initiation.


Plastic Strain Stress Amplitude Cyclic Plastic Total Strain Range 7XXX Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandor, B. I., Fundamentals of Cyclic Stress and Strain ,University of Wisconsin Press, Madison, Wisconsin (1972).Google Scholar
  2. 2.
    Feltner, C. E., and Laird, C., Acta Met. ,15, 1621 (1967).CrossRefGoogle Scholar
  3. 3.
    Feltner, C. E., and Laird, C., ibid. ,15, 1633 (1967).Google Scholar
  4. 4.
    Calabrese, C., and Laird, C., Mater. Sci. Eng. ,13, 141 (1974).CrossRefGoogle Scholar
  5. 5.
    Calabrese, C., and Laird, C., ibid. ,13, 159 (1974).Google Scholar
  6. 6.
    Calabrese, C., and Laird, C., Met. Trans. ,5, 1785 (1974).CrossRefGoogle Scholar
  7. 7.
    Saxena, A., and Antolovich, S. D., Met. Trans. ,6A, 1809 (1975).Google Scholar
  8. 8.
    Sanders, T. H., Jr., Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Georgia (1974).Google Scholar
  9. 9.
    Sanders, T. H., Jr., and Starke, E. A., Jr., Met Trans ,(to be published).Google Scholar
  10. 10.
    Chien, K. H., and Starke, E. A., Jr., Acta Met. ,23, 1173 (1975).CrossRefGoogle Scholar
  11. 11.
    1975 Annual Book of ASTM Standards ,Part 10, American Society for Testing and Materials, Philadelphia, November, 1975, p. 611.Google Scholar
  12. 12.
    Aluminum ,Vol. I, K. R. Van Horn (Ed.), American Society for Metals, Metals Park, Ohio (1967).Google Scholar
  13. 13.
    Coffin, L. F., Trans. ASME ,76, 931–950 (1954).Google Scholar
  14. 14.
    Manson, S. S., NACA Tech. Note ,No. 2933 (July, 1953).Google Scholar
  15. 15.
    Gleiter, H., and Hornbogen, E., Mater. Sci. Eng. ,2, 285–302 (1967-68).Google Scholar
  16. 16.
    Unwin, P.N.T., and Smith, G. C., J. Inst. Metals ,97, 183 (1960-61).Google Scholar
  17. 17.
    Stubbington, C. A., Acta Met. ,12, 931 (1964).CrossRefGoogle Scholar
  18. 18.
    Speidel, M. O., Proceedings of Conference on Fundamental Aspects of Stress-Corrosion CrackingThe Ohio State University, Columbus, Ohio (1967), p. 561.Google Scholar
  19. 19.
    Lynch, S. P., Metal Science Journal ,7, 93 (1973).CrossRefGoogle Scholar
  20. 20.
    Polmear, I. J., and Bainbridge, I. F., Phil. Mag. ,4, 1293 (1959).CrossRefGoogle Scholar
  21. 21.
    McEvily, A. J., Clark, J. B., Utley, E. C., and Herrstein, W. H., Trans. Met. Soc., AIME ,227, 1093 (1963).Google Scholar
  22. 22.
    Forsyth, P.J.E., J. Australian Inst. Met. ,8, 52 (1963).Google Scholar
  23. 23.
    Stubbington, C. A., Acta Met. ,12, 931 (1964).CrossRefGoogle Scholar
  24. 24.
    Stubbington, C. A., and Forsyth, P.J.E., ibid. ,14, 5 (1966).Google Scholar
  25. 25.
    Abel, A., and Ham, R. K., ibid. ,14, 1495 (1966).Google Scholar
  26. 26.
    Gleiter, H., ibid. ,16, 455 (1968).Google Scholar
  27. 27.
    Lynch, S. P., and Ryder, D. A., Aluminum ,49, 748 (1973).Google Scholar
  28. 28.
    Calabrese, C., and Laird, C., Mater. Sci. Eng. ,13, 141 (1974).CrossRefGoogle Scholar
  29. 29.
    Hanstock, R. F., J. Inst. Metals ,83 (1954-55).Google Scholar
  30. 30.
    Broom, T., Molineux, J. H., and Whittaker, V. N., ibid. ,84, 357 (1955-56).Google Scholar
  31. 31.
    Broom, T., Mazza, J. A., and Whittaker, V. N., ibid. ,86, 17 (1957-58).Google Scholar
  32. 32.
    Broom, T., and Whittaker, V. N., Nature, 177 ,486 (1956).CrossRefGoogle Scholar
  33. 33.
    Seitz, F., Advances in Physics ,1, 43 (1952).CrossRefGoogle Scholar
  34. 34.
    Broom, T., ibid. ,3, 26 (1954).Google Scholar
  35. 35.
    Turnbull, D., in Reb. Conference on Defects in Crystalline Solids, Physical Society (1955), p. 203.Google Scholar
  36. 36.
    Clark, J. B., and McEvily, A. J., Acta Met. ,12, 1359 (1964).CrossRefGoogle Scholar
  37. 37.
    Averback, B. L., Trans. Amer. Soc. Metals ,41, 262 (1949).Google Scholar
  38. 38.
    Hirth, J. P., and Lothe, J., Theory of Dislocations ,McGraw-Hill, New York (1968).Google Scholar
  39. 39.
    Swann, P. R., in Electron Microscopy and Strength of Crystals ,Interscience Publishers, New York (1963), p. 167.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. H. SandersJr.
    • 1
  • D. A. Mauney
    • 1
  • J. T. Staley
    • 1
  1. 1.Alcoa LaboratoriesAlcoa CenterUSA

Personalised recommendations