Advertisement

Abstract

A new area of materials technology was inaugurated with the recent discovery that one may produce filaments of iron-, nickel-, and/or cobalt-base metallic glasses rapidly and continuously from the melt. These materials offer great promise for technological utilization because of their combination of cost effectiveness and, for example, unique magnetic or mechanical proprties. The compositions, formation, and structure of metallic glasses are briefly reviewed. Major emphasis is on their distinctive mechanical behavior.

Keywords

Fracture Toughness Shear Band Metallic Glass Glassy Alloy Vein Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klement, W., Willens, R. H., and Duwez, P., Nature ,187, 869 (1960).CrossRefGoogle Scholar
  2. 2.
    Duwez, P., and Willens, R. H., Trans. AIME, 227 ,362 (1963).Google Scholar
  3. 3.
    Chem. Eng. News ,19, 24 (1973).Google Scholar
  4. 4.
    Polk, D. E., and Chen, H. S., J. Noncryst. Solids ,15, 165 (1974).CrossRefGoogle Scholar
  5. 5.
    Tsuei, C. C., and Hasegawa, R., Solid State Comm. ,7, 1581 (1969).CrossRefGoogle Scholar
  6. 6.
    Egami, T., Banders, P. J., and Graham, C. D., Jr., Appl. Phys. Lett. ,26, 128 (1975).CrossRefGoogle Scholar
  7. 7.
    Naka, M., Hashimoto, K., and Masumoto, T., J. Japan Inst. Metals ,38, 835 (1974).Google Scholar
  8. 8.
    Jones, H., Rep. Prog. Phys. ,36, 1425 (1973).CrossRefGoogle Scholar
  9. 9.
    Giessen, B. C., and Wagner, C.N.J., in Liquid Metals ,S. Z. Beer (Ed.), Marcel Dekker, New York (1972), p. 633.Google Scholar
  10. 10.
    Cargill, G. S., III, in Solid State Physics ,F. Seitz, D. Turnbull, and H. Ehrenreich, Eds., Academic Press, New York, in press.Google Scholar
  11. 11.
    Cohen, M. H., and Turnbull, D., Nature ,203, 964 (1964).CrossRefGoogle Scholar
  12. 12.
    Turnbull, D., Contemp. Phys. ,10, 473 (1969).CrossRefGoogle Scholar
  13. 13.
    Bennett, M. R., and Wright, J. G., Phys. Stat. Sol. (a) ,13, 135 (1972).CrossRefGoogle Scholar
  14. 14.
    Ray, R., Giessen, B. C., and Grant, N. J., Scripta Met. ,2, 357 (1968).CrossRefGoogle Scholar
  15. 15.
    Crewdson, R. C., Ph.D. Thesis, California Institute of Technology, Pasadena, California (1966).Google Scholar
  16. 16.
    Turnbull, D., Jour. Phys. ,35, Colloque 4, p. 1 (1974).Google Scholar
  17. 17.
    Nowick, A. S., and Mader, S., I.B.M. J. Res. &Dev. ,9, 358 (1965).Google Scholar
  18. 18.
    Cargill, G. S., III, J. Appl. Phys. ,41, 12 (1970).CrossRefGoogle Scholar
  19. 19.
    Cargill, G. S., III, J. Appl. Phys. ,41, 2248 (1970).CrossRefGoogle Scholar
  20. 20.
    Polk, D. E., Scripta Met. ,4, 117 (1970).CrossRefGoogle Scholar
  21. 21.
    Polk, D. E., Acta Met. ,20, 485 (1972).CrossRefGoogle Scholar
  22. 22.
    Bernal, J. D., Nature ,185, 68 (1960).CrossRefGoogle Scholar
  23. 23.
    Bernal, J. D., Proc. Roy. Soc. ,280A, 299 (1964).Google Scholar
  24. 24.
    Guttmann, M., Surface Sci. ,in press.Google Scholar
  25. 25.
    Duwez, P., unpublished data.Google Scholar
  26. 26.
    Pampillo, C. A., and Chen, H. S., Mater. Sci. Eng. ,13, 181 (1974).CrossRefGoogle Scholar
  27. 27.
    Takayama, S., and Maddin, R., Acta Met. ,23, 943 (1975).CrossRefGoogle Scholar
  28. 28.
    Leamy, H. J., Chen, H. S., and Wang, T. T., Met. Trans. ,3, 699 (1972).CrossRefGoogle Scholar
  29. 29.
    Chen, H. S., Leamy, H. J. ,and O’Brien, M. J., Scripta Met., 7 ,415 (1973).CrossRefGoogle Scholar
  30. 30.
    Gilman, J. J., J. Appl. Phys. ,46, 1625 (1975).CrossRefGoogle Scholar
  31. 31.
    Chen, H. S., Scripta Met. ,7, 931 (1973).CrossRefGoogle Scholar
  32. 32.
    Davis, L. A., and Kavesh, S., J. Mater. Sci. ,10, 453 (1975).CrossRefGoogle Scholar
  33. 33.
    Masumoto, T., and Maddin, R., Acta Met. ,19, 725 (1971).CrossRefGoogle Scholar
  34. 34.
    Chen, H. S., and Polk, D. E., J. Noncryst. Solids ,15, 174 (1974).CrossRefGoogle Scholar
  35. 35.
    Polk, D. E., and Pampillo, C. A., Scripta Met. ,7, 1161 (1973).CrossRefGoogle Scholar
  36. 36.
    Pampillo, C. A., and Polk, D. E., Acta Met. ,22, 741 (1974).CrossRefGoogle Scholar
  37. 37.
    Davis, L. A., Scripta Met. ,9, 339 (1975).CrossRefGoogle Scholar
  38. 38.
    Masumoto, T., and Maddin, R., Mat. Sci. Eng. ,19, 1 (1975).CrossRefGoogle Scholar
  39. 39.
    Chen, H. S., and Wang, T. T., J. Appl. Phys. ,41, 5338 (1970).CrossRefGoogle Scholar
  40. 40.
    Tetelman, A. S., and McEvily, A. J., Jr., Fracture of Structural Materials ,John Wiley, New York (1966), p. 94.Google Scholar
  41. 41.
    Knott, J. F., Mat. Sci. Eng., 1 ,1 (1971).CrossRefGoogle Scholar
  42. 42.
    Cottrell, A. H., The Mechanical Properties of Matter ,John Wiley, New York (1964), p. 322.Google Scholar
  43. 43.
    Argon, A. S., in Polymeric Materials ,ASM, Metals Park, Ohio (1975), p. 411.Google Scholar
  44. 44.
    Hill, R., The Mathematical Theory of Plasticity ,Oxford University Press, London, England (1967), p. 300.Google Scholar
  45. 45.
    Argon, A. S., in The Inhomogeneity of Plastic Deformation ,ASM, Metals Park, Ohio (1973), p. 161.Google Scholar
  46. 46.
    Davis, L. A., unpublished data.Google Scholar
  47. 47.
    Takayama, S., and Davis, L. A., to be published.Google Scholar
  48. 48.
    Davis, L. A., Scripta Met. ,9, 431 (1975).CrossRefGoogle Scholar
  49. 49.
    Tabor, D., The Hardness of Metals ,Oxford University Press, London, England (1951).Google Scholar
  50. 50.
    Hill, R., The Mathematical Theory of Plasticity ,Oxford University Press, London, England (1967), p. 213.Google Scholar
  51. 51.
    Marsh, D. M., Proc. Roy. Soc. ,A279, 420 (1964).Google Scholar
  52. 52.
    Marsh, D. M., Proc. Roy. Soc. ,A282, 33 (1964).Google Scholar
  53. 53.
    Hirth, J. P., and Lothe, J., Theory of Dislocations ,McGraw-Hill, New York (1968), p. 3.Google Scholar
  54. 54.
    See A.E.H. Love, The Mathematical Theory of Elasticity ,Dover (1944), p. 221.Google Scholar
  55. 55.
    Gilman, J. J., in Dislocation Dynamics ,A. R. Rosenfield, G. T. Hahn, A. L. Bement, Jr., and R. I. Jaffee (Eds.), McGraw-Hill, New York (1968), p. 3.Google Scholar
  56. 56.
    Gilman, J. J., in Physics of Strength and Plasticity ,A. S. Argon (Ed.), M.I.T., Cambridge, Mass. (1969), p. 3.Google Scholar
  57. 57.
    Gilman, J. J., J. Appl. Phys. ,44, 675 (1973).CrossRefGoogle Scholar
  58. 58.
    Pampillo, C. A., J. Mater. Sci. ,10, 1194 (1975).CrossRefGoogle Scholar
  59. 59.
    Li, J.CM., in Frontiers in Materials Science ,L. E. Murr and C. Stein (Eds.), Marcel-Dekker, New York (1976), p. 527.Google Scholar
  60. 60.
    Dutoit, M., and Chen, H. S., Appl. Phys. Letters ,23, 357 (1973).CrossRefGoogle Scholar
  61. 61.
    Polk, D. E., and Turnbull, D., Acta Met. ,20, 493 (1972).CrossRefGoogle Scholar
  62. 62.
    Pampillo, C. A., and Reimschuessel, A. C, J. Mat. Sci. ,9, 718 (1974).CrossRefGoogle Scholar
  63. 63.
    Davis, L. A., J. Mater. Sci. ,in press.Google Scholar
  64. 64.
    Cottrell, A. H., The Mechanical Properties of Matter ,John Wiley, New York (1964), p. 366.Google Scholar
  65. 65.
    Tetelman, A. S., and McEvily, A. J., Jr., Fracture of Structural Materials ,John Wiley, New York (1966), p. 102.Google Scholar
  66. 66.
    Kimura, H., and Masumoto, T., Scripta Met. ,9, 211 (1975).CrossRefGoogle Scholar
  67. 67.
    Irwin, G. R., Kies, J. A., and Smith, H. L., Proc. Am. Soc. Testing Materials ,58, 640 (1958).Google Scholar
  68. 68.
    Knott, J. F., Fundamentals of Fracture Mechanics ,Butterworths, London (1973).Google Scholar
  69. 69.
    Zackay, V. F., Parker, E. R., Morris, J. W., Jr., and Thomas, G., Mat. Sci. Eng. ,16, 201 (1974).CrossRefGoogle Scholar
  70. 70.
    Hahn, G. T., and Rosenfield, A. R., Met. Trans. ,6A, 653 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • L. A. Davis
    • 1
  1. 1.Materials Research CenterAllied Chemical CorporationMorristownUSA

Personalised recommendations