Processing and Properties of Superplastic Alloys

  • T. H. Alden
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


The special utility of superplastic alloys depends basically on the remarkable variation with temperature and grain size of the mechanical properties of ultrafine-grained materials. At the first level, the property may be the flow stress, which is extremely small at high temperature but increases rapidly as the temperature falls. This permits a variety of hot-working processes at small forces, yet provides the unique service toughness which is conferred by small grain size. In addition, superplastic alloys processed by free stretching at high temperature show unique ductility which allows single-die sheet forming into complex shapes. The engineering work on these processes is now in a fairly advanced state, especially for the Zn-Al eutectoid alloy and some titanium alloys.

Ultrafine grain size is achieved and maintained most easily (though not uniquely) in concentrated two-phase alloys. This restriction is a fairly severe one, especially since many such alloys contain intermediate phases which, while ductile at high temperature, are brittle at service temperatures. An additional requirement, if a homogeneous microstructure is to be achieved, is that the alloy be hot worked in an initially single-phase condition or at least that the phases be intimately mixed. The latter criterion is usually satisfied in as-cast eutectics, which are the most common type of superplastic alloy.


Flow Stress Creep Rate Superplastic Behavior Superplastic Material Superplastic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zehr, S. W., and Backofen, W. A., ASM Trans. Quart, 61, 300 (1968).Google Scholar
  2. 2.
    Alden, T. H., and Schadler, H. W., Trans. Met. Soc. AIME, 242, 825 (1968).Google Scholar
  3. 3.
    Lee, D., Acta Met, 17, 1057 (1969).CrossRefGoogle Scholar
  4. 4.
    Holt, D. L., and Backofen, W. A., ASM Trans. Quart, 59, 755 (1966).Google Scholar
  5. 5.
    Alden, T. H., Acta. Met, 15, 469 (1967).CrossRefGoogle Scholar
  6. 6.
    Hayden, H. W., and Brophy, J. H., ASM.Trans. Quart, 61, 542 (1968).Google Scholar
  7. 7.
    Johnson, R. H., Design Eng. (March, 1969).Google Scholar
  8. 8.
    Davies, G. J., Edington, J. W., Cutler, C. P., and Padmanabhan, K. A., J. Mater. Sci, 5, 1091 (1970).CrossRefGoogle Scholar
  9. 9.
    Baudelet, B., Mem. Sci. Rev. Met, 68, 479 (1971).Google Scholar
  10. 10.
    Ashby, M. F., and Verrall, R. A., Acta Met, 21, 149 (1973).CrossRefGoogle Scholar
  11. 11.
    Sherby, O. D., and Burke, P. M., Prog. Mater. Sci, 13, 325 (1967).Google Scholar
  12. 12.
    Alden, T. H., ASM Trans. Quart, 61, 559 (1968).Google Scholar
  13. 13.
    Alden, T. H., in Plastic Deformation of Materials, Arsenault (Ed.), Academic Press, New York (1975), p. 225.Google Scholar
  14. 14.
    Garwood, R. D., and Hopkins, A. D., J. Inst. Met, 81, 407 (1952-53).Google Scholar
  15. 15.
    Gibson, R. C., and Brophy, J. H., in Ultrafine Grain Metals, Syracuse University Press, Syracuse, New York (1970), p 377.Google Scholar
  16. 16.
    Schadler, H. W., Trans. Met. Soc. AIME, 242, 1281 (1968).Google Scholar
  17. 17.
    Jin, S., Morris, J. W., Jr., and Zackay, V. F., Met. Trans. A, 6A, 141 (1975).CrossRefGoogle Scholar
  18. 18.
    Cline, H. E., and Alden, T. H., Trans. Met. Soc. AIME, 239, 710 (1967).Google Scholar
  19. 19.
    Hayden, H. W., Gibson, R. C., Merrick, H. F., and Brophy, J. H., ASM Trans. Quart, 60, 3 (1967).Google Scholar
  20. 20.
    Snape, E., and Church, N. L., J. Metals, 24, 23 (January, 1972).Google Scholar
  21. 21.
    Sherby, O. D., Walser, B., Young, C. M., and Cady, E. M., “Superplastic Ultrahigh Carbon Steels”, Scripta Met, 9 (5), 569–573 (May, 1975).CrossRefGoogle Scholar
  22. 22.
    Pearson, C. E., J. Inst. Metals, 54, 111 (1934).Google Scholar
  23. 23.
    Backofen, W. A., Turner, I. R., and Avery, D. H., ASM Trans. Quart, 57, 981 (1964).Google Scholar
  24. 24.
    Fields, D. S., Jr., and Stewart, T. J., Int. J. Mech. Sci, 13, 63 (1971).CrossRefGoogle Scholar
  25. 25.
    Fields, D. S., Jr., and Hubert, J. F., Superplastic Metal Forming, IBM Corporation, Endicott, New York (1975). See also Met. Eng. Quart, 13, 1–20 (November, 1973).Google Scholar
  26. 26.
    Stewart, M. J., Met. Trans, 6A (8), 1672–1674 (August, 1975).CrossRefGoogle Scholar
  27. 27.
    Gibson, R. C, Hayden, H. W., and Brophy, J. H., ASM Trans. Quart., 61, 85 (1968).Google Scholar
  28. 28.
    Stewart, M. J., Can. Met. Quart., 12, 159 (1973).Google Scholar
  29. 29.
    Hart, E., in Ultrafine Grain Metals, Syracuse University Press, Syracuse, New York (1970), p. 247.Google Scholar
  30. 30.
    Alden, T. H., J. Australian Inst. Met., 14, 207 (1969).Google Scholar
  31. 31.
    Ultrafine Grain Metals, Syracuse University Press, Syracuse, New York (1970).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. H. Alden
    • 1
  1. 1.Metallurgy DepartmentU.B.C.VancouverCanada

Personalised recommendations