Mechanical Properties of Solid Solutions

  • P. Haasen
Part of the Battelle Institute Materials Science Colloquia book series (volume 31)


Dislocation theory is used to predict the yield stress of a single-phase alloy from the characteristics of its solute atoms and its microstructure. For fcc dilute solutions, the hardening laws of Fleischer-Friedel and of Labusch are reviewed. Particular attention is paid to the problems of superposition of different hardening mechanisms and of the effects of multiple solute additions. The temperature-independent “plateau” of the yield stress is explained as a dynamic phenomenon. Bcc metals solution harden at intermediate temperatures, most likely by the influence of solute atoms on kink motion. The solution softening observed at low temperatures in this structure is less clearly understood. For polycrystals, a new theory by Suzuki for the Hall-Petch relation is discussed. Work hardening of solid solutions does not differ much from that of the pure metals except for stage III and beyond, where dynamic recovery by cross slip (and by climb) is influenced by stacking-fault energy (SFE) and thus by solute concentration. The SFE is also one of the parameters determining the distribution of slip on various planes and this, in turn, largely influences the fatigue resistance of solid solutions.


Solid Solution Screw Dislocation Solute Atom Cross Slip Plateau Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mott, N. F., and Nabarro, F.R.N., Report on Strength of Solids ,Phys. Soc., London, England (1950), p. 1.Google Scholar
  2. 2.
    Fleischer, R. L., The Strengthening of Metals ,D. Peckner (Ed.), Reinhold, London, England (1964), p. 93.Google Scholar
  3. 3.
    Riddhagni, B. R., and Asimow, R. M., J. Appl. Phys. ,39, 4144, 5169 (1968).CrossRefGoogle Scholar
  4. 4.
    Labusch, R., Phys. Stat. Sol. ,41, 659 (1970); Acta Met. ,20, 917 (1972).CrossRefGoogle Scholar
  5. 5.
    Granato, A. V., Phys. Rev. ,B4, 2196 (1971).Google Scholar
  6. 6.
    Friedel, J., Dislocations ,Pergamon, Oxford, England (1964), p. 224.Google Scholar
  7. 7.
    Cochardt, A. W., Schock, G., and Wiedersich, H., Acta Met. ,3, 533 (1955).CrossRefGoogle Scholar
  8. 8.
    Labusch, R., Grange, G., Ahearn, J., and Haasen, P., Rate Processes in Plastic Deformation of Materials ,J.C.M. Li and A. K. Mukherjee (Eds.), ASM, Metals Park, Ohio (1975), p. 26.Google Scholar
  9. 9.
    Donch, J., Haasen, P., and Labusch, R., Nachr. Akad. Wiss. Gott. ,No. 2 (1974).Google Scholar
  10. 10.
    Jassby, K. M., and Vreeland, T., Phil. Mag. ,21, 1147 (1970).CrossRefGoogle Scholar
  11. 11.
    Ahearn, J. S., Haasen, P., and Labusch, R., Scripta Met. ,8, 387 (1974).CrossRefGoogle Scholar
  12. 12.
    Basinski, Z. S., Foxall, R. A., and Pascual, R., Scripta Met. ,6, 807 (1972).CrossRefGoogle Scholar
  13. 13.
    Takeuchi, S., J. Phys. Soc. Japan ,27, 929 (1969).CrossRefGoogle Scholar
  14. 14.
    Suzuki, H., Nachr. Akad. Wiss. Gott. ,No. 6 (1971); Rate Processes in Plastic Deformation of Materials ,ASM, Metals Park, Ohio (1975), p. 47.Google Scholar
  15. 15.
    Sato, A., and Meshii, M., Acta Met. ,21, 753 (1973).CrossRefGoogle Scholar
  16. 16.
    Alexander, H., and Haasen, P., Solid State Physics ,Vol. 22, F. Seitz (Ed.), Academic Press, New York (1968), p. 27.Google Scholar
  17. 17.
    Siethoff, H., Mat. Sci. Engr. ,4, 155 (1969).CrossRefGoogle Scholar
  18. 18.
    Ulitchny, M. G., and Gibala, R., J. Less-Common Metals ,33, 105 (1973).CrossRefGoogle Scholar
  19. 19.
    Sethi, V. K., and Gibala, R., Scripta Met. ,9, 527 (1975).CrossRefGoogle Scholar
  20. 20.
    Suzuki, H., and Nakanishi, K., Trans. Jap. Inst. Met. ,15, 435 (1974); 16, 17 (1975).Google Scholar
  21. 21.
    Cottrell, A. H., The Relation between Structure and Mechanical Properties of Metals ,HMSO, London, England (1963), p. 456.Google Scholar
  22. 22.
    Schock, G., and Seeger, A., Report of Bristol Conference on Defects in Crystalline Solids ,Phys. Soc., London, England (1955), p. 340.Google Scholar
  23. 23.
    Haasen, P., Physical Metallurgy ,R. W. Cahn (Ed.), North Holland, Amsterdam, Netherlands (1970), p. 1011.Google Scholar
  24. 24.
    Kocks, U. F., Micromechanical Modelling of Flow and Fracture ,ASME, Troy, New York (June, 1975).Google Scholar
  25. 25.
    Mohamed, F. A., and Langdon, T. G., J. Appl Phys. ,45, 1965 (1974).CrossRefGoogle Scholar
  26. 26.
    Alexander, H., and Haasen, P., Acta Met. ,9, 1001 (1961).CrossRefGoogle Scholar
  27. 27.
    Sestak, B., and Seeger, A., The Microstructure and Design of Alloys ,Inst. of Met. and Iron and Steel Inst., London, England (1973), p. 563.Google Scholar
  28. 28.
    Taylor, G., Vesely, D., and Christian, J. W., loc. cit. ,p. 1.Google Scholar
  29. 29.
    Neumann, P., Acta Met. ,17, 1219 (1969).CrossRefGoogle Scholar
  30. 30.
    Rudolph, G., Haasen, P., Mordike, B. L., and Neumann, P., Proceedings of First International Conference on Fracture ,Sendai, Japan (1966), p. 501.Google Scholar
  31. 31.
    Wilsdorf, H.G.F., and Fourie, J. T., Acta Met. ,4, 271 (1956).CrossRefGoogle Scholar
  32. 32.
    Neumann, R., Z. Metallk. ,66, 26 (1975).Google Scholar
  33. 33.
    Mughrabi, H., and Wuthrich, Ch., Phil. Mag. ,33, 963 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. Haasen
    • 1
  1. 1.Institut für MetallphysikUniversitat GöttingenGöttingenW. Germany

Personalised recommendations